Supplemental Information

for

Bifunctional Catalyst Promotes Highly Enantioselective Bromolactonizations to Generate Stereogenic C–Br Bonds

Daniel H. Paull, Chao Fang, James R. Donald, Andrew Pansick, and Stephen F. Martin*

Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712

sfmartin@mail.utexas.edu

Table of Contents

General procedures	S3
Synthesis and characterization of catalyst 5	S4–S7
Synthesis and characterization of olefinic acids	S7–S10
Representative enantioselective bromolactonization procedure	S10
Characterization of new bromolactones	S10–S16
HPLC traces for all bromolactones	S17–S32
¹ H and ¹³ C NMR spectra (by compound number)	S33–S86
X-ray crystal structures	S87
References	S88

General

Solvents were purified before use as follows unless otherwise noted. Dichloromethane (CH_2Cl_2) and benzene were distilled from calcium hydride immediately prior to use. Tetrahydrofuran and diethyl ether were dried by filtration through two columns of activated, neutral alumina according to the procedure described by Grubbs.¹ Methanol (MeOH), acetonitrile (MeCN), and dimethylformamide (DMF) were dried by filtration through two columns of activated molecular sieves, and toluene was dried by filtration through one column of activated, neutral alumina followed by one column of Q5 reactant. These solvents were determined to have less than 50 ppm H₂O by Karl Fischer coulometric moisture analysis. Chloroform and acetone were distilled from CaSO₄ and stored over 4 Å molecular sieves. Reagents were reagent grade and used without purification unless otherwise noted. Trifluoromethanesulfonic anhydride (Tf₂O) was freshly distilled from P₂O₅. Alkyl halides were passed through a plug of silica and distilled. KCN was crushed and heated at 80 °C under vacuum for 3 h prior to use. Zinc powder was activated and stored under argon. Triethylamine (Et₃N), ethylene diamine, diisopropylethylamine (Hünig's base), and diisopropylamine were refluxed with, distilled from , and stored over KOH. In nickel(0), palladium(0), and copper(I)-catalyzed reactions, all solvents were freed from oxygen by three freeze-pump-thaw cycles prior to use. All reactions were performed in flame-dried glassware under nitrogen or argon; reaction temperatures refer to the temperature of the cooling/heating bath.

Analytical HPLC separations were performed using a Pirkel Covalent (S,S) Whelk-O1 (Regis Technologies, Inc.), or a Chiralcel OD-H (Daicel Chemical Industries, Ltd.) column, as indicated. Infrared (IR) spectra were obtained either neat on sodium chloride or as solutions in the solvent indicated and reported as wavenumbers (cm⁻¹). Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹C NMR) spectra were obtained at the indicated field as solutions in CDCl₃ unless otherwise indicated. Chemical shifts are referenced to the deuterated solvent (*e.g.*, for CDCl₃, $\delta = 7.26$ ppm and 77.0 ppm for ¹H and ¹³C NMR, respectively) and are reported in parts per million (ppm, δ) relative to tetramethylsilane (TMS, $\delta = 0.00$ ppm). Coupling constants (*J*) are reported in Hz and the splitting abbreviations used are: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; comp, overlapping multiplets of magnetically nonequivalent protons; br, broad; app, apparent.

Synthesis of Catalyst 5

(*a*) Maruoka, et al.² (*b*) Shi, et al.³ (*c*) $EtN(i-Pr)_2$, Tf_2O , DCM, -78 °C; (*d*) KCN, $Ni(PPh_3)_2Br_2/PPh_3/Zn$, CH₃CN, 70 °C; (*e*) BH₃-THF, 0 °C to reflux; HCl(aq), THF, reflux; (*f*) *N*,*N*-dimethylacetamide dimethylacetal, CH₃CN.

(*R*)-2'-Hydroxy-3'-phenyl-1,1'-binaphthyl-2-yl trifluoromethanesulfonate. $EtN(i-Pr)_2$ (4.52 g, 35.1 mmol) was added to a solution of (*R*)-3-phenyl-BINOL (3) (12.0 g, 33.2 mmol) (prepared in 4 steps from (*R*)-BINOL by the methods of Maruoka² and Shi³ in 70% overall yield) in CH₂Cl₂ (140 mL), and the mixture was cooled to -78 °C. A solution of trifluoromethansulfonic anhydride (9.34 g, 33.2 mmol) in CH₂Cl₂ (10 mL) was added, and the mixture was stirred at -78 °C for 30 min. The reaction was quenched with saturated aqueous NaHCO₃ (100 mL), and the layers were separated. The aqueous fraction was extracted with CH₂Cl₂ (30 mL), and the combined organic fractions were dried (Na₂SO₄) and purified by column chromatography eluting with CH₂Cl₂ to give 16.2 g (99%) of the mono-triflate as a nearly pure off-white solid. The subsequent reaction is particularly sensitive to the purity of the triflate so it must be repurified by column chromatography eluting with Et₂O/hexanes (1:6) to give 14.9 g (91%) of the mono-triflate as a white solid: mp 68–69 °C; ¹H NMR (CDCl₃, 400 MHz) $\delta 8.11$ (d, J = 8.8 Hz, 1 H), 8.02 (d, J = 8.0 Hz, 1 H), 7.96 (s, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.68–

7.64 (comp, 2 H), 7.60–7.34 (comp, 8 H), 7.28 (td, J = 6.8, 1.6 Hz, 1 H), 7.03 (d, J = 8.4, 1 H), 5.27 (s, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 149.1, 146.0, 136.8, 133.4, 133.1, 132.8, 131.0, 130.5, 129.5, 129.2, 128.9, 128.4, 128.3, 128.2, 127.9, 127.3, 127.0, 126.7, 126.2, 124.4, 124.1, 119.8, 116.7, 112.9; IR (neat) 3538, 3061, 1421, 1215, 1140, 949, 836 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₂₇H₁₇F₃NaO₄S]⁺ (M+Na), 517.0692; found 517.0692; [α]²⁵_D+20.7 (c = 1.0, CHCl₃).

