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S1. Theory 

Consider a metal ion M
n+

 that is reversibly reduced at a mercury electrode to the amalgam M(Hg) and also reacts with a 

ligand HmL to form the electrochemically inert and electroactive complex ML
(n-m)+

 in solution. Electrochemically inert 

means that the association-dissociation kinetics of the complex is so slow that it practically does not dissociate during 

the time scale of the electrochemical measurement. If the protonation equilibria of the ligand are involved in the 

electrochemical reaction, the reduction of Mn+-ions takes place according to different simultaneous processes: 

i)  M
n+

 + ne
-
              M(Hg) 

ii) MLHm
n+

 +  ne
-
              M(Hg) + HmL 

iii) ML(n-m)+ + mH+ + ne-              M(Hg) + HmL 

iv) ML
(n-m)+

 + ne
-
              M(Hg) + L

m- 

 

Usually, reaction i) takes place at potentials quite less negative than those of processes ii)-iv), thus producing a separate 

signal for the reduction of the free metal ion, which, for the totally inert case, remains at constant potential. In contrast, 

processes ii) - iv) are simultaneous and compete with each other to produce a signal which moves along the potential 

axis, depending on the predominance of one or the other. It must be noted that reaction ii) will only occur when the 

complex is protonated without dissociation (e.g. if some electron pairs of the ligand remain available for coordination 

after metal ion binding). A very simple but still useful approach consists of writing the Nernst expression of half-

reaction iii): 

 m)mn(

m'0

]H[]ML[

]LH[
log

n

058.0
EE

++−
+=       (1) 

where E0' is the formal potential and 0.058 is given at 20ºC. If we rearrange this equation, we find: 
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which suggests that the evolution of the peak potential of the signal (Ep) as a function of pH should follow a linear 

relationship of the type: 

 pH
n

m
058.0kEp −=          (3) 

with k being a constant related to E
0'
. This means that the slope of an Ep vs. pH linear plot leads to the obtaining of the 

ratio between the protons and electrons exchanged in the electrochemical reduction of the complex, which is useful in 

the formulation of complexation models. 

Unfortunately, experimental systems do not behave in such a simple way. Firstly, Equations (1)-(3) depict a situation of 

electrochemical equilibrium, i.e. a reversible system, and the reduction of inert complexes is typically non-reversible. 

Indeed, Koryta proposed for NTA a kinetic model with a pH-dependent dissociation constant of the complex (kd) 

according to the expression: 

 kd = k
0
 + k

1
 [H

+
]         (4) 
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where k0 and k1 are rate constants. Secondly, the situation seems quite dependent on the distribution of the differently 

protonated species of the free ligand. For instance, process iii) becomes negligible at too high pH values (the 

concentration of H
+
 is too small to protonate either the ligand or the complex) or too acidic pH values (the ligand is 

already protonated in the complexed form or complexation is negligible), whereas processes ii) or iv) are unaffected by 

pH variation, provided that complexation still takes place and the free metal is not hydrolyzed. These considerations are 

confirmed by the sigmoid evolution of many experimental ∆E vs. pH plots. To model this behavior, we chose a 

parametric sigmoid equation in the form: 

 d
e1

a
E

)cpH(b
+

+
=∆

−         (5) 

with a, b, c, d being adjustable parameters: a is the height of the function, i.e. the difference between the lower and 

upper limits of ∆E, and can be positive or negative depending on the 'up-down orientation' of the function; b is related 

to the slope in the region close to the inflexion point and can also be positive or negative depending on the 'left-right 

orientation' of the function; c is the pH of the inflexion point; and d is the vertical displacement (positive or negative) of 

the sigmoid from the zero baseline (d ≠ 0 means a sigmoid with both a positive and a negative section). 

Further reading on theoretical aspects of the data treatment can be found in Ref. 19 and 20. 
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S2. Data Treatment 
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Flowchart 1 - Method for non-linear multivariate curve resolution analysis of voltammetric pH titration datasets by 

means of pHfit program, as seen in reference 19. The proposed example includes three kinds of signals depending on 

their evolution with pH: sigmoid (A), immobile (B) and linear (C). 
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Flowchart 2 - Methodology for non-linear multivariate curve resolution analysis of a voltammetric titration dataset by 

means of GPA programs, as seen in Reference 20. 
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S3. Voltammetric pH titration 
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Figure S1 – Voltammetric data matrix (current vs. potential vs. pH) obtained in the DPP pH titration of 3:2 SeCyst : 

M3+ (a – Bi3+; b – Cr3+) and equimolar SeCyst : M2+ (c – Pb2+; d – Co3+) systems, in 50 mmol L-1 KNO3. The unitary 

concentration is indicated with respect to SeCyst (10 µmol L-1). Axes are differently disposed for a better perspective of 

signals evolution. 
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