Supporting Information

"Customizable" Units in Di- and tripeptides: Selective Conversion into Substituted Dehydroamino Acids

Carlos J. Saavedra, Alicia Boto,* and Rosendo Hernández*
Instituto de Productos Naturales y Agrobiología CSIC, Avda. Astrofísico Fco. Sánchez 3, 38206-La Laguna, Tenerife, Spain

alicia@ipna.csic.es; rhernandez@ipna.csic.es

Abstract

Supporting Information. Procedures for the synthesis of the substrates for the scission-phosphorylation process 4,5 and $\mathbf{1 7}$ (pp 1-2), study of the scission-oxidation reaction and formation of the α-methoxyglycine derivatives $\mathbf{4}, \mathbf{5}$ and $\mathbf{1 1}$ (pp 2-3), procedure for the phosphorylation reaction and synthesis of phosphorylated compounds $\mathbf{7 , 1 2}$ and $\mathbf{1 8}$ (pp 2-4), procedures for the Horner-Wadsworth-Emmons Reaction and preparation of dehydroamino acid-containing peptides 8, 9, 13-16 and 19 (pp 4-7). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 4-9 and 11-19 and NOE experiments for compounds 8, 13, 14, 16 and 19. (pp $8-27$). This material is available free of charge via the Internet at http://pubs.acs.org.

General Methods. Melting points were determined with a hot-stage apparatus and are uncorrected. Optical rotations were measured at the sodium line at ambient temperature ($26{ }^{\circ} \mathrm{C}$) in CHCl_{3} solutions. NMR spectra were determined at 500 MHz for ${ }^{1} \mathrm{H}$ and 125.7 or 100 MHz for ${ }^{13} \mathrm{C}$ in the presence of TMS as internal standard, unless otherwise stated. Mass spectra were determined at 70 eV . Merck silica gel $60 \mathrm{PF}_{254}$ and 60 ($0.063-0.2 \mathrm{~mm}$) were used for preparative thin layer chromatography and column chromatography, respectively. All reactions involving air- or moisture-sensitive materials were carried out under a nitrogen atmosphere. The reagent for TLC analysis was $\mathrm{KMnO} \mathbf{O}_{4}$ in $\mathrm{NaOH} / \mathrm{K}_{2} \mathrm{CO}_{3}$ aqueous solution and the TLC was heated until development of color.

Preparation of Substrates 4, 5 and 17.