(*R*)-2'-Hydroxy-3'-phenyl-1,1'-binaphthyl-2-carbonitrile (4). A mixture of the triflate (above) (1.4 g, 2.8 mmol) (the purity of the triflate was critical), KCN (300 mg, 4.6 mmol), Ni(PPh₃)₂Br₂ (200 mg, 0.27 mmol), PPh₃ (200 mg, 0.76 mmol), and zinc (70 mg, 1.1 mmol) in oxygen-free CH₃CN (4 mL) was stirred at room temperature until the red-brown catalyst had formed (ca. 10 min). The reaction was then stirred at 70 °C for 2 h. The mixture was poured into Et₂O (100 mL), filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography eluting with CH₂Cl₂ to give 905 mg (86%) of 4 as a pale yellow solid, which was used in the next step. Analytically pure material was available by triturating with Et₂O to give 830 mg (79%) of 4 as a white solid: mp 204–205 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.02 (d, *J* = 8.8 Hz, 1 H), 7.98 (d, *J* = 8.4 Hz, 1 H), 7.95 (s, 1 H), 7.89 (d, *J* = 8.0 Hz, 1 H), 7.81 (d, *J* = 8.4 Hz, 1 H), 7.67–7.59 (comp, 3 H), 7.54–7.48 (comp, 3 H), 7.47–7.34 (comp, 3 H), 7.27 (td, *J* = 7.2, 1.2 Hz, 1 H), 6.94 (d, *J* = 8.4, 1 H), 5.32 (s, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 148.6, 140.8, 136.47, 135.0, 133.2, 132.3, 131.0, 130.3, 129.5, 129.4 129.2, 128.9, 128.5, 128.4, 127.9, 127.2, 127.1, 127.1, 124.2, 124.1, 118.5, 116.3, 112.3; IR (neat) 3535, 3365, 2228, 1428, 1260, 909, 732 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₂₇H₁₇NNaO]⁺ (M+Na), 394.1202; found 394.1202; [α]²⁵_D–23.0 (c = 1.0, CHCl₃).

(*R*)-2'-(Aminomethyl)-3-phenyl-1,1'-binaphthyl-2-ol. A freshly prepared solution of BH_3 in THF (20 mL, 1 M, 20 mmol)⁴ was added to a solution of nitrile 4 (2.1 g, 5.7 mmol) in THF (10 mL) at 0 °C, and the solution was stirred at room temperature for 20 min. The temperature was gradually raised to 70 °C over 20 min, and

mixture was heated under reflux for 30 min. The mixture was cooled to 0°C, and MeOH (5 mL) was added dropwise. The solution was stirred at room temperature for 20 min and concentrated under reduced pressure. The crude solid was dissolved in THF (40 mL) and HCl [6 mL, 1 M (aq)] was added. The mixture was stirred for 5 min at room temperature, and then heated under reflux for 2 min. The solution was allowed to cool to room temperature over ca. 20 min. The mixture was poured into saturated aqueous NaHCO₃ (100 mL), and the organic solvent was removed under reduced pressure (20 torr, room temperature). The aqueous mixture was extracted with CH₂Cl₂ (3 x 50 mL), and the combined organic fractions were dried (Na₂SO₄) and concentrated under reduced pressure. The crude residue was purified by column chromatography eluting with Et₃N/CH₂Cl₂ (1:50). The resulting solid was dissolved in CH₃CN (100 mL), filtered, and concentrated under reduced pressure to give 2.0 g (92%) of the amine as a pale yellow solid: mp 123-124 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.93 (s, 1 H), 7.91–7.85 (comp, 3 H), 7.69–7.66 (comp, 2 H), 7.45 (d, J = 8.4 Hz, 1 H), 7.43–7.36 (comp, 3 H), 7.33–7.26 (comp, 2 H), 7.23–7.09 (comp, 3 H), 6.78 (d, J = 8.4 Hz, 1 H), 4.04 (br s, 3 H), 3.61 (d, J = 12.0 Hz, 1 H), 3.50 (d, J = 12.0 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 150.6, 138.8, 138.5, 133.7, 133.5, 133.3, 133.2, 132.6, 129.9, 129.8, 129.0, 128.8, 128.1, 128.0, 127.9, 127.1, 126.7, 126.5, 126.4, 126.2, 125.8, 124.8, 123.5, 120.7, 45.3; IR (neat) 3055, 1407, 908, 732 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₂₇H₂₂NO]⁺ (M+H), 376.1696; found 376.1693; $[\alpha]^{24}$ +21.3 (c = 1.0, CHCl₃).

(*R*,*E*)-*N*'-((2'-Hydroxy-3'-phenyl-1,1'-binaphthyl-2-yl)methyl)-*N*,*N*-dimethylacetimidamide (5). *N*,*N*-Dimethylacetamide dimethylacetal (0.49 g, 3.3 mmol)⁵ was added to a solution of the amine (above) (1.2 g, 3.2 mmol) in CH₃CN (6 mL), and the solution was stirred at room temperature for 1 h. The mixture was concentrated under reduced pressure, and the crude residue was purified by column chromatography eluting with Et₃N/MeOH/CH₃CN/CH₂Cl₂ (2:3:15:80). The resulting solid was dissolved in CH₃CN (100 mL), filtered, and concentrated under reduced pressure. The yellow solid was dissolved in Et₂O (10 mL), filtered, and precipitated from Et₂O/hexanes to give 1.1 g (78%) of **5** as a yellow powder: mp 189–190 °C; ¹H NMR (CDCl₃, 400 MHz) δ 9.42 (br s, 1 H), 7.94 (s, 1 H), 7.89 (d, *J* = 8.4 Hz, 1 H), 7.85 (d, *J* = 8.0 Hz, 2 H), 7.75–7.72 (comp, 2 H), 7.49 (d, *J* = 8.4 Hz, 1 H), 7.41–7.35 (comp, 3 H), 7.32–7.22 (comp, 2 H), 7.20–7.14 (comp, 2 H), 7.12 (t, *J* = 8.0 Hz, 1 H), 6.89 (d, *J* = 8.4 Hz, 1 H), 4.28 (d, *J* = 12.8 Hz, 1 H), 4.18 (d, *J* = 12.8 Hz, 1 H), 2.76 (s, 6 H), 1.85 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 159.3, 153.1, 139.5, 137.8, 137.7, 134.7, 133.9, 133.5, 133.3,

130.0, 129.2, 128.6, 128.3, 127.9, 127.8, 127.7, 127.5, 127.0, 126.6, 126.0, 125.7, 125.4, 125.0, 122.9, 122.5, 53.9, 38.7, 13.6; IR (neat) 3053, 1632, 1411, 908, 731 cm⁻¹; HRMS (ESI) *m/z* calcd for $[C_{31}H_{29}N_2O]^+$ (M+H), 445.2274; found 445.2275; $[\alpha]^{24}_{D}$ +197.7 (c = 1.0, CHCl₃).

