Supplemental Information

for

Bifunctional Catalyst Promotes Highly Enantioselective Bromolactonizations to Generate Stereogenic C-Br Bonds

Daniel H. Paull, Chao Fang, James R. Donald, Andrew Pansick, and Stephen F. Martin*
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712
sfmartin@mail.utexas.edu

Table of Contents

General procedures S3
Synthesis and characterization of catalyst 5 S4-S7
Synthesis and characterization of olefinic acids S7-S10
Representative enantioselective bromolactonization procedure S10
Characterization of new bromolactones S10-S16
HPLC traces for all bromolactones S17-S32
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (by compound number) S33-S86
X-ray crystal structures S87
References S88

General

Solvents were purified before use as follows unless otherwise noted. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and benzene were distilled from calcium hydride immediately prior to use. Tetrahydrofuran and diethyl ether were dried by filtration through two columns of activated, neutral alumina according to the procedure described by Grubbs. ${ }^{1}$ Methanol (MeOH), acetonitrile (MeCN), and dimethylformamide (DMF) were dried by filtration through two columns of activated molecular sieves, and toluene was dried by filtration through one column of activated, neutral alumina followed by one column of Q 5 reactant. These solvents were determined to have less than $50 \mathrm{ppm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ by Karl Fischer coulometric moisture analysis. Chloroform and acetone were distilled from CaSO_{4} and stored over $4 \AA$ molecular sieves. Reagents were reagent grade and used without purification unless otherwise noted. Trifluoromethanesulfonic anhydride $\left(\mathrm{Tf}_{2} \mathrm{O}\right)$ was freshly distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. Alkyl halides were passed through a plug of silica and distilled. KCN was crushed and heated at $80^{\circ} \mathrm{C}$ under vacuum for 3 h prior to use. Zinc powder was activated and stored under argon. Triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$, ethylene diamine, diisopropylethylamine (Hünig's base), and diisopropylamine were refluxed with, distilled from, and stored over KOH. In nickel(0), palladium(0), and copper(I)-catalyzed reactions, all solvents were freed from oxygen by three freeze-pump-thaw cycles prior to use. All reactions were performed in flame-dried glassware under nitrogen or argon; reaction temperatures refer to the temperature of the cooling/heating bath.

Analytical HPLC separations were performed using a Pirkel Covalent (S,S) Whelk-O1 (Regis Technologies, Inc.), or a Chiralcel OD-H (Daicel Chemical Industries, Ltd.) column, as indicated. Infrared (IR) spectra were obtained either neat on sodium chloride or as solutions in the solvent indicated and reported as wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H} \mathrm{NMR}$) and carbon nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR) spectra were obtained at the indicated field as solutions in CDCl_{3} unless otherwise indicated. Chemical shifts are referenced to the deuterated solvent (e.g., for $\mathrm{CDCl}_{3}, \delta=7.26 \mathrm{ppm}$ and 77.0 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively) and are reported in parts per million (ppm, δ) relative to tetramethylsilane ($\mathrm{TMS}, \delta=0.00 \mathrm{ppm}$). Coupling constants (J) are reported in Hz and the splitting abbreviations used are: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; comp, overlapping multiplets of magnetically nonequivalent protons; br, broad; app, apparent.

Synthesis of Catalyst 5

(a) Maruoka, et al..2 (b) Shi, et al. ${ }^{3}$ (c) $\mathrm{EtN}(i-\operatorname{Pr})_{2}, \mathrm{Tf} \mathrm{f}_{2} \mathrm{O}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}$; (d) $\mathrm{KCN}, \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2} / \mathrm{PPh}_{3} / \mathrm{Zn}$, $\mathrm{CH}_{3} \mathrm{CN}, 70{ }^{\circ} \mathrm{C}$; (e) $\mathrm{BH}_{3}-\mathrm{THF}, 0^{\circ} \mathrm{C}$ to reflux; $\mathrm{HCl}(\mathrm{aq})$, THF, reflux; (f) N, N-dimethylacetamide dimethylacetal, $\mathrm{CH}_{3} \mathrm{CN}$.

(\boldsymbol{R})-2'-Hydroxy-3'-phenyl-1,1'-binaphthyl-2-yl trifluoromethanesulfonate. $\operatorname{EtN}(i-\operatorname{Pr})_{2}(4.52 \mathrm{~g}, 35.1$ mmol) was added to a solution of (R)-3-phenyl-BINOL (3) ($12.0 \mathrm{~g}, 33.2 \mathrm{mmol}$) (prepared in 4 steps from (R) BINOL by the methods of Maruoka ${ }^{2}$ and Shi^{3} in 70% overall yield) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(140 \mathrm{~mL})$, and the mixture was cooled to $-78^{\circ} \mathrm{C}$. A solution of trifluoromethansulfonic anhydride ($9.34 \mathrm{~g}, 33.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the layers were separated. The aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, and the combined organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and purified by column chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $16.2 \mathrm{~g}(99 \%)$ of the mono-triflate as a nearly pure off-white solid. The subsequent reaction is particularly sensitive to the purity of the triflate so it must be repurified by column chromatography eluting with $\mathrm{Et}_{2} \mathrm{O} /$ hexanes (1:6) to give $14.9 \mathrm{~g}(91 \%)$ of the mono-triflate as a white solid: $\mathrm{mp} 68-69{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 8.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-$
7.64 (comp, 2 H), 7.60-7.34 (comp, 8 H), 7.28 (td, $J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03 (d, $J=8.4,1 \mathrm{H}$), 5.27 (s, 1 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 149.1,146.0,136.8,133.4,133.1,132.8,131.0,130.5,129.5,129.2,128.9$, $128.4,128.3,128.2,127.9,127.3,127.0,126.7,126.2,124.4,124.1,119.8,116.7,112.9$; IR (neat) 3538,3061 , 1421, 1215, 1140, 949, $836 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}\right]^{+}(\mathrm{M}+\mathrm{Na}), 517.0692$; found $517.0692 ;[\alpha]^{25}{ }_{\mathrm{D}}+20.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