Scheme 1. Preparation of substrates 4 and 5

N -(O -Benzyl- N -benzoyl-L-seryl)-L-serine Methyl Ester (4). To a solution of $\operatorname{Boc}-\operatorname{Ser}(\mathrm{OBn})-\mathrm{OH}(20)$ (2.96 $\mathrm{g}, 10 \mathrm{mmol})$ and and $\mathrm{H}-\mathrm{Ser}-\mathrm{OMe} \cdot \mathrm{HCl}(\mathbf{2 1})(1.56 \mathrm{~g}, 10$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added diisopropylethylamine ($3.4 \mathrm{~mL}, 2.59 \mathrm{~g}, 20 \mathrm{mmol}$), 1hydroxybenzotriazol hydrate (HOBt) ($1.49 \mathrm{~g}, 11 \mathrm{mmol}$), and $\quad \mathrm{N}$-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC, $2.1 \mathrm{~g}, 11 \mathrm{mmol}$). The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$, then was allowed to reach room temperature ($26^{\circ} \mathrm{C}$) and stirred for 18 h . Then it was poured into saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried on sodium sulfate, filtered and evaporated under vaccum. The residue was dissolved in $1: 1 \mathrm{TFA}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and the solution was stirred at $26^{\circ} \mathrm{C}$ for 1.5 h . Then the solvent was removed under vaccum and the residue was dissolved in THF (15 mL). Then saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added, the mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$, and benzoyl chloride was added dropwise (1.51 mL , $1.83 \mathrm{~g}, 13 \mathrm{mmol}$). After stirring for 16 h , the mixture was poured into 5% aqueous HCl at $0^{\circ} \mathrm{C}$ and extracted with EtOAc. The residue was purified by column chromatography (hexanes/EtOAc, 30:70), to give compound $4(2.68 \mathrm{~g}, 67 \%)$ as a syrup; $[\alpha]_{\mathrm{D}}+51(c 0.34$, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} .3418,1747,1679,1660,1512$ $\mathrm{cm}^{-1} \cdot{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 3.05$ (1 H, brb),
$3.70(1 \mathrm{H}, \mathrm{dd}, J=6.9,9.5 \mathrm{~Hz}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.90-3.98$ $(2 \mathrm{H}, \mathrm{m}), 3.99(1 \mathrm{H}, \mathrm{dd}, J=4.4,9.2 \mathrm{~Hz}), 4.60(2 \mathrm{H}, \mathrm{s}), 4.66$ $(1 \mathrm{H}, \mathrm{ddd}, J=3.8,3.8,7.3 \mathrm{~Hz}), 4.84(1 \mathrm{H}$, ddd, $J=4.7$, $6.6,6.9 \mathrm{~Hz}), 7.17(1 \mathrm{H}$, brd, $J=6.6 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{m})$, $7.31-7.35(4 \mathrm{H}, \mathrm{m}), 7.42(2 \mathrm{H}, \mathrm{dd}, J=7.3,7.9 \mathrm{~Hz}), 7.51$ $(1 \mathrm{H}, \mathrm{dd}, J=7.8,7.9 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.77$ $(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ_{C} $52.7\left(\mathrm{CH}_{3}\right), 53.2(\mathrm{CH}), 55.1(\mathrm{CH}), 62.8\left(\mathrm{CH}_{2}\right), 69.5$ $\left(\mathrm{CH}_{2}\right), 73.6\left(\mathrm{CH}_{2}\right), 127.2(2 \times \mathrm{CH}), 127.9(2 \times \mathrm{CH}), 128.0$ $(\mathrm{CH}), 128.5(2 \times \mathrm{CH}), 128.6(2 \times \mathrm{CH}), 131.9(\mathrm{CH}), 133.5$ (C), 137.3 (C), 167.6 (C), 170.3 (C), 170.5 (C); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{M}^{+}+\mathrm{H}-\mathrm{OMe}\right), 370.1529$; found, 370.1513. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{C} 62.99, \mathrm{H} 6.04, \mathrm{~N}$ 7.00; found C 62.73, H 6.13, N 7.10 .

N-(O-Benzyl- N-benzoyl-L-seryl)-L-threonine Methyl

 Ester (5). Obtained from commercial $\operatorname{Boc}-\operatorname{Ser}(\mathrm{OBn})-\mathrm{OH}$ (20) $(2.95 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{H}-\mathrm{Thr}-\mathrm{OMe} \cdot \mathrm{HCl}(27)(1.70 \mathrm{~g}$, 10 mmol) as described before for the synthesis of dipeptide 4. After purification by column chromatography (hexanes/EtOAc, 30:70), dipeptide 5 was isolated (3.31 g , $80 \%)$ as a syrup; $[\alpha]_{\mathrm{D}}+34\left(c \quad 0.23, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ $v_{\text {max }} 3419,1747,1680,1660,1653,1511 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 1.19(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 3.70(1 \mathrm{H}$, $\mathrm{m}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.99(1 \mathrm{H}, \mathrm{dd}, J=4.4,9.1 \mathrm{~Hz}), 4.34(1 \mathrm{H}$, $\mathrm{m}), 4.59-4.62(3 \mathrm{H}, \mathrm{m}), 4.91(1 \mathrm{H}, \mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{brb}), 7.28$ $(1 \mathrm{H}, \mathrm{m}), 7.29-7.38(4 \mathrm{H}, \mathrm{m}), 7.41(2 \mathrm{H}, \mathrm{dd}, J=7.6,7.9$ $\mathrm{Hz}), 7.48(1 \mathrm{H}$, brb $), 7.50(1 \mathrm{H}, \mathrm{dd}, J=7.3,7.6 \mathrm{~Hz}), 7.79$ $(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ_{C} $19.9\left(\mathrm{CH}_{3}\right), 52.5\left(\mathrm{CH}_{3}\right), 53.0(\mathrm{CH}), 57.7(\mathrm{CH}), 67.9(\mathrm{CH})$, $69.6\left(\mathrm{CH}_{2}\right), 73.5\left(\mathrm{CH}_{2}\right), 127.1(2 \times \mathrm{CH}), 127.9(3 \times \mathrm{CH})$, $128.4(2 \times \mathrm{CH}), 128.6(2 \times \mathrm{CH}), 131.9(\mathrm{CH}), 133.5(\mathrm{C})$, 137.3 (C), 167.5 (C), 170.7 (C), 171.0 (C); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \quad\left(\mathrm{M}^{+}-\mathrm{HOMe}\right), 382.1529$; found, 382.1512. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{C} 63.76, \mathrm{H} 6.32, \mathrm{~N}$ 6.76; found C 63.67, H 6.27, N 6.73.Scheme 2. Preparation of substrate 17

