Supporting Information

Photoelectrochemical Properties of TiO₂ Nanowire Arrays: A Study of the Dependence on Length and Atomic Layer Deposition Coating

Yun Jeong Hwang^{\dagger ,\$}, Chris Hahn^{$\dagger$,\$}, Bin Liu^{\dagger}, and Peidong Yang^{$*^{\dagger}$, \ddagger ,\$}

[†] Department of chemistry, and [‡] Department of Materials Science and Engineering, University of California, Berkeley, California 94720,

[§]Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

94720

*Address correspondence to p_yang@berkeley.edu

Supporting Information

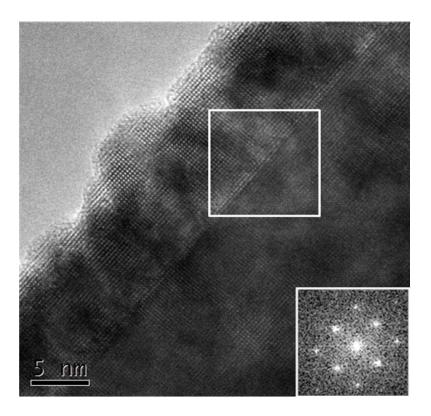


Figure S1. High resolution transmission electron microscope image of a TiO_2 NW with 150 ALD cycles. The inset is the fast Fourier transform (FFT) of the boxed area showing epitaxial growth of the shell at the interface.

Supporting Information

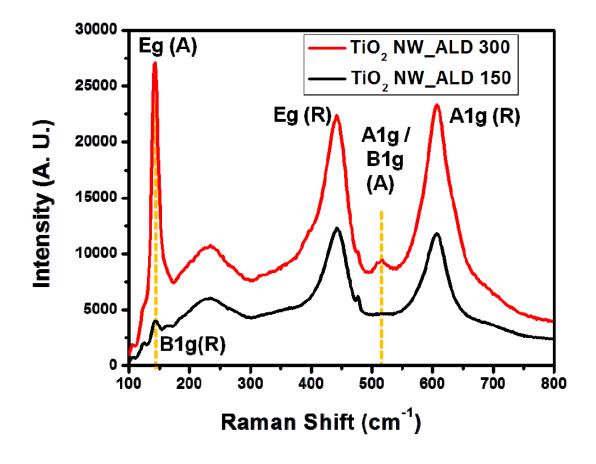


Figure S2. Raman shifts TiO₂ nanowires with 150 (black) and 300 ALD cycles (red). The peaks at 140 cm⁻¹, 441 cm⁻¹ and 606 cm⁻¹ are associated with the rutile B_{1g} , E_g , and A_{1g} modes respectively. The peaks at 141 cm⁻¹ and 515 cm⁻¹, for nanowires with 300 ALD cycles, are associated with the Eg and A_{1g}/B_{1g} modes of the anatase phase.