(\boldsymbol{R})-2'-Hydroxy-3'-phenyl-1,1'-binaphthyl-2-carbonitrile (4). A mixture of the triflate (above) ($1.4 \mathrm{~g}, 2.8$ $\mathrm{mmol})$ (the purity of the triflate was critical), $\mathrm{KCN}(300 \mathrm{mg}, 4.6 \mathrm{mmol}), \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2}(200 \mathrm{mg}, 0.27 \mathrm{mmol})$, $\mathrm{PPh}_{3}(200 \mathrm{mg}, 0.76 \mathrm{mmol})$, and zinc ($70 \mathrm{mg}, 1.1 \mathrm{mmol}$) in oxygen-free $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ was stirred at room temperature until the red-brown catalyst had formed (ca. 10 min). The reaction was then stirred at $70^{\circ} \mathrm{C}$ for 2 h . The mixture was poured into $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $905 \mathrm{mg}(86 \%)$ of $\mathbf{4}$ as a pale yellow solid, which was used in the next step. Analytically pure material was available by triturating with $\mathrm{Et}_{2} \mathrm{O}$ to give $830 \mathrm{mg}(79 \%)$ of $\mathbf{4}$ as a white solid: $\mathrm{mp} 204-205^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.95(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.59$ (comp, 3 H), 7.54-7.48 (comp, 3 H), 7.47-7.34 (comp, 3 H), 7.27 (td, $J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.94 (d, $J=8.4,1$ H), $5.32(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 148.6,140.8,136.47$, 135.0, 133.2, 132.3, 131.0, 130.3, 129.5, 129.4 129.2, 128.9, 128.5, 128.4, 128.4, 127.9, 127.2, 127.1, 127.1, 124.2, 124.1, 118.5, 116.3, 112.3; IR (neat) $3535,3365,2228,1428,1260,909,732 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{NNaO}\right]^{+}(\mathrm{M}+\mathrm{Na}), 394.1202$; found 394.1202; $[\alpha]^{25}{ }_{\mathrm{D}}-23.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

(R)-2'-(Aminomethyl)-3-phenyl-1,1'-binaphthyl-2-ol. A freshly prepared solution of BH_{3} in THF (20 mL , $1 \mathrm{M}, 20 \mathrm{mmol})^{4}$ was added to a solution of nitrile $4(2.1 \mathrm{~g}, 5.7 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the solution was stirred at room temperature for 20 min . The temperature was gradually raised to $70{ }^{\circ} \mathrm{C}$ over 20 min , and
mixture was heated under reflux for 30 min . The mixture was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{MeOH}(5 \mathrm{~mL})$ was added dropwise. The solution was stirred at room temperature for 20 min and concentrated under reduced pressure. The crude solid was dissolved in THF (40 mL) and $\mathrm{HCl}[6 \mathrm{~mL}, 1 \mathrm{M}(\mathrm{aq})]$ was added. The mixture was stirred for 5 min at room temperature, and then heated under reflux for 2 min . The solution was allowed to cool to room temperature over ca. 20 min . The mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic solvent was removed under reduced pressure (20 torr, room temperature). The aqueous mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, and the combined organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude residue was purified by column chromatography eluting with $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:50). The resulting solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$, filtered, and concentrated under reduced pressure to give $2.0 \mathrm{~g}(92 \%)$ of the amine as a pale yellow solid: $\mathrm{mp} 123-124^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.93$ (s, 1 H), 7.91-7.85 (comp, 3 H), 7.69-7.66 (comp, 2 H), 7.45 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43-7.36 (comp, 3 H), 7.33-7.26 (comp, 2 H), 7.23-7.09 (comp, 3 H), 6.78 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04 (br s, 3 H), 3.61 (d, $J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 150.6,138.8,138.5,133.7,133.5,133.3$, 133.2, 132.6, 129.9, 129.8, 129.0, 128.8, 128.1, 128.0, 127.9, 127.1, 126.7, 126.5, 126.4, 126.2, 125.8, 124.8, 123.5, 120.7, 45.3; IR (neat) 3055, 1407, 908, $732 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}\right]^{+}(\mathrm{M}+\mathrm{H})$, 376.1696; found 376.1693; $[\alpha]^{24}{ }_{\mathrm{D}}+21.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