(R,E)-N'-((6'-Bromo-2'-hydroxy-3'-phenyl-1,1'-binaphthyl-2-yl)methyl)-N,N-dimethylacetimidamide (6-Br-5). A solution of 2,4,4,6-tetrabromocyclohexadienone (TBCO) (0.092 g, 0.225 mmol) in CH₂Cl₂ (1 mL) was added dropwise to a solution of 5 (0.100 g, 0.225 mmol) and propionic acid (0.033 g, 0.450 mmol) in toluene (2 mL) at -50 °C, and the reaction was stirred for 20 min. The reaction was quenched with saturated aqueous Na₂SO₃ (3 mL), and the mixture was stirred vigorously at room temperature. The mixture was diluted with Et₂O (10 mL), washed with water (3 mL) and 5% aqueous Na₂CO₃ (2 x 5 mL). The organic fraction was dried (MgSO₄) and purified by column chromatography, eluting with Et₃N/MeOH/CH₃CN/CH₂Cl₂ (2:3:15:80). The resulting solid was dissolved in CH₃CN (20 mL), filtered, and concentrated under reduced pressure. The yellow solid was dissolved in Et₂O (10 mL), filtered, and precipitated from Et₂O/hexanes to give 0.100 g (85%) of 6-Br-5 as a yellow powder: mp 115–116 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.88 (br s, 1 H), 7.98 (d, J = 1.2Hz, 1 H), 7.89–7.82 (comp, 3 H), 7.73–7.70 (comp, 2 H), 7.48–7.44 (m, 1 H), 7.41–7.35 (comp, 4 H), 7.33–7.27 (m, 1 H), 7.19 (td, J = 8.4, 1.2 Hz, 1 H), 7.16–7.12 (comp, 2 H), 6.71 (d, J = 8.8 Hz, 1 H), 4.28 (d, J = 13.2 Hz, 1 H), 4.17 (d, J = 13.2 Hz, 1 H), 2.78 (s, 6 H), 1.89 (s, 3 H); ¹³C NMR (CDCl₂, 100 MHz) δ 159.6, 154.8, 149.2, 139.3, 136.8, 136.1, 134.0, 133.4, 133.3, 132.6, 129.9, 129.7, 128.7, 128.4, 128.2, 127.9, 127.7, 127.5, 126.9, 126.7, 126.6, 126.2, 125.5, 122.2, 116.0, 53.5, 38.9, 13.8; IR (neat) 3055, 2930, 1633, 1415, 908, 731 cm⁻¹; HRMS (ESI) m/z calcd for $[C_{31}H_{28}BrN_2O]^+$ (M+H), 523.1380; found 523.1377; $[\alpha]^{25}D$ +130.1 (c = 1.0, CHCl₂).

Synthesis of Olefinic Acids

All olefinic acids were made by literature procedures as follows: (Z)-5-alkyl-4-enoic acids **6a-e** were made at the specified temperature by the method of Yeung, et al.,⁶ and were isolated as the specified mixture of Z and E isomers (determined by ¹H NMR); (E)-6-methylhept-4-enoic acid (**E-6c**) was made by the method of Kaga, et al.;⁷ (E)-5-aryl-4-enoic acids **6f-h** were made by the method of Yeung, et al.;⁶ 4-aryl-4-enoic acids **9a-c** were made by the method of Yeung, et al.;⁸ (E)-4-methylhex-4-enoic acid (**9d**) was made by the methods of Back, et al., and Mane, et al.;⁹ 2-(2-phenylallyloxy)acetic acid (**9e**) was made by the method of Fujioka, et al.;¹⁰ (*E*)-2-(2-methylbut-2-enyloxy)acetic acid (**9f**) was made by the method of Suginome, et al.;¹¹ cyclohexa-2,5-dienecarboxylic acid **12** was made by Birch reduction of benzoic acid.¹² Characterization data is reported below for compounds that have not previously been characterized.

(*Z*)-Hept-4-enoic acid (6a). Wittig reaction executed on a 10.0 mmol scale at -40 °C, to give 1.09 g (85%) of 6a as a clear, colorless oil: 20:1 *Z/E* ratio; ¹H NMR (CDCl₃, 400 MHz) δ 5.48–5.40 (m, 1 H), 5.35–5.29 (m, 1 H), 2.44–2.33 (comp, 4 H), 2.15–2.02 (m, 2 H), 0.96 (t, *J* = 7.6 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 179.8, 133.5, 126.3, 34.2, 22.4, 20.5, 14.2; IR (neat) 1712 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₇H₁₁O₂]⁻ (M–H), 127.0765; found 127.0762.

(*Z*)-7-Methyloct-4-enoic acid (6b). Wittig reaction executed on a 5.0 mmol scale at -55 °C, to give 0.7 g (90%) of 6b as a clear, colorless oil: 22:1 *Z/E* ratio; ¹H NMR (CDCl₃, 400 MHz) δ 10.71 (br s, 1 H), 5.49–5.36 (comp, 2 H), 2.43–2.33 (comp, 4 H), 1.94 (t, *J* = 6.8 Hz, 2 H), 1.61 (septet, *J* = 6.6 Hz, 1 H), 0.89 (d, *J* = 6.6 Hz, 6 H); ¹³C NMR (CDCl₃, 100 MHz) δ 179.7, 130.5, 127.6, 36.3, 36.2, 34.1, 28.5, 22.6, 22.3; IR (neat) 2957, 1713, 1413, 1291, 933 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₉H₁₅O₂]⁻ (M–H), 155.1078; found 155.1075.