N-(N-Benzyloxycarbonyl-L-leucyl-L-leucyl)-Lthreonine Methyl Ester (17). Obtained from commercial $\mathrm{H}-\mathrm{Thr}-\mathrm{OMe} \cdot \mathrm{HCl}(\mathbf{2 2})(1.70 \mathrm{~g}, 10 \mathrm{mmol})$ and Cbz-Leu-Leu-OH (23) ($3.78 \mathrm{~g}, 10 \mathrm{mmol}$) as described before for the synthesis of dipeptide 4 . After purification by column chromatography (hexanes/EtOAc, 40:60), tripeptide $\mathbf{1 7}$ was isolated ($3.95 \mathrm{~g}, 80 \%$) as a syrup; $[\alpha]_{\mathrm{D}}-48(c 0.23$, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3425,1731,1673,1508 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 0.89-0.93(12 \mathrm{H}, \mathrm{m})$,
$1.17(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.49-1.75(6 \mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{s})$, $4.19(1 \mathrm{H}, \mathrm{m}), 4.29(1 \mathrm{H}, \mathrm{m}), 4.52(1 \mathrm{H}, \mathrm{ddd}, J=6.3,7.9$, $8.2 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{br}$ d, $J=7.5 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{d}, J=13.0$ $\mathrm{Hz}), 5.11(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$, $6.59\left(1 \mathrm{H}, \mathrm{br}\right.$ b), $7.13\left(1 \mathrm{H}, \mathrm{br}\right.$ b), $7.30-7.40(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 19.7\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right)$, $22.3\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 24.5(\mathrm{CH}), 24.6$ $(\mathrm{CH}), 40.7\left(\mathrm{CH}_{2}\right), 41.1\left(\mathrm{CH}_{2}\right), 52.2(\mathrm{CH}), 52.5\left(\mathrm{CH}_{3}\right)$, $53.5(\mathrm{CH}), 57.6(\mathrm{CH}), 67.0\left(\mathrm{CH}_{2}\right), 68.3(\mathrm{CH}) ; 128.0(2 \times$ $\mathrm{CH}), 128.1(\mathrm{CH}), 128.5(2 \times \mathrm{CH})$, $136.1(\mathrm{C}), 156.4(\mathrm{C})$, 171.2 (C), 172.4 (C), 173.0 (C); HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{7} \quad\left(\mathrm{M}^{+}-\mathrm{H}-\mathrm{CHMe}_{2}\right), \quad 449.2162$; found, 449.2173. Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{C} 60.83$, H 7.96, N 8.51; found C 60.74 , H 7.75, N 8.61 .

Study of the scission-oxidation reaction.