($\boldsymbol{R}, \boldsymbol{E}$)- \boldsymbol{N}^{\prime}-((2'-Hydroxy-3'-phenyl-1,1'-binaphthyl-2-yl)methyl)- N, N-dimethylacetimidamide (5). N, N Dimethylacetamide dimethylacetal $(0.49 \mathrm{~g}, 3.3 \mathrm{mmol})^{5}$ was added to a solution of the amine (above) $(1.2 \mathrm{~g}, 3.2$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$, and the solution was stirred at room temperature for 1 h . The mixture was concentrated under reduced pressure, and the crude residue was purified by column chromatography eluting with $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH} / \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:3:15:80). The resulting solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$, filtered, and concentrated under reduced pressure. The yellow solid was dissolved in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, filtered, and precipitated from $\mathrm{Et}_{2} \mathrm{O} /$ hexanes to give $1.1 \mathrm{~g}(78 \%)$ of $\mathbf{5}$ as a yellow powder: $\mathrm{mp} 189-190{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 9.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.72$ (comp, $2 \mathrm{H}), 7.49$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41-7.35 (comp, 3 H), 7.32-7.22 (comp, 2 H), 7.20-7.14 (comp, 2 H), 7.12 (t, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 6 \mathrm{H})$, $1.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 159.3,153.1,139.5,137.8,137.7,134.7,133.9,133.5,133.3$,
$130.0,129.2,128.6,128.3,127.9,127.8,127.7,127.5,127.0,126.6,126.0,125.7,125.4,125.0,122.9,122.5$, 53.9, 38.7, 13.6; IR (neat) 3053, 1632, 1411, 908, $731 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}\right]^{+}(\mathrm{M}+\mathrm{H})$, 445.2274; found $445.2275 ;[\alpha]^{24}{ }_{\mathrm{D}}+197.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

(R, E) $-N^{\prime \prime}$-((6^{\prime}-Bromo-2'-hydroxy- $\mathbf{3}^{\prime}$-phenyl-1,1'-binaphthyl-2-yl)methyl)- N, N-dimethylacetimidamide

 (6-Br-5). A solution of 2,4,4,6-tetrabromocyclohexadienone (TBCO) ($0.092 \mathrm{~g}, 0.225 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise to a solution of $5(0.100 \mathrm{~g}, 0.225 \mathrm{mmol})$ and propionic acid ($0.033 \mathrm{~g}, 0.450 \mathrm{mmol}$) in toluene (2 mL) at $-50^{\circ} \mathrm{C}$, and the reaction was stirred for 20 min . The reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(3 \mathrm{~mL})$, and the mixture was stirred vigorously at room temperature. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, washed with water (3 mL) and 5% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 5 \mathrm{~mL})$. The organic fraction was dried $\left(\mathrm{MgSO}_{4}\right)$ and purified by column chromatography, eluting with $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH} / \mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:3:15:80). The resulting solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$, filtered, and concentrated under reduced pressure. The yellow solid was dissolved in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, filtered, and precipitated from $\mathrm{Et}_{2} \mathrm{O} /$ hexanes to give $0.100 \mathrm{~g}(85 \%)$ of 6-Br-5 as a yellow powder: mp $115-116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=1.2$ Hz, 1 H), 7.89-7.82 (comp, 3 H), 7.73-7.70 (comp, 2 H), 7.48-7.44 (m, 1 H), 7.41-7.35 (comp, 4 H), 7.33-7.27 (m, 1 H), 7.19 (td, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.12$ (comp, 2 H), 6.71 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.28 (d, $J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 6 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 159.6,154.8$, $149.2,139.3,136.8,136.1,134.0,133.4,133.3,132.6,129.9,129.7,128.7,128.4,128.2,127.9,127.7,127.5$, 126.9, 126.7, 126.6, 126.2, 125.5, 122.2, 116.0, 53.5, 38.9, 13.8; IR (neat) 3055, 2930, 1633, 1415, 908, 731 cm^{-1}; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}\right]^{+}(\mathrm{M}+\mathrm{H})$, 523.1380; found 523.1377; [$\left.\alpha\right]^{25}{ }_{\mathrm{D}}+130.1$ (c = 1.0, CHCl_{3}).
Synthesis of Olefinic Acids

All olefinic acids were made by literature procedures as follows: (Z)-5-alkyl-4-enoic acids $\mathbf{6 a - e}$ were made at the specified temperature by the method of Yeung, et al., ${ }^{6}$ and were isolated as the specified mixture of Z and E isomers (determined by ${ }^{1} \mathrm{H}$ NMR); (E)-6-methylhept-4-enoic acid ($\boldsymbol{E}-6 \mathbf{c}$) was made by the method of Kaga, et al.; ${ }^{7}(E)$-5-aryl-4-enoic acids $\mathbf{6 f}$-h were made by the method of Yeung, et al.; ${ }^{6} 4$-aryl-4-enoic acids $\mathbf{9 a - c}$ were made by the method of Yeung, et al.; ${ }^{8}(E)-4$-methylhex-4-enoic acid (9d) was made by the methods of Back, et
al., and Mane, et al.; ${ }^{2}$ 2-(2-phenylallyloxy)acetic acid (9e) was made by the method of Fujioka, et al.; ${ }^{10}(E)$-2-(2-methylbut-2-enyloxy)acetic acid (9f) was made by the method of Suginome, et al.; ${ }^{11}$ cyclohexa-2,5dienecarboxylic acid $\mathbf{1 2}$ was made by Birch reduction of benzoic acid. ${ }^{12}$ Characterization data is reported below for compounds that have not previously been characterized.

