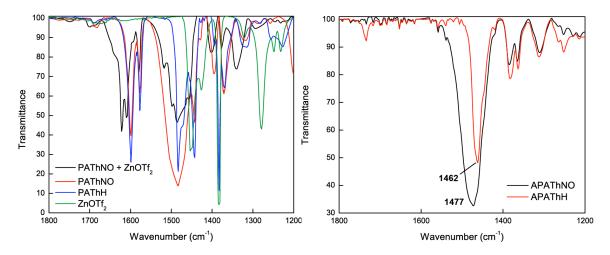
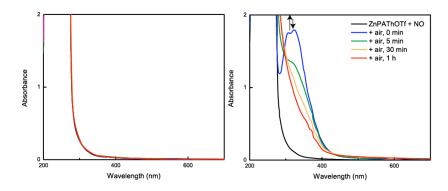
Supporting Information for

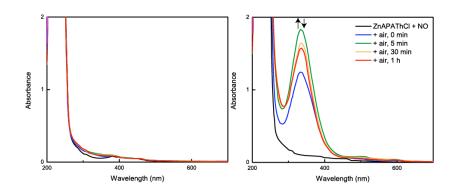
Zinc Thiolate Reactivity toward Nitrogen Oxides: Insights into the Interaction of Zn²⁺ with S-Nitrosothiols and Implications for Nitric Oxide Synthase

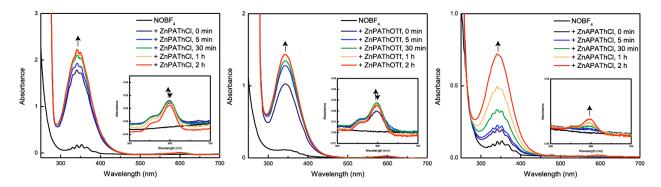

Julia Kozhukh and Stephen J. Lippard

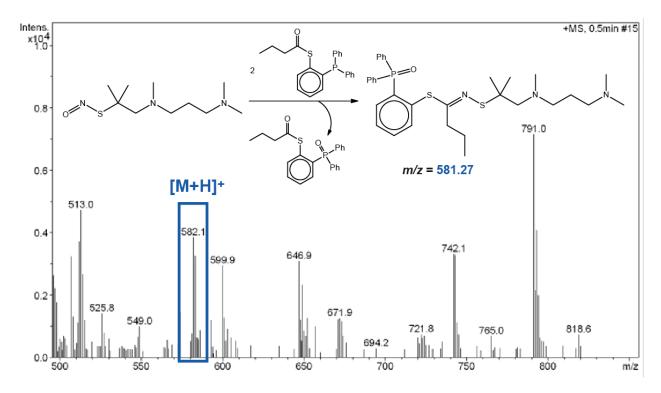
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA

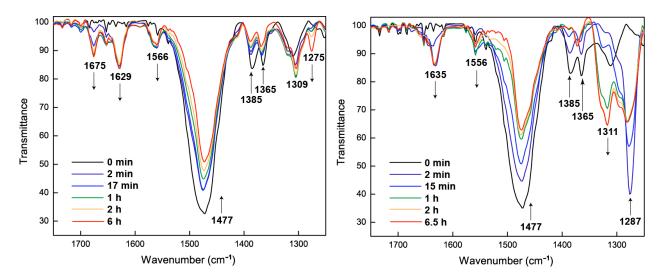

Email: lippard@mit.edu

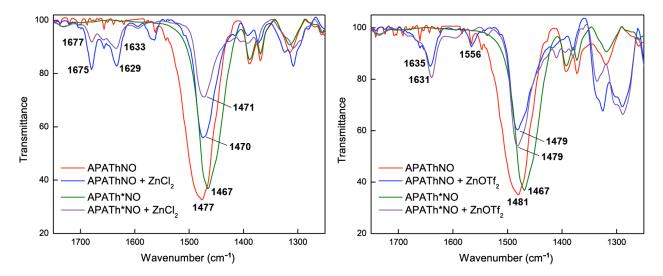
Contents:

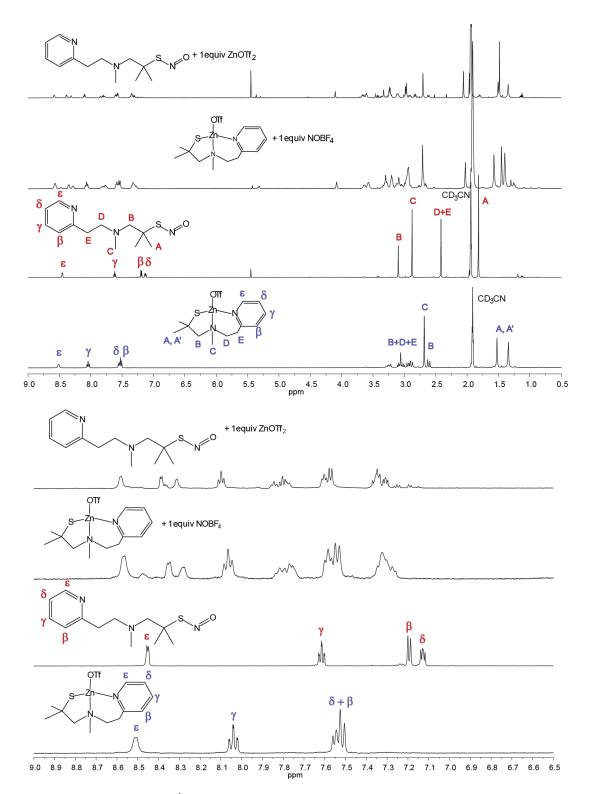

- Figure S1. Infrared spectrum of PAThNO and related species.
- Figure S2. Optical spectra of $ZnPAThOTf + NO(g) \pm air$.
- Figure S3. Optical spectra of $ZnAPAThCl + NO(g) \pm air$.
- Figure S4. Optical spectra of NOBF₄ reactions with ZnPAThCl, ZnPAThOTf, and ZnAPAThCl.
- Figure S5. ESI-MS spectrum of reaction between ZnAPAThCl + NOBF₄ and *S*-nitrosothiol trapping reagent.
- Figure S6. Solution IR timecourse spectra for the reaction of APAThNO with $ZnCl_2$ and $ZnOTf_2$.
- Figure S7. Solution IR comparison of APAThNO and APATh¹⁵NO reaction spectra with ZnCl₂ and ZnOTf₂.
- Figure S8. ¹H NMR comparison of ZnPAThOTf/NOBF₄ and PAThNO/ZnOTf₂ reactions.
- Figure S9. ¹H NMR titration of Zn(OTf)₂ into solutions of PATh₂.
- Figure S10. ¹H NMR comparison of a PATh₂/ZnOTf₂ mixture with ZnPAThOTf/NOBF₄ and PAThNO/ZnOTf₂ solutions.
- Figure S11. EI-MS of ZnAPAThCl/NOBF₄ reaction headspace.
- Figure S12. EI-MS of APAThNO/ZnCl₂ reaction headspace.
- Figure S13. EI-MS of APAThNO/Zn(OTf)₂ reaction headspace.
- Figure S14. EI-MS control experiment: analysis of APAThNO solution headspace.
- Figure S15. Optical spectra of NO₂ reactions with ZnPAThCl, ZnPAThOTf, and ZnAPAThCl.