Scheme 3. Preparation of the α-methoxyglycine derivative 6

Procedure for the Radical Scission-Oxidation -Addition of O-Nucleophiles Process: Synthesis of N (O -Benzyl- N -benzoyl-L-seryl)-2-(methoxy)glycine
Methyl Ester (6). To a solution of $\mathrm{Bz}-\mathrm{Ser}(\mathrm{Bn})-\mathrm{Ser}-\mathrm{OMe}$ (4) $(80 \mathrm{mg}, 0.2 \mathrm{mmol})$ or $\mathrm{Bz}-\mathrm{Ser}(\mathrm{Bn})-\mathrm{Thr}-\mathrm{OMe}$ (5) (83 $\mathrm{mg}, 0.2 \mathrm{mmol})$ in dry dichloromethane (8 mL) was added iodine ($51 \mathrm{mg}, 0.2 \mathrm{mmol}$) and lead tetraacetate (LTA, 178 $\mathrm{mg}, 0.4 \mathrm{mmol})$. The reaction mixture was stirred for 1 h at room temperature ($26{ }^{\circ} \mathrm{C}$) under irradiation with visible light ($80-\mathrm{W}$ tungsten-filament lamp). Then the reaction mixture was poured into 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over sodium sulfate, filtered, and the solvent was removed under vacuum. The residue was dissolved in dry methanol (8 mL), and camphorsulfonic acid (CSA) was added (139 $\mathrm{mg}, 0.6 \mathrm{mmol})$. The mixture was stirred for 1 h at reflux temperature; then was cooled to $26^{\circ} \mathrm{C}$, poured into water and extracted with dichloromethane. The organic layer was dried and filtered as before. The solvent was removed under vacuum and the residue was purified by chromatography on silica gel (hexanes/EtOAc 60:40), to afford product $6(50 \mathrm{mg}, 63 \%$ from substrate $4 ; 59 \mathrm{mg}$, 74% from substrate 5) as a $1: 1$ diastereomer mixture. Syrup; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3420,1753,1691,1660,1508$, $1482 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 3.41 / 3.42$ $(3 \mathrm{H}, \mathrm{s} / \mathrm{s}), 3.65 / 3.71(1 \mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{s}), 4.02 / 4.04(1 \mathrm{H}$, [dd, $J=4.1,6.3 \mathrm{~Hz} / \mathrm{dd}, J=4.1,6.3 \mathrm{~Hz}]), 4.57 / 4.59(1 \mathrm{H}$, [d, $J=12 \mathrm{~Hz} / \mathrm{d}, J=11.3 \mathrm{~Hz}]), 4.62 / 4.64(1 \mathrm{H},[\mathrm{d}, J=12$ $\mathrm{Hz} / \mathrm{d}, J=11.9 \mathrm{~Hz}]), 4.89(1 \mathrm{H}, \mathrm{m}), 5.57 / 5.59(1 \mathrm{H},[\mathrm{d}, J=$ $5.7 \mathrm{~Hz} / \mathrm{d}, J=5.9 \mathrm{~Hz}]), 7.15(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 7.28$
$(1 \mathrm{H}, \mathrm{m}), 7.30-7.35(4 \mathrm{H}, \mathrm{m}), 7.42(2 \mathrm{H}, \mathrm{dd}, J=7.3,7.9$ $\mathrm{Hz}), 7.51(1 \mathrm{H}, \mathrm{dd}, J=7.3,7.6 \mathrm{~Hz}), 7.58 / 7.70(1 \mathrm{H},[\mathrm{d}, J=$ $9.1 \mathrm{~Hz} / \mathrm{d}, J=8.8 \mathrm{~Hz}]), 7.79(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 52.8\left(\mathrm{CH}_{3}\right), 52.96 / 53.03$ $(\mathrm{CH}), 56.4 / 56.5\left(\mathrm{CH}_{3}\right), 69.16 / 69.21\left(\mathrm{CH}_{2}\right), 73.6\left(\mathrm{CH}_{2}\right)$, $78.3 / 78.4(\mathrm{CH}), 127.1(2 \times \mathrm{CH}), 127.8(2 \times \mathrm{CH}), 128.0$ $(\mathrm{CH}), 128.5(2 \times \mathrm{CH}), 128.6(2 \times \mathrm{CH}), 131.9(\mathrm{CH}), 133.4$ (C), 137.08/137.12 (C), 167.3 (C), 167.8 (C), 170.9/171.0 (C); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right) 400.1634$; found, 400.1622. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{C} 62.99$, H 6.04, N 7.00; found C 62.64, H 6.06, N 6.92 .