(Z)-Hept-4-enoic acid (6a). Wittig reaction executed on a 10.0 mmol scale at $-40^{\circ} \mathrm{C}$, to give $1.09 \mathrm{~g}(85 \%)$ of 6a as a clear, colorless oil: 20:1 Z / E ratio; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.48-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.29(\mathrm{~m}$, 1 H), 2.44-2.33 (comp, 4 H), 2.15-2.02 (m, 2 H), $0.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $179.8,133.5,126.3,34.2,22.4,20.5,14.2$; IR (neat) $1712 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{2}\right]^{-}(\mathrm{M}-\mathrm{H})$, 127.0765; found 127.0762 .

(\boldsymbol{Z})-7-Methyloct-4-enoic acid (6b). Wittig reaction executed on a 5.0 mmol scale at $-55^{\circ} \mathrm{C}$, to give 0.7 g (90%) of $\mathbf{6 b}$ as a clear, colorless oil: $22: 1 \mathrm{Z} / E$ ratio; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 10.71$ (br s, 1 H), 5.49-5.36 (comp, 2 H), 2.43-2.33 (comp, 4 H), 1.94 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.61 (septet, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 0.89 (d, $J=6.6$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 179.7,130.5,127.6,36.3,36.2,34.1,28.5,22.6,22.3$; IR (neat) 2957, 1713, 1413, 1291, $933 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}\right]^{-}(\mathrm{M}-\mathrm{H}), 155.1078$; found 155.1075.

(\mathbf{Z})-6-Methylhept-4-enoic acid ($\mathbf{6 c}$). Wittig reaction executed on a 7.8 mmol scale at $-40^{\circ} \mathrm{C}$, to give 0.7 g (62\%) of $\mathbf{6 c}$ as a clear, colorless oil: 26:1 Z / E ratio; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 11.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.30-5.18$ (comp, 2 H), 2.65-2.58 (m, 1 H), 2.44-2.37 (comp 4 H$), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) $\delta 179.8,139.3,124.5,34.4,26.5,23.1,22.6$; IR (neat) $2960,1713,1413,1281,931,746 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd $\left[\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{2}\right]^{-}(\mathrm{M}-\mathrm{H}), 141.0921$; found 141.0919.

(Z)-5-Cyclohexylpent-4-enoic acid (6d). Wittig reaction executed on a 5.0 mmol scale at $-50{ }^{\circ} \mathrm{C}$; additional purification by heating at $80^{\circ} \mathrm{C}$ under vacuum for 5 h gave $0.3 \mathrm{~g}(34 \%)$ of $\mathbf{6 d}$ as a clear, colorless oil: $>50: 1 \mathrm{Z} / E$ ratio; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 11.33$ (br s, 1 H), 5.31-5.19 (comp, 2 H), 2.42-2.35 (comp, 4 H), 2.32-2.20(m, 1 H), 1.72-1.56 (comp, 5 H), 1.34-1.00 (comp, 5 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 179.86$, $137.86,124.99,36.30,34.46,33.23,25.99,25.87,22.73$; IR (neat) $2925,2850,1712,1448,1279,947 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}\right]^{-}(\mathrm{M}-\mathrm{H}), 181.1234$; found 181.1231.

(Z)-6,6-Dimethylhept-4-enoic acid (6e). Wittig reaction executed on a 5.0 mmol scale to give $0.6 \mathrm{~g}(82 \%)$ of 6 e as a clear, colorless oil: $>50: 1 \mathrm{Z} / E$ ratio; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 11.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.38(\mathrm{dt}, J=$ $12.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.08(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.49$ (comp, 2 H), 2.43-2.38 (comp, 2 H), 1.12 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 179.8,141.5,125.8,34.6,33.3,31.1,31.0,26.9,23.5$; IR (neat) 2958, 1713, 1414, 1283, 1209, $935 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}\right]^{-}(\mathrm{M}-\mathrm{H})$, 155.1078; found 155.1076.

4-(3-Cyanophenyl)pent-4-enoic acid (9b) was isolated in 30\% yield (2 steps) as a white solid: mp 70-71 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 11.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.69-7.56(\mathrm{comp}, 3 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H})$, $5.23(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 178.8,144.6$, $141.8,131.1,130.4,129.8,129.3,118.7,115.1,112.7,32.5,29.7$; IR (neat) 3087, 2919, 2231, 1711, 1416, 1275, 1215, 902, $804 \mathrm{~cm}^{-1}$; HRMS (CI) m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}\right]^{+}(\mathrm{M}+\mathrm{H})$, 201.0790; found 201.0789.

4-(4-Cyanophenyl)pent-4-enoic acid (9c) was isolated in 43\% yield (2 steps) as a white solid: mp 89-90 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 10.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=6.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=6.6,2.1 \mathrm{~Hz}, 2$
H), $5.43(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $178.5,145.1,145.1,132.3,126.7,118.7,115.8,111.3,32.6,29.6$; IR (neat) $2926,2232,1704,908,841 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}(\mathrm{CI}) m / z$ calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}\right]^{+}(\mathrm{M}+\mathrm{H}), 201.0790$; found 201.0789.