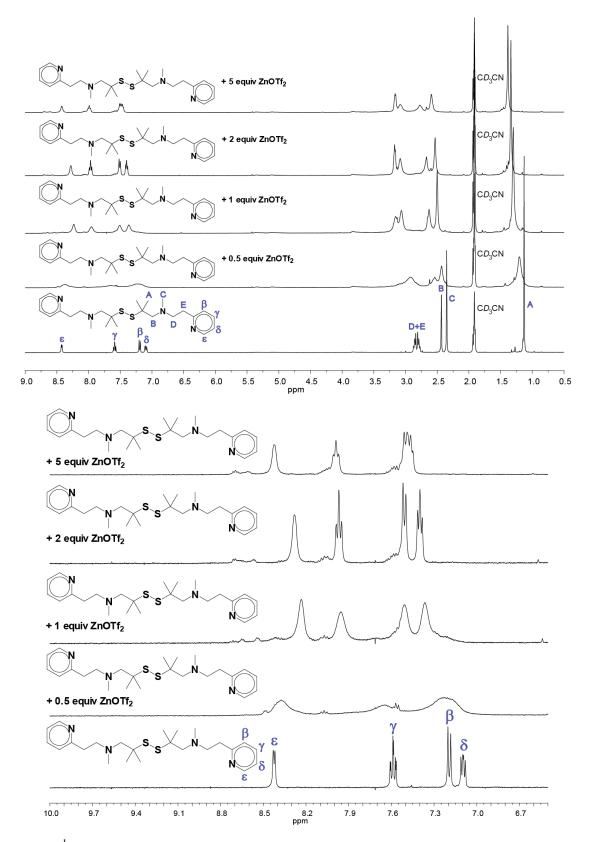

Figure S1. *Left:* Infrared spectral comparison of $Zn(OTf)_2$, PAThH, PAThNO, and PAThNO + $Zn(OTf)_2$ in MeCN. Strong absorbance bands between 1550 cm⁻¹ and 1650 cm⁻¹ obscure features arising from the reaction products of Zn^{2+} with PAThNO. *Right:* The infrared spectra of APAThH and APAThNO are shown for comparison.


Figure S2. UV-Vis spectral profiles for reactions of anaerobic 7.5 mM ZnPAThOTf with excess NO (g), left, and of 7.5 mM ZnPAThOTf with excess NO (g) + air, right. Recorded in acetonitrile.


Figure S3. UV-Vis spectral profiles for reactions of anaerobic 7.5 mM ZnAPAThCl with excess NO (g), left, and of 7.5 mM ZnAPAThCl with excess NO (g) + air, right. Recorded in acetonitrile.


Figure S4. Spectral profiles for reactions of 1 equiv of $NOBF_4$ with 7.5 mM zinc thiolate complexes. From left to right: ZnPAThCl, ZnPAThOTf, and ZnAPAThCl. The low-intensity features observed between 300 nm and 400 nm result from NO_2BF_4 contamination of commercially available $NOBF_4$.


Figure S5. ESI-MS spectrum of ZnAPAThCl + 0.9 equiv NOBF₄ + PPh₂R.


Figure S6. Solution IR spectral timecourse for the reactions of APAThNO with 1 equiv of ZnCl₂ (left) and Zn(OTf)₂ (right) in MeCN- d_3 . The v_{NO} band at 1477 cm⁻¹ for APAThNO disappears upon addition of zinc(II) salt to the nitrosothiol. Because v_{NO} of APAThNO overlaps the C–H rocking and/or bending modes, some intensity remains after the S-nitrosothiol N=O stretch at 1477 cm⁻¹ disappears. For comparison see Figure S1, *right*.

