Supporting Information

Synthesis of the aminocyclitol units of (-) hygromycin A and

methoxyhygromycin from myo-inositol

Bharat P. Gurale, Mysore S. Shashidhar* and Rajesh G. Gonnade

Division of Organic Chemistry, Centre for Materials Characterization, National Chemical

Laboratory, Dr. Homibhabha Road, Pune, India- 411 008

ms.shashidhar@ncl.res.in

Table of contents

Comparison of the synthesis of (–) 3 and 20 with methods reported in the literature	SI-2
¹ H, ¹³ C and DEPT NMR spectra of 3 , 7–13 and 17–20	SI-3 to SI-29
Single Crystal X-ray diffraction Data	SI-30 to SI-32
ORTEP's for 9–12, 18 and 20	SI-33 to SI-38
References	SI-39

Sr. No.	Starting material	No. of steps	Overall yield ^a (%)	Reference			
1	OH HOHO D-Glucose	20	2.7	1			
2	O=O 1,4-benzoquinone	13	10	2			
3	O H	14	12	3			
4		15	20	4			
5	HO HO HO HO HO HO OH <i>myo</i> -Inositol (5)	11	31	Present work			
AcHN OAc AcO 20 OAc							
6	<i>myo</i> -Inositol (5)	11	4	5			
7	<i>myo</i> -Inositol (5)	10	56	Present work			

Table S1: Synthesis of aminocyclitol units of HMA and MHM; comparison with methods reported in the literature.

^aOverall yield refers to aminocyclitol units (-)3 and 20

Comparison of the ¹H NMR spectroscopic data and specific rotation of (-)**3** with literature reports:

Trost ² (300 MHz)	Donoho ³ (400 MHz)	Present work (500 MHz)
5.07 (s, 1H)	5.07 (s, 1H)	5.07 (s, 1H)
4.83 (s, 1H)	4.84 (s, 1H)	4.83 (s, 1H)
4.17 (dd, 1H, <i>J</i> 5.1,7.8)	4.17 (dd, 1H, J 4.8, 7.6)	4.17 (dd, 1H, <i>J</i> 4.9,7.7)
4.03 (m, 2H)	4.07 (dd, 1H, <i>J</i> 4.4,4.4)	4.06 (t, 1H, J 4.6)
	4.01 (dd, 1H, <i>J</i> 4.0,10.0)	4.01 (dd, 1H, <i>J</i> 4.2,9.7)
3.74 (dd, 1H, <i>J</i> 3.7,9.8)	3.73 (dd, 1H, <i>J</i> 3.6,10.0)	3.73 (dd, 1H, <i>J</i> 3.7,9.8)
3.61 (dd, 1H, J 3.4,7.8)	3.60 (dd, 1H, J 3.2,8.0)	3.60 (dd, 1H, J 3.1,7.7)
3.26 (t, 1H, J 3.4)	3.25 (t, 1H, J 3.3)	3.26 (t, 1H, J 3.1)
$[\alpha]_{\rm D}^{21} - 28.9^{\circ} (c = 0.85, \rm H_2O)$	$[\alpha]_{\rm D}^{20} -27.2^{\circ} (c = 0.45, {\rm H}_2{\rm O})$	$[\alpha]_{\rm D}^{25} - 29^{\circ} (c = 1.1, {\rm H}_2{\rm O})$

SI-4

Dept NMR, D ₂ O, 125.76 MHz, (+) 3				
	95.50	76.82 76.24 −70.55 −67.70	50.90	
HO HO OH OH (+)3	1946aya Santaka, dinaka Sangka			unte con actor actor interfaces dans
		80 70 66		30 20 10

SI-8

SI-16

SI-26

Single Crystal X-ray diffraction Data

X-ray intensity data measurements of all the comounds (9–12, 18 and 20) were carried out on a Bruker SMART APEX CCD diffractometer with graphitemonochromatized (MoK_{α}= 0.71073Å) radiation. The X-ray generator was operated at 50 kV and 30 mA. Data were collected with ω scan width of 0.3° at different settings of φ (0°, 90°, 180° and 270°) keeping the sample-to-detector distance fixed at 6.145 cm and the detector position (2 θ) fixed at -28°. The X-ray data collection was monitored by SMART program (Bruker, 2003).⁶

Crystal data of **9**: C₂₉H₃₁N₃O₆, M=517.57, colorless plate, 0.12 x 0.10 x 0.08 mm³, monoclinic, space group *C*2/*c*, *a* =33.130(5), *b*=10.4844(17), *c*=16.523(3) Å, β = 111.386(3), V = 5344.0(15) Å³, Z = 8, T = 297(2) K, $2\theta_{max} = 50.00^{\circ}$, D_{calc} (g cm⁻³) = 1.287, F(000) = 2192, μ (mm⁻¹) = 0.091, 13185 reflections collected, 4681 unique reflections ($R_{int} = 0.0341$), 2867 observed ($I > 2\sigma$ (I)) reflections, multi-scan absorption correction, $T_{min} = 0.989$, $T_{max} =$ 0.993, 448 refined parameters, S = 1.011, R1 = 0.0437, wR2 = 0.0872 (all data R = 0.0859, wR2= 0.1026), maximum and minimum residual electron densities; $\Delta \rho_{max} = 0.131$, $\Delta \rho_{min} = -0.170$ (eÅ⁻³).