(E)-4-Methylhex-4-enoic acid (9d) was isolated in 76\% yield as a clear, colorless oil: $36: 1 \mathrm{E} / \mathrm{Z} \mathrm{ratio} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 11.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.29-5.23(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.43(\mathrm{comp}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2$ H), $1.62(\mathrm{t}, J=1.0,3 \mathrm{H}), 1.59-1.55(\mathrm{comp}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 180.2,133.6,119.4,32.2$, 32.9, 15.5, 13.3; IR (neat) 2980, 2920, 1712, 1413, 1300, $938 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{2}\right]^{-}(\mathrm{M}-$ H), 127.0765; found 127.0765 .

(\boldsymbol{E})-2-(2-Methylbut-2-enyloxy)acetic acid (9f) was isolated in 92% yield as a white solid: mp $46-47{ }^{\circ} \mathrm{C}$, $>50: 1 \mathrm{E} / \mathrm{Z}$ ratio; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 10.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.57-5.50(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2$ H), 1.67-1.63 (comp, 6 H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 175.5,140.5,131.5,124.7,65.7,13.4$, 13.2; IR (neat) $2919,1731,1432,1245,1112 \mathrm{~cm}^{-1}$; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{3}\right]^{-}(\mathrm{M}-\mathrm{H}), 143.0714$; found 143.0712 .

General Procedure for Enantioselective Bromolactonization

(S)-5-((S)-1-Bromo-2-methylpropyl)dihydrofuran-2(3H)-one (7c). A solution of TBCO (0.197 g, 0.480 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added dropwise to a solution of (Z)-6-methylhept-4-enoic acid $\mathbf{6 c}(0.057 \mathrm{~g}, 0.400$ $\mathrm{mmol})$ and catalyst $5(0.018 \mathrm{~g}, 0.040 \mathrm{mmol})$ in toluene $(8 \mathrm{~mL})$ at $-50^{\circ} \mathrm{C}$, and the solution was stirred for 14 h . The reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(10 \mathrm{~mL})$, and the mixture was warmed to room temperature with vigorous stirring. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$, and the organic fraction was washed with 5% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated
under reduced pressure. The crude residue was purified by column chromatography, eluting with $\mathrm{DCM} /$ toluene (2:1) to give $0.083 \mathrm{~g}(94 \%)$ of 7 c as a clear, colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.76-4.71(\mathrm{~m}, 1 \mathrm{H})$, 3.87 (dd, $J=6.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76-2.66 (m, 1 H), 2.59-1.48 (m, 1 H), 2.44-2.33 (m, 1 H), 2.22-2.06 (comp, 2 H), $1.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 176.4,79.9,66.8,32.8,28.3,26.7,21.2,20.3$; IR (neat) 2966, 2933, 2876, 1769, 1176, 1022, $908 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{BrNaO}_{2}\right]^{+}(\mathrm{M}+\mathrm{Na})$, 242.9991; found 242.9992; [$\alpha]^{25}{ }_{\mathrm{D}}+53.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; $\mathrm{HPLC}(210 \mathrm{~nm})$: Whelk-O1 $(20 \% i-\mathrm{PrOH} /$ hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$) 17.4 min (minor), 20.3 min (major); 97:3 er.

(S)-5-($(\mathbf{S}) \mathbf{- 1 - B r o m o p r o p y l})$ dihydrofuran-2(3H)-one (7a). Isolated $0.074 \mathrm{~g}(90 \%)$ of $\mathbf{7 a}$ as a clear, colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.72-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.04-3.93(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.62-$ 2.33 (comp, 2 H), 2.28-2.14 (m, 1 H), 2.05-1.88 (comp, 2 H), 1.12 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ MHz) $\delta 176.5,80.7,59.8,28.2,27.9,25.3,12.4$; IR (neat) $1774 \mathrm{~cm}^{-1}$; HRMS (CI) m / z calcd for $\left[\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{BrO}_{2}\right]^{+}$ $(\mathrm{M}+\mathrm{H})$, 207.0021; found 207.0022; $[\alpha]^{23}{ }_{\mathrm{D}}+5.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; HPLC (210 nm): Whelk-O1 $(20 \% i-\mathrm{PrOH} /$ hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$) 15.5 min (minor), 18.9 min (major); 85:15 er.

(\boldsymbol{S})-5-($(\boldsymbol{S}$)-1-Bromo-3-methylbutyl)dihydrofuran-2(3H)-one (7b). Reaction executed on a 0.21 mmol scale, to give $0.043 \mathrm{~g}(87 \%)$ of $\mathbf{7 b}$ as a clear, colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.63$ (ddd, $J=7.8$, 6.3, $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.13(\mathrm{dt}, J=10.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.34(\mathrm{~m}, 1 \mathrm{H})$, $2.27-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.88(\mathrm{comp}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 176.5,81.1,56.2,43.0,28.2,25.9,25.3,23.0,20.8$; IR (neat) 2959, 2872, 1779, 1468, 1369, 1179, 1056, 1014, 913 cm^{-1}; HRMS (CI) m / z calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Br}\right]^{+}(\mathrm{M}+\mathrm{H}), 235.0334$; found 235.0336; $[\alpha]^{24}{ }_{\mathrm{D}}+2.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; HPLC (210 nm): Whelk-O1 $(20 \% i-\mathrm{PrOH} /$ hexanes, 1.2 $\mathrm{mL} / \mathrm{min}$) 12.2 min (minor), $17.5 \mathrm{~min}($ major); 95:5 er.