(*Z*)-6-Methylhept-4-enoic acid (6c). Wittig reaction executed on a 7.8 mmol scale at -40 °C, to give 0.7 g (62%) of 6c as a clear, colorless oil: 26:1 *Z/E* ratio; ¹H NMR (CDCl₃, 400 MHz) δ 11.25 (br s, 1 H), 5.30–5.18 (comp, 2 H), 2.65–2.58 (m, 1 H), 2.44–2.37 (comp 4 H), 0.94 (d, *J* = 6.8 Hz, 6 H);¹³C NMR (CDCl₃, 100 MHz) δ 179.8, 139.3, 124.5, 34.4, 26.5, 23.1, 22.6; IR (neat) 2960, 1713, 1413, 1281, 931, 746 cm⁻¹; HRMS (ESI) *m/z* calcd [C₈H₁₃O₂]⁻ (M–H), 141.0921; found 141.0919.

(*Z*)-5-Cyclohexylpent-4-enoic acid (6d). Wittig reaction executed on a 5.0 mmol scale at -50 °C; additional purification by heating at 80 °C under vacuum for 5 h gave 0.3 g (34%) of 6d as a clear, colorless oil: >50:1 *Z/E* ratio; ¹H NMR (CDCl₃, 400 MHz) δ 11.33 (br s, 1 H), 5.31–5.19 (comp, 2 H), 2.42–2.35 (comp, 4 H), 2.32–2.20 (m, 1 H), 1.72–1.56 (comp, 5 H), 1.34–1.00 (comp, 5 H); ¹³C NMR (CDCl₃, 100 MHz) δ 179.86, 137.86, 124.99, 36.30, 34.46, 33.23, 25.99, 25.87, 22.73; IR (neat) 2925, 2850, 1712, 1448, 1279, 947 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₁₁H₁₇O₂]⁻ (M–H), 181.1234; found 181.1231.

(*Z*)-6,6-Dimethylhept-4-enoic acid (6e). Wittig reaction executed on a 5.0 mmol scale to give 0.6 g (82%) of 6e as a clear, colorless oil: >50:1 *Z/E* ratio; ¹H NMR (CDCl₃, 400 MHz) δ 11.57 (br s, 1 H), 5.38 (dt, *J* = 12.0, 1.6 Hz, 1 H), 5.16–5.08 (m, 1 H), 2.56–2.49 (comp, 2 H), 2.43–2.38 (comp, 2 H), 1.12 (s, 9 H); ¹³C NMR (CDCl₃, 100 MHz) δ 179.8, 141.5, 125.8, 34.6, 33.3, 31.1, 31.0, 26.9, 23.5; IR (neat) 2958, 1713, 1414, 1283, 1209, 935 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₉H₁₅O₂]⁻ (M–H), 155.1078; found 155.1076.

4-(3-Cyanophenyl)pent-4-enoic acid (9b) was isolated in 30% yield (2 steps) as a white solid: mp 70–71 °C; ¹H NMR (CDCl₃, 300 MHz) δ 11.21 (br s, 1 H), 7.69–7.56 (comp, 3 H), 7.48–7.43 (m, 1 H), 5.38 (s, 1 H), 5.23 (s, 1 H), 2.84 (t, *J* = 7.5 Hz, 2 H), 2.54 (t, *J* = 7.2 Hz, 2 H); ¹³C NMR (CDCl₃, 75 MHz) δ 178.8, 144.6, 141.8, 131.1, 130.4, 129.8, 129.3, 118.7, 115.1, 112.7, 32.5, 29.7; IR (neat) 3087, 2919, 2231, 1711, 1416, 1275, 1215, 902, 804 cm⁻¹; HRMS (CI) *m/z* calcd for [C₁₂H₁₁NO₂]⁺ (M+H), 201.0790; found 201.0789.

4-(4-Cyanophenyl)pent-4-enoic acid (9c) was isolated in 43% yield (2 steps) as a white solid: mp 89–90 °C; ¹H NMR (CDCl₃, 300 MHz) δ 10.48 (br s, 1 H), 7.63 (dd, J = 6.6, 1.8 Hz, 2 H), 7.49 (dd, J = 6.6, 2.1 Hz, 2

H), 5.43 (s, 1 H), 5.26 (s, 1 H), 2.84 (t, J = 7.5 Hz, 2 H), 2.54 (t, J = 7.2 Hz, 2 H); ¹³C NMR (CDCl₃, 75 MHz) δ 178.5, 145.1, 145.1, 132.3, 126.7, 118.7, 115.8, 111.3, 32.6, 29.6; IR (neat) 2926, 2232, 1704, 908, 841 cm⁻¹; HRMS (CI) *m/z* calcd for [C₁₂H₁₁NO₂]⁺ (M+H), 201.0790; found 201.0789.

(*E*)-4-Methylhex-4-enoic acid (9d) was isolated in 76% yield as a clear, colorless oil: 36:1 *E/Z* ratio; ¹H NMR (CDCl₃, 400 MHz) δ 11.64 (br s, 1 H), 5.29–5.23 (m, 1 H), 2.48–2.43 (comp, 2 H), 2.31 (t, *J* = 7.6 Hz, 2 H), 1.62 (t, *J* = 1.0, 3 H), 1.59–1.55 (comp, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 180.2, 133.6, 119.4, 32.2, 32.9, 15.5, 13.3; IR (neat) 2980, 2920, 1712, 1413, 1300, 938 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₇H₁₁O₂]⁻ (M–H), 127.0765; found 127.0765.

(*E*)-2-(2-Methylbut-2-enyloxy)acetic acid (9f) was isolated in 92% yield as a white solid: mp 46–47 °C, >50:1 *E/Z* ratio; ¹H NMR (CDCl₃, 400 MHz) δ 10.43 (br s, 1 H), 5.57–5.50 (m, 1 H), 4.06 (s, 2 H), 3.98 (s, 2 H), 1.67–1.63 (comp, 6 H); ¹³C NMR (CDCl₃, 100 MHz) δ 175.5, 140.5, 131.5, 124.7, 65.7, 13.4, 13.2; IR (neat) 2919, 1731, 1432, 1245, 1112 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₇H₁₁O₃]⁻ (M–H), 143.0714; found 143.0712.