N-(N-Benzyloxycarbonyl-L-leucyl)-2-(methoxy) glycine Methyl Ester (11). Obtained from commercial Cbz-Leu-Ser-OMe (10) ($73 \mathrm{mg}, 0.2 \mathrm{mmol}$) as described for the α-methoxyglycine derivative 6 . Usual work-up and purification by column chromatography (hexanes-EtoAc 60:40) gave the methoxy derivative $11(57 \mathrm{mg}, 78 \%)$ as a 10:7 diastereomer mixture. White solid; m.p. 109-110 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane). IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{v}_{\text {max }} 3423,1751,1719$, $1697,1504 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 0.92$ $(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 0.93(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.53(1 \mathrm{H}$, m), $1.60-1.74(2 \mathrm{H}, \mathrm{m}), 3.38 / 3.40(3 \mathrm{H}, \mathrm{s} / \mathrm{s}), 3.76 / 3.77$ $(3 \mathrm{H}, \mathrm{s} / \mathrm{s}), 4.31(1 \mathrm{H}, \mathrm{m}), 5.08(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}), 5.12(1 \mathrm{H}$, d, $J=14.5 \mathrm{~Hz}), 5.44 / 5.47(1 \mathrm{H},[\mathrm{d}, J=7.9 \mathrm{~Hz} / \mathrm{d}, J=8.2$ $\mathrm{Hz}]), 5.52 / 5.53(1 \mathrm{H},[\mathrm{d}, J=8.8 \mathrm{~Hz} / \mathrm{d}, J=9.1 \mathrm{~Hz}])$, 7.26-7.32 ($6 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ_{C} 21.7/21.8 $\left(\mathrm{CH}_{3}\right), 22.8 / 22.9 \quad\left(\mathrm{CH}_{3}\right), \quad 24.6 / 24.7(\mathrm{CH})$, 41.3/41.4 ($\left.\mathrm{CH}_{2}\right), 52.8\left(\mathrm{CH}_{3}\right), 53.7(\mathrm{CH}), 56.4 / 56.5\left(\mathrm{CH}_{3}\right)$, $67.1\left(\mathrm{CH}_{2}\right), 78.3(\mathrm{CH}), 128.0(2 \times \mathrm{CH}), 128.1(\mathrm{CH})$, $128.5(2 \times \mathrm{CH}), 136.1$ (C), 156.2 (C), 168.2 (C), 173.2 (C). HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}\right)$ 307.1664; found, 307.1658. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{C}$ 59.00, H 7.15, N 7.65; found C 58.71, H 7.07, N 7.86.

Study of the Phosphorylation Reaction.

Scheme 5. Synthesis of the phosphorylation product 7

General Procedure for the Phosphorylation Reaction. To a solution of the methoxyderivative (0.2
mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added triethylphosphite ($174 \mu \mathrm{~L}, 166 \mathrm{mg}, 1 \mathrm{mmol}$) and TMSOTf $(109 \mu \mathrm{~L}, 133 \mathrm{mg}, 0.6 \mathrm{mmol})$. The reaction mixture was stirred for 3 h , then it was poured into saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried and evaporated as usual, and the residue was purified by chromatography on silica gel (hexanes/EtOAc), to afford the α-aminophosphonate derivatives.

N-(N-Benzoyl- O-benzyl-L-seryl)-2-

(diethoxyphosphoryl)glycine Methyl Ester (7). Obtained from compound $6(80 \mathrm{mg}, 0.2 \mathrm{mmol})$ according to the General Procedure for the phosphorylation reaction. After purification by rotatory chromatography (hexanes/EtOAc 50:50), compound 7 was isolated as a $1: 1$ diastereomer mixture ($74 \mathrm{mg}, 73 \%$): Syrup; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3419,1748,1684,1660,1508 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 26^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}} 1.20-1.35(6 \mathrm{H}, \mathrm{m})$, $3.64 / 3.68$ (1 H , dd, $J=7.9,9.5 \mathrm{~Hz} / \mathrm{dd}, J=7.3,9.8 \mathrm{~Hz}$), $3.79 / 3.80(3 \mathrm{H}, \mathrm{s} / \mathrm{s}), 4.04 / 4.05(1 \mathrm{H}, \mathrm{dd}, J=4.0,9.3 \mathrm{~Hz} / \mathrm{dd}$, $J=4.0,9.5 \mathrm{~Hz}), 4.08-4.20(4 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}, \mathrm{d}, J=11.9$ $\mathrm{Hz}), 4.65(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{m}), 5.16 / 5.20$ $(1 \mathrm{H}, \mathrm{dd}, J=8.0,21.8 \mathrm{~Hz} / \mathrm{dd}, J=7.3,20.5 \mathrm{~Hz}), 7.14 / 7.15$ $(1 \mathrm{H}, \mathrm{d}, J=7.0,7.3 \mathrm{~Hz}), 7.30-7.40(5 \mathrm{H}, \mathrm{m}), 7.42(2 \mathrm{H}, \mathrm{dd}$, $J=7.6,7.9 \mathrm{~Hz}), 7.51(1 \mathrm{H}, \mathrm{dd}, J=7.6,7.9 \mathrm{~Hz}), 7.63 / 7.64$ $(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz} / \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.80 / 7.81(2 \mathrm{H}$, brd, $J=$ $8.0 \mathrm{~Hz} / \mathrm{brd}, J=8.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.26^{\circ} \mathrm{C}\right): \delta_{\mathrm{C}} 16.2\left(2 \times \mathrm{CH}_{3}\right.$, d, $\left.J_{\mathrm{C}, \mathrm{P}}=5.7 \mathrm{~Hz}\right), 50.95 / 51.00$ $\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=147.2 \mathrm{~Hz}\right), 52.5 / 52.8(\mathrm{CH}), 53.2\left(\mathrm{CH}_{3}\right)$, $63.8\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.4 \mathrm{~Hz}\right), 63.9\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.4 \mathrm{~Hz}\right)$, $69.2\left(\mathrm{CH}_{2}\right), 73.5 / 73.6\left(\mathrm{CH}_{2}\right), 127.1(2 \times \mathrm{CH}), 127.8(\mathrm{CH})$, $127.9(2 \times \mathrm{CH}), 128.5(2 \times \mathrm{CH}), 128.6(2 \times \mathrm{CH}), 131.9$ (CH), 133.5 (C), 137.1/137.2 (C), 166.8 (C), 167.2/167.3 (C), 169.8/170.2 (C, d, $\left.J_{\mathrm{C}, \mathrm{P}}=6.4 \mathrm{~Hz}\right)$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}\left[\mathrm{M}^{+}\right]$, 506.1818; found, 506.1831.