(\boldsymbol{R})-5-($(\mathbf{S}$)-1-Bromo-2-methylpropyl)dihydrofuran-2(3H)-one (diastereo-7c). Isolated 0.087 g (98%) of diastereo-7c as a clear, colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.64(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=9.0,3.3 \mathrm{~Hz}, 1$ H), 2.61-2.50 (comp, 3 H), 2.22-2.10 (comp, 2 H), 1.04 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.00 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 176.3,79.5,65.8,30.1,28.5,27.6,21.3,16.9$; IR (neat) 2967, 1785, 1463, 1174, 1022, $912 \mathrm{~cm}^{-1}$; HRMS (CI) m / z calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Br}\right]^{+}(\mathrm{M}+\mathrm{H})$, 221.0177; found 221.0178; $[\alpha]^{24}{ }_{\mathrm{D}}+13.7(\mathrm{c}=$ $1.0, \mathrm{CHCl}_{3}$); HPLC (210 nm): OD-H ($0.5 \% i-\mathrm{PrOH} /$ hexanes, $1.0 \mathrm{~mL} / \mathrm{min}$) 27.6 min (major), 31.3 min (minor); 71:29 er.

(S)-5-(S)-Bromo(cyclohexyl)methyl)dihydrofuran-2(3H)-one (7d). Isolated 0.098 g (94%) of $\mathbf{7 d}$ as a clear, colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.84-4.76(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-$ 2.67 (m, 1 H), 2.58-2.46 (m, 1 H), 2.43-2.31 (m, 1 H), 2.27-2.14 (m, 1 H), 2.10-2.01 (m, 1 H), $1.92-1.72$ (comp, 4 H), 1.71-1.62 (m, 1 H), 1.38-1.08 (comp, 5 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) $\delta 176.6,78.8,66.4$, 42.3, 31.3, 31.2, 28.2, 26.6, 26.1, 26.0, 25.9; IR (neat) 2926, 2852, 1768, $1177 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BrNaO}_{2}\right]^{+}(\mathrm{M}+\mathrm{Na})$, 283.0304; found 283.0305; $[\alpha]^{24}{ }_{\mathrm{D}}{ }^{+40.7}$ (c = 1.0, CHCl_{3}); HPLC (210 nm): Whelk-O1 (20\% i-PrOH / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}) 17.1 \mathrm{~min}$ (minor), 24.0 min (major); 98.5:1.5 er.

(S)-5-(S)-1-Bromo-2,2-dimethylpropyl)dihydrofuran-2(3H)-one (7e). Isolated $0.091 \mathrm{~g}(97 \%)$ of $\mathbf{7 e}$ as a white solid: mp $126-127^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.85(\mathrm{ddd}, J=8.1,6.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.16$ (s, 9 H$)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 176.9,77.3,72.4,36.7,28.3,27.6,27.4$; IR (neat) 2977, 2938, 1766, 1353, 1184, 1065, 1025, 993, $921 \mathrm{~cm}^{-1}$; HRMS (CI) m / z calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Br}\right]^{+}(\mathrm{M}+\mathrm{H})$, 235.0334; found 235.0334; $[\alpha]^{24}{ }_{\mathrm{D}}$
$+55.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; $\mathrm{HPLC}(210 \mathrm{~nm})$: Whelk-O1 ($20 \% i-\mathrm{PrOH} /$ hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$) 10.7 min (minor), 14.3 min (major); 97:3 er.

(5R,6S)-5-Bromo-6-phenyltetrahydro-2H-pyran-2-one (8f). Reaction executed on a 0.100 mmol scale at $-60{ }^{\circ} \mathrm{C}$, to give $0.024 \mathrm{~g}(94 \%)$ of $\mathbf{8 f}$ as a white solid: mp $132-133^{\circ} \mathrm{C}$; spectra matched previously reported data; ${ }^{6}[\alpha]^{23}{ }_{\mathrm{D}}{ }^{-6.0}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; HPLC (210 nm): Whelk-O1 $\left(3 \% \mathrm{CH}_{3} \mathrm{CN} / 20 \% i-\mathrm{PrOH} /\right.$ hexanes, 1.2 $\mathrm{mL} / \mathrm{min}$) 14.6 min (minor), 19.8 min (major); 98:2 er.

(5R,6S)-5-Bromo-6-(naphthalen-2-yl)tetrahydro-2H-pyran-2-one (8g). Isolated 0.118 g (97%) of $\mathbf{8 g}$ as a white solid: mp $107-108{ }^{\circ} \mathrm{C}$; spectra matched previously reported data; ${ }^{6}[\alpha]^{22}{ }_{\mathrm{D}}+32.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;$ HPLC (225 nm): Whelk-O1 ($6 \% \mathrm{CH}_{3} \mathrm{CN} / 20 \% i$ - $\mathrm{PrOH} /$ hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$) 14.0 min (minor), 24.5 min (major); 96:4 er.