General Procedure for Enantioselective Bromolactonization

(S)-5-((S)-1-Bromo-2-methylpropyl)dihydrofuran-2(3H)-one (7c). A solution of TBCO (0.197 g, 0.480 mmol) in CH₂Cl₂ (4 mL) was added dropwise to a solution of (Z)-6-methylhept-4-enoic acid 6c (0.057 g, 0.400 mmol) and catalyst 5 (0.018 g, 0.040 mmol) in toluene (8 mL) at -50 °C, and the solution was stirred for 14 h. The reaction was quenched with saturated aqueous Na₂SO₃ (10 mL), and the mixture was warmed to room temperature with vigorous stirring. The mixture was diluted with Et₂O (40 mL) and water (10 mL), and the organic fraction was washed with 5% aqueous Na₂CO₃ (2 x 20 mL), dried (MgSO₄), filtered and concentrated

under reduced pressure. The crude residue was purified by column chromatography, eluting with DCM/toluene (2:1) to give 0.083 g (94%) of **7c** as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 4.76–4.71 (m, 1 H), 3.87 (dd, *J* = 6.0, 3.6 Hz, 1 H), 2.76–2.66 (m, 1 H), 2.59–1.48 (m, 1 H), 2.44–2.33 (m, 1 H), 2.22–2.06 (comp, 2 H), 1.10 (d, *J* = 6.4 Hz, 6 H); ¹³C NMR (CDCl₃, 100 MHz) δ 176.4, 79.9, 66.8, 32.8, 28.3, 26.7, 21.2, 20.3; IR (neat) 2966, 2933, 2876, 1769, 1176, 1022, 908 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₈H₁₃BrNaO₂]⁺ (M+Na), 242.9991; found 242.9992; [α]²⁵_D+53.0 (c = 1.0, CHCl₃); HPLC (210 nm): Whelk-O1 (20% *i*-PrOH / hexanes, 1.2 mL/min) 17.4 min (minor), 20.3 min (major); 97:3 er.

(*S*)-5-((*S*)-1-Bromopropyl)dihydrofuran-2(*3H*)-one (7a). Isolated 0.074 g (90%) of 7a as a clear, colorless oil: ¹H NMR (CDCl₃, 300 MHz) δ 4.72–4.64 (m, 1 H), 4.04–3.93 (m, 1 H), 2.78–2.65 (m, 1 H), 2.62–2.33 (comp, 2 H), 2.28–2.14 (m, 1 H), 2.05–1.88 (comp, 2 H), 1.12 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 176.5, 80.7, 59.8, 28.2, 27.9, 25.3, 12.4; IR (neat) 1774 cm⁻¹; HRMS (CI) *m/z* calcd for [C₇H₁₂BrO₂]⁺ (M+H), 207.0021; found 207.0022; [α]²³_D +5.3 (c = 1.0, CHCl₃); HPLC (210 nm): Whelk-O1 (20% *i*-PrOH / hexanes, 1.2 mL/min) 15.5 min (minor), 18.9 min (major); 85:15 er.

(*S*)-5-((*S*)-1-Bromo-3-methylbutyl)dihydrofuran-2(*3H*)-one (7b). Reaction executed on a 0.21 mmol scale, to give 0.043 g (87%) of 7b as a clear, colorless oil: ¹H NMR (CDCl₃, 300 MHz) δ 4.63 (ddd, *J* = 7.8, 6.3, 3.3 Hz, 1 H), 4.13 (dt, *J* = 10.5, 3.6 Hz, 1 H), 2.76–2.65 (m, 1 H), 2.61–2.45 (m, 1 H), 2.45–2.34 (m, 1 H), 2.27–2.15 (m, 1 H), 2.00–1.88 (comp, 2 H), 1.62–1.53 (m, 1 H), 0.97 (d, *J* = 6.3 Hz, 3 H), 0.91 (d, *J* = 6.6 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 176.5, 81.1, 56.2, 43.0, 28.2, 25.9, 25.3, 23.0, 20.8; IR (neat) 2959, 2872, 1779, 1468, 1369, 1179, 1056, 1014, 913cm⁻¹; HRMS (CI) *m/z* calcd for [C₉H₁₆O₂Br]⁺ (M+H), 235.0334; found 235.0336; [α]²⁴_D +2.7 (c = 1.0, CHCl₃); HPLC (210 nm): Whelk-O1 (20% *i*-PrOH / hexanes, 1.2 mL/min) 12.2 min (minor), 17.5 min (major); 95:5 er.

(*R*)-5-((*S*)-1-Bromo-2-methylpropyl)dihydrofuran-2(*3H*)-one (diastereo-7c). Isolated 0.087 g (98%) of diastereo-7c as a clear, colorless oil: ¹H NMR (CDCl₃, 300 MHz) δ 4.64 (m, 1 H), 3.95 (dd, *J* = 9.0, 3.3 Hz, 1 H), 2.61–2.50 (comp, 3 H), 2.22–2.10 (comp, 2 H), 1.04 (d, *J* = 6.6 Hz, 3 H), 1.00 (d, *J* = 6.3 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 176.3, 79.5, 65.8, 30.1, 28.5, 27.6, 21.3, 16.9; IR (neat) 2967, 1785, 1463, 1174, 1022, 912 cm⁻¹; HRMS (CI) *m/z* calcd for [C₈H₁₄O₂Br]⁺ (M+H), 221.0177; found 221.0178; [α]²⁴_D+13.7 (c = 1.0, CHCl₃); HPLC (210 nm): OD-H (0.5% *i*-PrOH / hexanes, 1.0 mL/min) 27.6 min (major), 31.3 min (minor); 71:29 er.