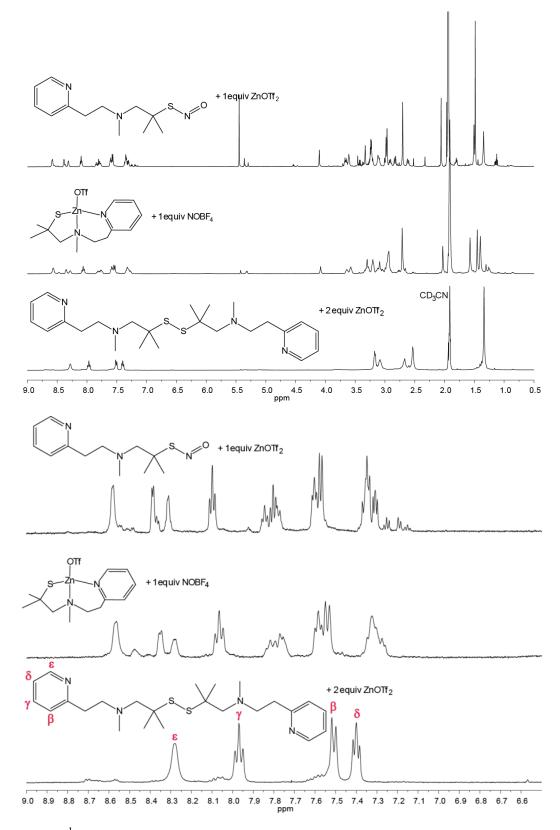

Figure S7. ¹⁵N (designated *N) vs. ¹⁴N spectral comparison of reactions of APATh*NO and APAThNO with $ZnCl_2$ (left) and $Zn(OTf)_2$ (right). Recorded in acetonitrile- d_3 .

Figure S8. Comparison of ¹H NMR spectra for 7.5 mM ZnPAThOTf/NOBF₄ vs. 7.5 mM PAThNO/Zn(OTf)₂ reactions. Recorded in MeCN- d_3 .

Figure S9. ¹H NMR spectral comparison of PATh₂ solutions in MeCN- d_3 containing variable amounts of Zn(OTf)₂.

Figure S10. ¹H NMR comparison of a PATh₂/Zn(OTf)₂ solution with reaction spectra of ZnPAThOTf with NOBF₄ and PAThNO with Zn(OTf)₂. Recorded in MeCN- d_3 .

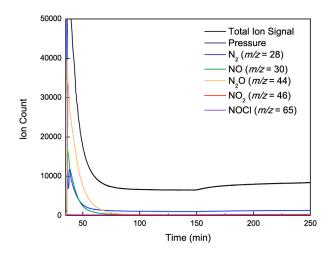


Figure S11. EI-MS analysis of the reaction headspace for ZnAPAThCl and NOBF₄ in CH₃CN.

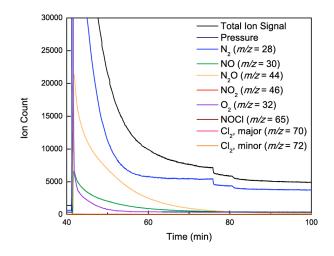


Figure S12. EI-MS analysis of the reaction headspace for APAThNO and ZnCl₂ in CH₃CN.

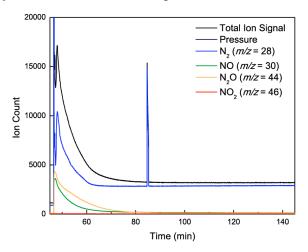
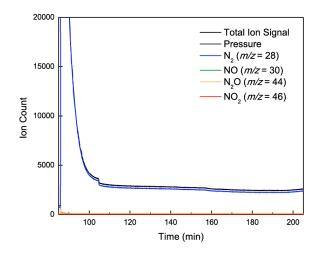
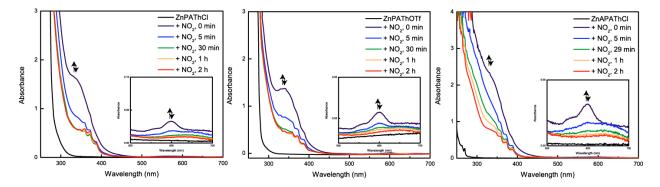




Figure S13. EI-MS analysis of the reaction headspace of the APAThNO/ZnOTf₂ reaction in CH_3CN .

Figure S14. EI-MS control experiment: analysis of the solution headspace of APAThNO in CH₃CN.

Figure S15. Acetonitrile solution spectra of NO₂ reactions with 1.5 mM ZnPAThCl (left), 1.9 mM ZnPAThOTf (middle), and 1.5 mM ZnAPAThCl (right) reactions. The lower intensity peaks appearing in the 350 - 400 nm region of the spectrum are attributed to NO₂.