Crystal data of **10**: C₂₉H₃₁N₃O₆, M=517.57, colorless needle, 0.22 x 0.19 x 0.12 mm³, triclinic, space group *P*-1, *a* = 9.3727(19), *b*= 10.020(2), *c*= 15.193(3) Å, *a* = 102.788(4)°, β = 104.677(3)°, γ = 99.305(4)°, *V* = 1309.8(5) Å³, *Z* = 2, *T* = 100(2) K, 2 θ_{max} =50.00°, *D_{calc}* (g cm⁻³) = 1.312, *F*(000) = 548, μ (mm⁻¹) = 0.093, 12730 reflections collected, 4585 unique reflections (*R*_{int}=0.0253), 3474 observed (*I* > 2 σ (*I*)) reflections, multi-scan absorption correction, *T_{min}* = 0.980, *T_{max}* = 0.989, 376 refined parameters, *S* = 1.097, *R*1=0.0673,

wR2=0.1576 (all data R = 0.0865, wR2 = 0.1703, maximum and minimum residual electron densities; $\Delta \rho_{\text{max}} = 0.392$, $\Delta \rho_{\text{min}} = -0.187$ (eÅ⁻³).

Crystal data of **11:** C₂₃H₂₆N₄O₅, M=438.48, colorless needle, 0.37 x 0.06 x 0.04 mm³, orthorhombic, space group $P2_12_12_1$, a = 7.564(3), b=15.725(7), c=18.913(8) Å, V = 2249.7(16) Å³, Z = 4, T = 100(2) K, $2\theta_{max}=50.00^{\circ}$, D_{calc} (g cm⁻³) = 1.295, F(000) = 928, μ (mm⁻¹) = 0.093, 16193 reflections collected, 3957 unique reflections ($R_{int}=0.0510$), 3787 observed ($I > 2\sigma$ (I)) reflections, multi-scan absorption correction, $T_{min} = 0.967$, $T_{max} = 0.997$, 365 refined parameters, S = 1.190, R1=0.0420, wR2=0.0871 (all data R = 0.0447, wR2 = 0.0882, maximum and minimum residual electron densities; $\Delta \rho_{max} = 0.197$, $\Delta \rho_{min} = -0.162$ (eÅ⁻³).

Crystal data of **12:** $C_{14}H_{17}N_3O_5$, M=307.31, colorless plate, 0.29 x 0.14 x 0.11 mm³, triclinic, space group *P*-1, *a* = 10.2239(8), *b* = 10.7231(9), *c* =15.4953(13) Å, *a* = 91.7140(10), *β* = 103.3900(10), γ = 117.7640(10) °, *V* = 1443.5(2) Å³, *Z* = 4, *T* = 297(2) K, 2 θ_{max} =50.00°, *D_{calc}* (g cm⁻³) = 1.414, *F*(000) = 648, μ (mm⁻¹) = 0.109, 13362 reflections collected, 5061 unique reflections (R_{int} =0.0136), 4416 observed (*I* > 2 σ (*I*)) reflections, multi-scan absorption correction, *T*_{min} = 0.969, *T*_{max} = 0.988, 401 refined parameters, *S* = 1.031, *R*1=0.0374, *wR*2=0.0941 (all data *R* = 0.0430, *wR*2 = 0.0987), maximum and minimum residual electron densities; $\Delta \rho_{max} = 0.188$, $\Delta \rho_{min} = -0.164$ (eÅ⁻³).

Crystal data of **18:** $C_{31}H_{31}N_{3}O_{8}$, M=573.59, colorless prism, 0.27 x 0.07 x 0.05 mm³, monoclinic, space group $P2_{1}$, a = 7.4388(5), b = 26.4633(17), c = 14.6237(10) Å, $\beta = 93.580(3)$, V = 2873.1(3) Å³, Z = 4, T = 100(2) K, $2\theta_{max}=50.00^{\circ}$, D_{calc} (g cm⁻³) = 1.326, F(000) = 1208, μ (mm⁻¹) = 0.097, 16623 reflections collected, 6962 unique reflections ($R_{int}=0.0248$), 5841 observed ($I > 2\sigma$ (I)) reflections multi-scan absorption correction, $T_{min} =$ 0.975, $T_{\text{max}} = 0.995$, 799 refined parameters, 115 restraints applied, S = 1.047, R1=0.0375, wR2=0.0752 (all data R = 0.0527, wR2 = 0.0821, maximum and minimum residual electron densities; $\Delta \rho_{\text{max}} = 0.155$, $\Delta \rho_{\text{min}} = -0.251$ (eÅ⁻³).