(*S*)-5-((*S*)-Bromo(cyclohexyl)methyl)dihydrofuran-2(*3H*)-one (7d). Isolated 0.098 g (94%) of 7d as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 4.84–4.76 (m, 1 H), 3.86 (dd, *J* = 6.8, 3.2 Hz, 1 H), 2.79–2.67 (m, 1 H), 2.58–2.46 (m, 1 H), 2.43–2.31 (m, 1 H), 2.27–2.14 (m, 1 H), 2.10–2.01 (m, 1 H), 1.92–1.72 (comp, 4 H), 1.71–1.62 (m, 1 H), 1.38–1.08 (comp, 5 H); ¹³C NMR (CDCl₃, 100 MHz) δ 176.6, 78.8, 66.4, 42.3, 31.3, 31.2, 28.2, 26.6, 26.1, 26.0, 25.9; IR (neat) 2926, 2852, 1768, 1177 cm⁻¹; HRMS (ESI) *m/z* calcd for [C₁₁H₁₇BrNaO₂]⁺ (M+Na), 283.0304; found 283.0305; [α]²⁴_D +40.7 (c = 1.0, CHCl₃); HPLC (210 nm): Whelk-O1 (20% *i*-PrOH / hexanes, 1.2 mL/min) 17.1 min (minor), 24.0 min (major); 98.5:1.5 er.

(*S*)-5-((*S*)-1-Bromo-2,2-dimethylpropyl)dihydrofuran-2(*3H*)-one (7e). Isolated 0.091 g (97%) of 7e as a white solid: mp 126–127 °C; ¹H NMR (CDCl₃, 300 MHz) δ 4.85 (ddd, *J* = 8.1, 6.0, 1.2 Hz, 1 H), 3.85 (d, *J* = 0.9 Hz, 1 H), 2.76–2.65 (m, 1 H), 2.53–2.40 (m, 1 H), 2.39–2.31 (m, 1 H), 2.27–2.17 (m, 1 H), 1.16 (s, 9 H); ¹³C NMR (CDCl₃, 75 MHz) δ 176.9, 77.3, 72.4, 36.7, 28.3, 27.6, 27.4; IR (neat) 2977, 2938, 1766, 1353, 1184, 1065, 1025, 993, 921 cm⁻¹; HRMS (CI) *m/z* calcd for [C₉H₁₆O₂Br]⁺ (M+H), 235.0334; found 235.0334; [α]²⁴_D

+55.7 (c = 1.0, CHCl₃); HPLC (210 nm): Whelk-O1 (20% *i*-PrOH / hexanes, 1.2 mL/min) 10.7 min (minor), 14.3 min (major); 97:3 er.

(5*R*,6*S*)-5-Bromo-6-phenyltetrahydro-2*H*-pyran-2-one (8f). Reaction executed on a 0.100 mmol scale at -60 °C, to give 0.024 g (94%) of 8f as a white solid: mp 132–133 °C; spectra matched previously reported data;⁶ [α]²³_D –6.0 (c = 1.0, CHCl₃); HPLC (210 nm): Whelk-O1 (3% CH₃CN / 20% *i*-PrOH / hexanes, 1.2 mL/min) 14.6 min (minor), 19.8 min (major); 98:2 er.

(5*R*,6*S*)-5-Bromo-6-(naphthalen-2-yl)tetrahydro-2*H*-pyran-2-one (8g). Isolated 0.118 g (97%) of 8g as a white solid: mp 107–108 °C; spectra matched previously reported data; $^{6}[\alpha]^{22}_{D}$ +32.5 (c = 1.0, CHCl₃); HPLC (225 nm): Whelk-O1 (6% CH₃CN / 20% *i*-PrOH / hexanes, 1.2 mL/min) 14.0 min (minor), 24.5 min (major); 96:4 er.

(5*R*,6*S*)-5-Bromo-6-(thiophen-2-yl)tetrahydro-2*H*-pyran-2-one (8h). Isolated 0.096 g (92%) of 8h as a white solid: mp 95–96 °C; spectra matched previously reported data;⁶ [α]²²_D+5.7 (c = 1.0, CHCl₃); HPLC (233 nm): Whelk-O1 (3% CH₃CN / 20% *i*-PrOH / hexanes, 1.2 mL/min) 12.9 min (minor), 21.6 min (major); 94:6 er.

(*S*)-5-(Bromomethyl)-5-phenyldihydrofuran-2(*3H*)-one (10a). Isolated 0.101 g (99%) of 10a as a semisolid; spectra consistent with the data previously reported for the enantiomer of 10a;⁸ [α]²⁵_D –26.3 (c = 1.0, CHCl₃); HPLC (210 nm): Whelk-O1 (20% *i*-PrOH / hexanes, 1.2 mL/min) 16.0 min (minor), 23.8 min (major); 86:14 er.

(*S*)-3-(2-(Bromomethyl)-5-oxotetrahydrofuran-2-yl)benzonitrile (10b). Reaction executed on 0.1 mmol scale, to give 0.025 g (89%) of 10b as a clear, colorless oil: ¹H NMR (CDCl₃, 300 MHz) δ 7.75–7.66 (comp, 3 H), 7.59–7.53 (m, 1 H), 3.72 (d, *J* = 11.4 Hz, 1 H), 3.68 (d, *J* = 11.1 Hz, 1 H), 2.90–2.77 (comp, 2 H), 2.65–2.53 (comp, 2 H); ¹³C NMR (CDCl₃, 75 MHz) δ 174.6, 142.4, 132.3, 129.8, 129.5, 128.8, 118.1, 113.1, 85.4, 40.1, 32.4, 28.7; IR (neat) 2962, 2231, 1788, 1483, 1421, 1243, 1164, 1041, 921 cm⁻¹; HRMS (CI) *m/z* calcd for [C₁₂H₁₁NO₂Br]⁺ (M+H), 279.9973; found 279.9973; [α]²⁵D–35.3 (c = 1.0, CHCl₃); HPLC (225 nm): Whelk-O1 (6% CH₃CN / 20% *i*-PrOH / hexanes, 1.2 mL/min) 11.5 min (minor), 12.5 min (major); 91:9 er.