(5R,6S)-5-Bromo-6-(thiophen-2-yl)tetrahydro-2H-pyran-2-one (8h). Isolated $0.096 \mathrm{~g}(92 \%)$ of $\mathbf{8 h}$ as a white solid: $\mathrm{mp} 95-96{ }^{\circ} \mathrm{C}$; spectra matched previously reported data; ${ }^{6}[\alpha]^{22}{ }_{\mathrm{D}}+5.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{HPLC}$ (233 nm): Whelk-O1 ($3 \% \mathrm{CH}_{3} \mathrm{CN} / 20 \% i$ - $\mathrm{PrOH} /$ hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$) 12.9 min (minor), 21.6 min (major); $94: 6 \mathrm{er}$.

(S)-5-(Bromomethyl)-5-phenyldihydrofuran-2(3H)-one (10a). Isolated $0.101 \mathrm{~g}(99 \%)$ of $\mathbf{1 0 a}$ as a semisolid; spectra consistent with the data previously reported for the enantiomer of $\mathbf{1 0 a} ;{ }^{8}[\alpha]^{25}{ }_{D}-26.3(c=1.0$, CHCl_{3}); HPLC (210 nm): Whelk-O1 ($20 \% i-\mathrm{PrOH} /$ hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$) 16.0 min (minor), 23.8 min (major); 86:14 er.

(S)-3-(2-(Bromomethyl)-5-oxotetrahydrofuran-2-yl)benzonitrile (10b). Reaction executed on 0.1 mmol scale, to give $0.025 \mathrm{~g}(89 \%)$ of $\mathbf{1 0 b}$ as a clear, colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.75-7.66$ (comp, 3 H), 7.59-7.53 (m, 1 H), 3.72 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.77(\mathrm{comp}, 2 \mathrm{H}), 2.65-2.53$ (comp, 2 H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 174.6,142.4,132.3,129.8,129.5,128.8,118.1,113.1,85.4,40.1$, 32.4, 28.7; IR (neat) $2962,2231,1788,1483,1421,1243,1164,1041,921 \mathrm{~cm}^{-1}$; HRMS (CI) m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Br}\right]^{+}(\mathrm{M}+\mathrm{H}), 279.9973$; found 279.9973; $[\alpha]^{25}{ }_{\mathrm{D}}-35.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;$ HPLC $(225 \mathrm{~nm})$: Whelk-O1 $\left(6 \% \mathrm{CH}_{3} \mathrm{CN} / 20 \% i\right.$ - $\mathrm{PrOH} /$ hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$) 11.5 min (minor), 12.5 min (major); $91: 9 \mathrm{er}$.

(S)-4-(2-(Bromomethyl)-5-oxotetrahydrofuran-2-yl)benzonitrile (10c). Isolated $0.102 \mathrm{~g}(92 \%)$ of $\mathbf{1 0 c}$ as a white solid: mp $154-155{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2$ H), $3.72(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.82(\mathrm{comp}, 2 \mathrm{H}), 2.59-2.52(\mathrm{comp}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 174.6,145.8,132.6,125.9,118.0,112.8,85.7,40.0,32.5,28.8$; IR (neat) 2962, 2230, 1787, 1162, 1044, $841 \mathrm{~cm}^{-1}$; HRMS (CI) m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Br}\right]^{+}(\mathrm{M}+\mathrm{H}), 279.9973$; found 279.9975; $[\alpha]^{25}{ }_{\mathrm{D}}-36.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;$ HPLC $(230 \mathrm{~nm})$: Whelk-O1 $\left(6 \% \mathrm{CH}_{3} \mathrm{CN} / 20 \% i-\mathrm{PrOH} /\right.$ hexanes, $\left.1.2 \mathrm{~mL} / \mathrm{min}\right)$ 13.8 min (minor), 15.2 min (major); 94:6 er.

(R)-5-((S)-1-bromoethyl)-5-methyldihydrofuran-2(3H)-one (10d). Isolated $0.074 \mathrm{~g}(89 \%)$ of $\mathbf{1 0 d}$ as a clear, colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.18(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dt}, J=8.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.67$ (dt, $J=13.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dt}, J=13.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 175.8,87.2,54.9,32.0,29.1,21.5,20.8 ;$ IR (neat) 2983, 2937, 1778, 1451, 1384, 1192, 1147, 1074, $940 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}(\mathrm{CI}) m / z$ calcd for $\left[\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Br}\right](\mathrm{M}+\mathrm{H})^{+}, 207.0021$; found 207.0022; $[\alpha]^{23}{ }_{\mathrm{D}}+5.3$ $\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;$ HPLC $(210 \mathrm{~nm})$: Whelk-O1 $(20 \% i-\mathrm{PrOH} /$ hexanes, $1.2 \mathrm{~mL} / \mathrm{min}) 13.1 \mathrm{~min}(m i n o r), 14.4 \mathrm{~min}$ (major); 71:29 er.

(R)-6-(Bromomethyl)-6-phenyl-1,4-dioxan-2-one (11e). Isolated $0.106 \mathrm{~g}(98 \%)$ of 11e as a white solid: $\mathrm{mp} 88-90{ }^{\circ} \mathrm{C}$; spectra matched previously reported data; ${ }^{10}[\alpha]^{23}{ }_{\mathrm{D}}-10.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; HPLC $(210 \mathrm{~nm})$: Whelk-O1 (20\% i-PrOH / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$) 18.9 min (minor), 22.7 min (major); 86:14 er.