Scheme 6. Synthesis of the phosphorylation product 12

N-(N-Benzyloxycarbonyl-L-leucyl)-2(diethoxyphosphoryl)glycine Methyl Ester (20). Obtained from compound 11 ($73 \mathrm{mg}, 0.2 \mathrm{mmol}$) according to the General Procedure for the phosphorylation reaction. After purification by rotatory chromatography (hexanes/EtOAc 50:50), compound 12 ($68 \mathrm{mg}, 72 \%$) was isolated as a $1: 1$ diastereomer mixture: Syrup; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3429,1746,1719,1688,1507$ $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 26^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}} 0.92(6 \mathrm{H}, \mathrm{d}$, $J=6.3 \mathrm{~Hz}), 1.25-1.32(6 \mathrm{H}, \mathrm{m}), 1.51(1 \mathrm{H}, \mathrm{m}), 1.60-1.73$ $(2 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 4.05-4.20(4 \mathrm{H}, \mathrm{m}), 4.34(1 \mathrm{H}, \mathrm{m})$,
$5.09(2 \mathrm{H}, \mathrm{s}), 5.15 / 5.17\left(1 \mathrm{H},\left[\mathrm{dd}, J=8.8 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{P}}=22.4\right.\right.$ $\left.\left.\mathrm{Hz} / \mathrm{dd}, J=8.9 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{P}}=22.3 \mathrm{~Hz}\right]\right), 5.47(1 \mathrm{H}, \mathrm{br} \mathrm{b}), 7.20$ $(1 \mathrm{H}, \mathrm{br}$ d, $J=7.9 \mathrm{~Hz}), 7.28-7.35(5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 26^{\circ} \mathrm{C}\right): \delta_{\mathrm{C}} 16.2\left(2 \times \mathrm{CH}_{3}, \mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=\right.$ $5.7 \mathrm{~Hz}), 21.8\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 24.6(\mathrm{CH}), 41.5\left(\mathrm{CH}_{2}\right)$, $50.6\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=147.9 \mathrm{~Hz}\right)$, $52.97 / 53.03\left(\mathrm{CH}_{3}\right)$, $53.44 / 53.51(\mathrm{CH}), 63.7\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.0 \mathrm{~Hz}\right), 63.9$ $\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=5.2 \mathrm{~Hz}\right), 67.0\left(\mathrm{CH}_{2}\right), 127.9(\mathrm{CH}), 128.1(2$ $\times \mathrm{CH}), 128.5(2 \times \mathrm{CH}), 136.2(\mathrm{C}), 156.0(\mathrm{C}), 166.9(\mathrm{C})$, 172.1 (C); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}\left[\mathrm{M}^{+}\right], 472.1975$; found, 472.1978.