(*S*)-4-(2-(Bromomethyl)-5-oxotetrahydrofuran-2-yl)benzonitrile (10c). Isolated 0.102 g (92%) of 10c as a white solid: mp 154–155 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.73 (d, *J* = 8.7 Hz, 2 H), 7.56 (d, *J* = 8.7 Hz, 2 H), 3.72 (d, *J* = 11.4 Hz, 1 H), 3.68 (d, *J* = 11.4 Hz, 1 H), 2.89–2.82 (comp, 2 H), 2.59–2.52 (comp, 2 H); ¹³C NMR (CDCl₃, 75 MHz) δ 174.6, 145.8, 132.6, 125.9, 118.0, 112.8, 85.7, 40.0, 32.5, 28.8; IR (neat) 2962, 2230, 1787, 1162, 1044, 841 cm⁻¹; HRMS (CI) *m/z* calcd for [C₁₂H₁₁NO₂Br]⁺ (M+H), 279.9973; found 279.9975; [α]²⁵_D –36.0 (c = 0.5, CHCl₃); HPLC (230 nm): Whelk-O1 (6% CH₃CN / 20% *i*-PrOH / hexanes, 1.2 mL/min) 13.8 min (minor), 15.2 min (major); 94:6 er.

(*R*)-5-((*S*)-1-bromoethyl)-5-methyldihydrofuran-2(*3H*)-one (10d). Isolated 0.074 g (89%) of 10d as a clear, colorless oil: ¹H NMR (CDCl₃, 300 MHz) δ 4.18 (q, *J* = 6.9 Hz, 1 H), 2.67 (dt, *J* = 8.1, 0.9 Hz, 2 H), 2.67 (dt, *J* = 13.2, 9.2 Hz, 1 H), 2.11 (dt, *J* = 13.2, 7.8 Hz, 1 H), 1.74 (d, *J* = 6.6 Hz, 3 H), 1.52 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 175.8, 87.2, 54.9, 32.0, 29.1, 21.5, 20.8; IR (neat) 2983, 2937, 1778, 1451, 1384, 1192, 1147, 1074, 940 cm⁻¹; HRMS (CI) *m/z* calcd for [C₇H₁₂O₂Br] (M+H)⁺, 207.0021; found 207.0022; [α]²³_D+5.3 (c = 1.0, CHCl₃); HPLC (210 nm): Whelk-O1 (20% *i*-PrOH / hexanes, 1.2 mL/min) 13.1 min (minor), 14.4 min (major); 71:29 er.

(*R*)-6-(Bromomethyl)-6-phenyl-1,4-dioxan-2-one (11e). Isolated 0.106 g (98%) of 11e as a white solid: mp 88–90 °C; spectra matched previously reported data;¹⁰ $[\alpha]^{23}_{D}$ –10.0 (c = 1.0, CHCl₃); HPLC (210 nm): Whelk-O1 (20% *i*-PrOH / hexanes, 1.2 mL/min) 18.9 min (minor), 22.7 min (major); 86:14 er.

(*R*)-6-((*S*)-1-Bromoethyl)-6-methyl-1,4-dioxan-2-one (11f). Isolated 0.083 g (93%) of 11f as a clear, colorless oil: ¹H NMR (CDCl₃, 300 MHz) δ 4.35–4.28 (comp, 3 H), 4.05 (d, *J* = 12.9 Hz, 1 H), 3.76 (d, 12.6 Hz, 1 H), 1.78 (d, *J* = 6.9 Hz, 3 H), 1.53 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 166.4, 84.1, 69.8, 65.4, 49.4, 19.5, 17.6; IR (neat) 2986, 2941, 1747, 1456, 1268, 1104 cm⁻¹; HRMS (CI) *m/z* calcd for [C₇H₁₂O₃Br]⁺ (M+H), 222.9970; found 222.9972; [α]²⁴_D –26.7 (c = 0.5, CHCl₃); HPLC (210 nm): Whelk-O1 (20% *i*-PrOH / hexanes, 1.2 mL/min) 9.9 min (major), 11.2 min (minor); 85:15 er.

(1*S*,5*S*,6*S*)-5-bromo-7-oxabicyclo[4.2.0]oct-2-en-8-one (13). Reaction executed in CH₂Cl₂/toluene (1:1, 12 mL) for 4 d, to give 0.058 g (72%) of 13 as a white solid: mp 96–98 °C; spectra matched the data previously reported for racemic 13;¹³ [α]²³_D +49.0 (c = 1.0, CHCl₃); HPLC (210 nm): OD-H (1% *i*-PrOH / hexanes, 1.0 mL/min) 31.0 min (minor), 33.5 min (major); 73:27 er.

HPLC traces

(7a) Whelk-O1, 20% IPA / hexanes, 1.2 mL/min. obs: 210 nm.

	Name	Retention Time	Area	% Area	Height	Int Type
2		18.857	2630209	84.59	58453	bb
1		15.504	479232	15.41	17316	bb

	Name	Retention Time	Area	% Area	Height	Int Type
1		12.224	144669	4.75	7408	bb
2		17.508	2903611	95.25	66296	bb

	Name	Retention Time	Area	% Area	Height	Int Type
2		20.302	3023955	97.11	58999	bb
1		17.350	89957	2.89	2986	bb

	Name	Retention Time	Area	% Area	Height	Int Type
1		27.649	10784723	71.47	148189	bb
2		31.289	4305392	28.53	52596	bb

	Name	Retention Time	Area	% Area	Height	Int Type
2		23.981	2222565	98.55	38610	bb
1		17.131	32637	1.45	1032	bb

	Name	Retention Time	Area	% Area	Height	Int Type
2		14.341	10731039	97.14	228971	bb
1		10.655	315510	2.86	15609	bb

(8f) Whelk-O1, 3% AN / 20% IPA / hexanes, 1.2 mL/min. obs: 210 nm.

RAC:

	Name	Retention	Area	% Area	Height	Int Type
		Time				
1		14.661	286479	1.91	14474	bb
2	2	19.758	14728036	98.09	514521	bb

(8g) Whelk-O1, 6% AN / 20% IPA / hexanes, 1.2 mL/min. obs: 225 nm.

	Name	Retention Time	Area	% Area	Height	Int Type
2		24.505	37745743	96.00	1063542	bb
1		14.006	1572523	4.00	78870	bb

	Name	Retention Time	Area	% Area	Height	Int Type
2		21.599	18069182	93.83	586236	bb
1		12.869	1188463	6.17	64640	bb

	Name	Retention Time	Area	% Area	Height	Int Type
2		23.825	8223001	85.62	139915	bb
1		16.011	1381414	14.38	38540	bb

(10b) Whelk-O1, 6% AN / 20% IPA / hexanes, 1.2 mL/min. obs: 225 nm.