Crystal data of **20**: $C_{17}H_{25}N_1O_{10}$, M=403.38, colorless rhombic crystals, 0.57 x 0.36 x 0.30 mm³, monoclinic, space group *Cc*, *a* = 15.345(2), *b* = 11.1876(18), *c* = 12.2187(19) Å, β = 103.406(2)°, *V* = 2040.5(6) Å³, *Z* = 4, *T* = 133(2) K, $2\theta_{max}$ =50.00°, D_{calc} (g cm⁻³) = 1.313, F(000) = 856, μ (mm⁻¹) = 0.109, 7131 reflections collected, 3525 unique reflections (R_{int} =0.0245), 3475 observed ($I > 2\sigma$ (I)) reflections, multi-scan absorption correction, T_{min} = 0.941, T_{max} = 0.968, 287 refined parameters, 2 restraints applied, S = 1.087, R1=0.0351, wR2=0.0889 (all data R = 0.0355, wR2 = 0.0894, maximum and minimum residual electron densities; $\Delta\rho_{max} = 0.240$, $\Delta\rho_{min} = -0.165$ (eÅ⁻³).

All the data were corrected for Lorentzian, polarization and absorption effects using SAINT and SADABS programs (Bruker, 2003). SHELX-97 was used for structure solution and full matrix least-squares refinement on $F^{2,7}$ Hydrogen atoms for compounds **11** were located in difference Fourier map and refined isotropically whereas for compounds **12** and **18** they were placed in geometrically idealized position and constrained to ride on their parent atoms. In compounds **10** and **20** inositol ring H-atoms as well as acetal H-atoms in **10** and H-atom bound to N atom in **20** were located in difference Fourier map and refined is difference Fourier map and refined is otropically idealized position and constrained to ride on their parent atoms. In compound **9** methylene H-atoms bound to C8 and methyl H-atoms bound to C29 were placed in geometrically idealized position and constrained to ride on their parent atoms whereas all other H-atoms located in difference Fourier map and refined to ride on their parent atoms whereas all other H-atoms located in difference Fourier map and refined to ride on their parent atoms whereas all other H-atoms located in difference Fourier map and refined to ride on their parent atoms whereas all other H-atoms located in difference Fourier map and refined isotropically. All ORTEPs were generated using ORTEP-32.⁸

Figure S1. ORTEP of **9**. Thermal ellipsoids are drawn at 30% probability and hydrogen atoms are depicted as small spheres of arbitrary radii.

Figure S2. ORTEP of **10**. Thermal ellipsoids are drawn at 30% probability and hydrogen atoms are depicted as small spheres of arbitrary radii.

Figure S3. ORTEP of **11**. Thermal ellipsoids are drawn at 50% probability and hydrogen atoms are depicted as small spheres of arbitrary radii.

Figure S4. ORTEP of $(\pm)12$. Thermal ellipsoids are drawn at 30% probability and hydrogen atoms are depicted as small spheres of arbitrary radii.

Figure S5. ORTEP of **18**. Thermal ellipsoids are drawn at 50% probability and hydrogen atoms are depicted as small spheres of arbitrary radii.

Figure S6. ORTEP of **20**. Thermal ellipsoids are drawn at 30% probability and hydrogen atoms are depicted as small spheres of arbitrary radii.

References

- Chida, N.; Ohtsuka, M.; Nakazawa, K.; Ogawa, S. J. Chem. Soc., Chem. Commun. 1989, 7, 436–438.
- 2. Trost, B. M.; Dudash, J. Chem. Eur. J. 2001, 7, 1619–1629.
- 3. Donohoe, T. J.; Johnson, P. D.; Pye, R. J.; Keenan, M. Org. Lett. 2005, 7, 1275–1277.
- Donohoe, T. J.; Flores, A.; Battaille, C. J. R.; Churruca, F. Angew. Chem. Int. Ed. 2009, 48, 6507–6510.
- Chida, N.; Nakazawa, N.; Ohtsuka, M.; Suzuki, M.; Ogawa, S. Chem. Lett. 1990, 423–426.
- Bruker (2003). SADABS (Version 2.05), SMART (Version 5.631), SAINT (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
- 7. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.
- 8. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565-565.