Scheme 7. Simplified procedure for the preparation of the scission-phosphorylation product 12

General Procedure for the Simplified Scission -Phosphorylation Process. To a solution of the starting material (0.2 mmol) in dry dichloromethane (8 mL) was added iodine ($51 \mathrm{mg}, 0.2 \mathrm{mmol}$) and lead tetraacetate (LTA, $178 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction mixture was stirred for 1 h at room temperature $\left(26{ }^{\circ} \mathrm{C}\right)$ under irradiation with visible light ($80-\mathrm{W}$ tungsten-filament lamp). Then the reaction mixture was poured into 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solvent was dried and evaporated as usual. The unpurified residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and triethylphosphite $(174 \mu \mathrm{~L}, 166$ $\mathrm{mg}, 1 \mathrm{mmol}$) and TMSOTf ($109 \mu \mathrm{~L}, 133 \mathrm{mg}, 0.6 \mathrm{mmol}$) were added. The reaction mixture was stirred for 3 h , then it was poured into saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After usual solvent drying and evaporation, the residue was purified by chromatography on silica gel (hexanes/EtOAc), to afford the α aminophosphonate derivatives.

N-(N-Benzyloxycarbonyl-L-leucyl)-2-(diethoxy

 phosphoryl)glycine Methyl Ester (12). Obtained from Cbz-Leu-Ser-OMe (10) ($73 \mathrm{mg}, 0.2 \mathrm{mmol}$) according to the General Procedure for the scission-phosphorylation reaction. After purification by rotatory chromatography (hexanes/EtOAc 50:50), compound $\mathbf{1 2}$ ($67 \mathrm{mg}, 71 \%$) was isolated as a 1:1 diastereomer mixture.Scheme 8. Synthesis of the scission-phosphorylation 18

1) $\mathrm{LTA}, \mathrm{I}_{2}, \mathrm{hv}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}$
2) $\mathrm{TMSOTf}, \mathrm{P}(\mathrm{OEt})_{3}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}$

18
N-(N-Benzyloxycarbonyl-L-leucyl-L-leucyl)-2(diethoxy phosphoryl)glycine Methyl Ester (18). Obtained from compound $17(80 \mathrm{mg}, 0.2 \mathrm{mmol})$ according to the Simplified Scission-Phosphorylation Procedure. After purification by rotatory chromatography (hexanes/EtOAc 40:60), compound $\mathbf{1 8}$ was isolated as a 1:1 diastereomer mixture ($71 \mathrm{mg}, 61 \%$): Syrup; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3426,3318,1747,1712,1678,1506 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}} 0.85-0.92(12 \mathrm{H}$, $\mathrm{m}), 1.24-1.35(6 \mathrm{H}, \mathrm{m}), 1.50-1.70(6 \mathrm{H}, \mathrm{m}), 3.75 / 3.77$ $(3 \mathrm{H}, \mathrm{s} / \mathrm{s}), 4.11-4.25(5 \mathrm{H}, \mathrm{m}), 4.61 / 4.69(1 \mathrm{H}, \mathrm{m} / \mathrm{m}), 5.09$ $(2 \mathrm{H}, \mathrm{s}), 5.13 / 5.16(1 \mathrm{H}, \mathrm{m} / \mathrm{m}), 5.49 / 5.68(1 \mathrm{H},[\mathrm{d}, J=7.9$ $\mathrm{Hz} / \mathrm{d}, J=7.9 \mathrm{~Hz}]), 6.66 / 6.76(1 \mathrm{H},[\mathrm{d}, J=8.2 \mathrm{~Hz} / \mathrm{d}, J=$ $7.6 \mathrm{~Hz}], 7.26-7.35(5 \mathrm{H}, \mathrm{m}), 7.34 / 7.56(1 \mathrm{H},[\mathrm{m} / \mathrm{d}, J=8.5$ $\mathrm{Hz}]) ;{ }^{13} \mathrm{C}$ NMR $\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}\right): \delta_{\mathrm{C}} 16.2(2 \times$ $\left.\mathrm{CH}_{3}, \mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=5.8 \mathrm{~Hz}\right)$, $21.8\left(\mathrm{CH}_{3}\right)$, $22.0 / 22.1\left(\mathrm{CH}_{3}\right)$, 22.7/22.8 $\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 24.5(\mathrm{CH}), 24.6(\mathrm{CH}), 41.1$ $\left(\mathrm{CH}_{2}\right), 41.2\left(\mathrm{CH}_{2}\right), 50.5 / 50.6\left(\mathrm{CH},\left[\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=146 \mathrm{~Hz} / \mathrm{d}\right.\right.$, $\left.J_{\mathrm{C}, \mathrm{P}}=147.2 \mathrm{~Hz}\right)$, $51.4 / 51.5(\mathrm{CH})$, $53.0 / 53.1\left(\mathrm{CH}_{3}\right)$, $53.4 / 53.5(\mathrm{CH}), 63.6\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.4 \mathrm{~Hz}\right), 63.9\left(\mathrm{CH}_{2}\right.$, $\left.\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=6.4 \mathrm{~Hz}\right), 67.0\left(\mathrm{CH}_{2}\right), 128.0(2 \times \mathrm{CH}), 128.1$ $(\mathrm{CH}), 128.4(2 \times \mathrm{CH}), 136.2$ (C), 156.3 (C), 166.8/166.9 (C), 171.8 (C), 172.3/172.5 (C); HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{P}\left[\mathrm{M}^{+}\right]$, 585.2815; found, 585.2804.