	Name	Retention Time	Area	% Area	Height	Int Type
2		12.523	22402229	91.42	1253425	bb
1		11.485	2102403	8.58	120657	bb

	Name	Retention Time	Area	% Area	Height	Int Type
2		15.232	11966883	93.51	430130	bb
1		13.773	830374	6.49	32989	bb

	Name	Retention Time	Area	% Area	Height	Int Type
2		14.426	8803929	71.36	189744	bb
1		13.090	3534186	28.64	119508	bb

(11e) Whelk-O1, 20% IPA / hexanes, 1.2 mL/min. obs: 210 nm.

	Name	Retention Time	Area	% Area	Height	Int Type
2		22.693	23627301	86.26	472695	bb
1		18.931	3764526	13.74	90507	bb

0

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 Minutes
Name Retention Time Area % Area Height Int Type
1 0.964 2299652 94.00 455264 bb

	Name	Retention Time	Area	% Area	Height	Int Type
1		9.864	3288652	84.90	155364	bb
2		11.228	585085	15.10	30571	bb

	Name	Retention Time	Area	% Area	Height	Int Type
2		33.542	14416667	73.06	326229	bb
1		30.958	5317162	26.94	139889	bb

· |

835 |

Archive directory: Sample directory: Pulse Sequence: s2pul Solvent: cdc13 Ambient temperature File: 04_DHP_232_s2pul_H1 INOVA-500 "nmreTroy" Pulse 30.0 degrees Acq. time 4.000 sec With 6410.3 HZ 8 repetitions 08SERVE H1 399.8047309 MHZ DATA PROCESSING FT size 6536 Fotal time 1 min, 0 sec

S37 |

Pulse Sequence: s2pul Solvent: cdcl3 Ambient temperature User: 1-14-87 File: 04_DHP_232_s2pul_C13 INOVA-500 "nmrelroy"

NH₂

Archive directory: Sample directory:

,

S50 |

1 220


~~~ |

**13C OBSERVE** 

Pulse Sequence: s2pul Solvent: CDCl3 Ambient temperature UNITYplus-300 "nmr2"





S57 |



S58 |



S59 |



**13C OBSERVE** 

Pulse Sequence: s2pul Solvent: CDC13 Ambient temperature UNITYplus-300 "nmr2"

,



S61 |





S63 |







STANDARD 1H OBSERVE







13C OBSERVE Pulse Sequence: s2pul Solvent: CDCl3 Ambient temperature UNITYplus-300 "nmr2" Relax. delay 2.000 sec Pulse 36.0 degrees Acq. time 1.77 sec Width 18009.9 Hz 383 repetitions OBSERVE Cl3, 75.4700205 MHz DecoupLe H1, 300.1409259 MHz Power 40 dB continuously on VALTZ-16 modulated Single precision data DATA PROCESSING Line broadening 1.0 Hz Total time 1 hr, 4 min, 38 sec





ł



. |











STANDARD 1H OBSERVE

.

.



Ī



13C OBSERVE

Pulse Sequence: s2pul Solvent: CDC13 Ambient temperature UNITYplus-300 "nmr2"

•

STANDARD 1H OBSERVE

Pulse Sequence: s2pul Solvent: CDCl3 Ambient temperature UNITYplus-300 "nmr2"

UNLIPPIUS-300 "nmF2" Relax. delay 1.000 sec Pulse 15.0 degrees Acq. time 3.813 sec Width 4196.4 HZ B repetitions OSSERVE H1, 300.1390285 MHZ DATA PROCESSING Line broadening 0.1 HZ FT size 32768 Total time 0 min, 38 sec





5.21



S80 |



S81 |



13C OBSERVE

,

Pulse Sequence: s2pul Solvent: CDCl3 Ambient temperature UNITYplus-300 "nmr2"

-- - 1



.



4 |





6 |

## Compound 6-bromo-5



Compound 7e







## References

- <sup>1</sup> Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518-1520.
- <sup>2</sup> Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. **2003**, 125, 5139–5151.
- <sup>3</sup> Shi, M.; Chen, L.-H, Li, C.-Q. J. Am. Chem. Soc. **2005**, 127, 3790–3800.
- <sup>4</sup> Uozumi, Y.; Suzuki, N.; Ogiwara, A.; Hayashi, T. *Tetrahedron* **1994**, *50*, 4293–4302.
- <sup>5</sup> Oszczapowicz. J.; Raczynska, E. J. Chem. Soc. Perkin Trans. II **1984**, 1643–1646.
- <sup>6</sup> Tan, C. K. T.; Zhou, L.; Yeung, Y.-Y. Org. Lett. **2011**, *13*, 2738–2741.
- <sup>7</sup> Kaga, H.; Coto, K.; Takahashi, T.; Hino, M.; Tokuashi, T.; Orito, K. *Tetrahedron* **1996**, *52*, 8451–8470.
- <sup>8</sup> Zhou, L.; Tan, C. K. T.; Jiang, X.; Chen, F.; Yeung, Y.-Y. J. Am. Chem. Soc. **2010**, 132, 15474–15476.
- 9 (a) Back, T. G.; Nava-Salgado, V. O.; Payne, J. E. J. Org. Chem. 2001, 66, 4361–4368. (b) Helavi, V. B.; Solabannavar, S. B.; Desai, U. V.; Mane, R. B. J. Chem. Res. 2003, 174–175.
- <sup>10</sup> Murai, K.; Matsushita, T.; Nakamura, A.; Fukushima, S.; Shimura, M.; Fujioka, H. *Angew. Chem. Int. Ed.* **2010**, *49*, 9174–9177.
- <sup>11</sup> Ohmura, T.; Masuda, K.; Takase, I.; Suginome, M. J. Am. Chem. Soc. **2009**, 131, 16624-16625.
- <sup>12</sup> Hirai, S.; Nakada, M. *Tetrahedron* **2011**, *67*, 518-530.
- <sup>13</sup> Barnett, W. E.; Needham, L. L. J. Org. Chem. **1975**, 40, 2843-2844.