(R)-6-((S)-1-Bromoethyl)-6-methyl-1,4-dioxan-2-one (11f). Isolated $0.083 \mathrm{~g}(93 \%)$ of 11f as a clear, colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.35-4.28(\operatorname{comp}, 3 \mathrm{H}), 4.05(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, 12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 166.4,84.1,69.8,65.4,49.4$, 19.5, 17.6; IR (neat) 2986, 2941, 1747, 1456, 1268, $1104 \mathrm{~cm}^{-1}$; HRMS (CI) m / z calcd for $\left[\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Br}\right]^{+}(\mathrm{M}+\mathrm{H})$, 222.9970; found 222.9972; $[\alpha]^{24} \mathrm{D}^{-26.7}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; HPLC $(210 \mathrm{~nm})$: Whelk-O1 $(20 \% i$-PrOH / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$) 9.9 min (major), 11.2 min (minor); 85:15 er.

($\mathbf{S}, \mathbf{5 S}, 6 \boldsymbol{S}$)-5-bromo-7-oxabicyclo[4.2.0]oct-2-en-8-one (13). Reaction executed in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ toluene (1:1, 12 mL) for 4 d , to give $0.058 \mathrm{~g}(72 \%)$ of $\mathbf{1 3}$ as a white solid: $\mathrm{mp} 96-98{ }^{\circ} \mathrm{C}$; spectra matched the data previously reported for racemic 13; ${ }^{13}[\alpha]^{23}{ }_{\mathrm{D}}+49.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; HPLC (210 nm): OD-H ($1 \% i$-PrOH / hexanes, 1.0 $\mathrm{mL} / \mathrm{min}$) 31.0 min (minor), 33.5 min (major); 73:27 er.

HPLC traces

(7a) Whelk-O1, 20\% IPA / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$. obs: 210 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
2		18.857	2630209	84.59	58453	bb
1		15.504	479232	15.41	17316	bb

(7b) Whelk-O1, 20\% IPA / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$. obs: 210 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
1		12.224	144669	4.75	7408	bb
2		17.508	2903611	95.25	66296	bb

(7c) Whelk-O1, 20\% IPA / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$. obs: 210 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
2		20.302	3023955	97.11	58999	bb
1		17.350	89957	2.89	2986	bb

(diastero-7c) OD-H, 0.5% IPA / hexanes, $1.0 \mathrm{~mL} / \mathrm{min}$. obs: 210 nm

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
1		27.649	10784723	71.47	148189	bb
2		31.289	4305392	28.53	52596	bb

(7d) Whelk-O1, 20\% IPA / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$. obs: 210 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
2		23.981	2222565	98.55	38610	bb
1		17.131	32637	1.45	1032	bb

(7e) Whelk-O1, 20\% IPA / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$. obs: 210 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
2		14.341	10731039	97.14	228971	bb
1		10.655	315510	2.86	15609	bb

(8f) Whelk-O1, 3\% AN / 20\% IPA / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$. obs: 210 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
1		14.661	286479	1.91	14474	bb
2		19.758	14728036	98.09	514521	bb

(8g) Whelk-O1, 6\% AN / 20\% IPA / hexanes, 1.2 mL/min. obs: 225 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
2		24.505	37745743	96.00	1063542	bb
1		14.006	1572523	4.00	78870	bb

(8h) Whelk-O1, 3\% AN / 20\% IPA / hexanes, 1.2 mL/min. obs: 233 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
2		21.599	18069182	93.83	586236	bb
1		12.869	1188463	6.17	64640	bb

(10a) Whelk-O1, 20\% IPA / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$. obs: 210 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
2		23.825	8223001	85.62	139915	bb
1		16.011	1381414	14.38	38540	bb

(10b) Whelk-O1, 6\% AN / 20\% IPA / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$. obs: 225 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
2		12.523	22402229	91.42	1253425	bb
1		11.485	2102403	8.58	120657	bb

(10c) Whelk-O1, 6\% AN / 20\% IPA / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$. obs: 230 nm

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
2		15.232	11966883	93.51	430130	bb
1		13.773	830374	6.49	32989	bb

(10d) Whelk-O1, 20\% IPA / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$. obs: 210 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
2		14.426	8803929	71.36	189744	bb
1		13.090	3534186	28.64	119508	bb

(11e) Whelk-O1, 20\% IPA / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$. obs: 210 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
2		22.693	23627301	86.26	472695	bb
1		18.931	3764526	13.74	90507	bb

(11f) Whelk-O1, 20\% IPA / hexanes, $1.2 \mathrm{~mL} / \mathrm{min}$. obs: 210 nm .

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
1		9.864	3288652	84.90	155364	bb
2		11.228	585085	15.10	30571	bb

(13) OD-H, 1% IPA / hexanes, $1.0 \mathrm{~mL} / \mathrm{min}$. obs: 210 nm

RAC:

ENT:

	Name	Retention Time	Area	\% Area	Height	Int Type
2		33.542	14416667	73.06	326229	bb
1		30.958	5317162	26.94	139889	bb

${ }^{1} \boldsymbol{H}$ and ${ }^{13} \boldsymbol{C}$ NMRS (organized by compound reference number)

wdd

(1)

X-RAY Crystal Structures

Compound 6-bromo-5

Compound 7e

Compound 13

References

13 Barnett, W. E.; Needham, L. L. J. Org. Chem. 1975, 40, 2843-2844.