Preparation of Dehydroamino Acids.

Scheme 9. Preparation of the HWE product 8

General Procedures for the Horner-WadsworthEmmons Reaction. Method A. To a solution of the α phosphonate (0.2 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added a solution of $\mathrm{DBU}(151 \mu \mathrm{~L}, 76 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL). The reaction mixture was stirred for 10 min , and then was added the aldehyde (0.4 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL). After stirring for 16 h , the solution was poured into saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over sodium sulfate, filtered and evaporated under vacuum. The residue was purified by chromatography on silica gel (hexanes/EtOAc) affording the dehydroamino acid derivatives.

Method B. To a solution of the amino phosphonate $(0.2 \mathrm{mmol})$ in dry acetone $(4 \mathrm{~mL})$ was added DBU (302 $\mu \mathrm{L}, 152 \mathrm{mg}, 1.0 \mathrm{mmol}$). The reaction mixture was stirred for 24 h , followed by work-up and purification as described for Method A, giving the dehydroamino acid derivatives.

(Z)-(N-Benzoyl- O-benzyl-L-seryl)- α, β-dehydro-5-

 (phenyl)norvaline Methyl Ester (8). Obtained from the amino phosphonate $7(101 \mathrm{mg}, \quad 0.2 \mathrm{mmol})$ and hydrocinnamaldehyde ($53 \mu \mathrm{~L}, 54 \mathrm{mg}, 0.4 \mathrm{mmol}$), according to the General HWE Procedure, Method A. After purification by column chromatography (hexanes/EtOAc $65: 35)$, compound $\mathbf{8}(81 \mathrm{mg}, 83 \%)$ was isolated as a syrup; $[\alpha]_{\mathrm{D}}=+12$ (c 0.52, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3409,1722,1695,1659,1506 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}} 2.39(2 \mathrm{H}, \mathrm{ddd}, J=$ $6.6,7.6,7.6 \mathrm{~Hz}), 2.69(2 \mathrm{H}, \mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}), 3.63(1 \mathrm{H}$, dd, $J=7.6,9.1 \mathrm{~Hz}), 3.66(3 \mathrm{H}, \mathrm{s}), 4.00(1 \mathrm{H}, \mathrm{dd}, J=4.1$, $9.2 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{d}, J=11.8$ $\mathrm{Hz}), 4.83(1 \mathrm{H}, \mathrm{m}), 6.67(1 \mathrm{H}, \mathrm{dd}, J=7.3,7.6 \mathrm{~Hz}), 7.09$ (1H, br b), 7.10 ($2 \mathrm{H}, \mathrm{dd}, J=7.8,7.9 \mathrm{~Hz}$), $7.11(1 \mathrm{H}, \mathrm{dd}, J$ $=7.4,7.8 \mathrm{~Hz}), 7.19(2 \mathrm{H}, \mathrm{dd}, J=7.6,7.8 \mathrm{~Hz}), 7.24(1 \mathrm{H}$, $\mathrm{m}), 7.25-7.28(4 \mathrm{H}, \mathrm{m}), 7.37(2 \mathrm{H}, \mathrm{dd}, J=7.8,7.9 \mathrm{~Hz})$, $7.46(1 \mathrm{H}, \mathrm{dd}, J=7.6,7.8 \mathrm{~Hz}), 7.74(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz})$, $7.88\left(1 \mathrm{H}, \mathrm{br}\right.$ b); ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}$): δ_{C} $30.3\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 52.3\left(\mathrm{CH}_{3}\right), 52.9(\mathrm{CH}), 69.3$ $\left(\mathrm{CH}_{2}\right), 73.6\left(\mathrm{CH}_{2}\right), 125.2(\mathrm{C}), 126.1(\mathrm{CH}), 127.1(2 \times$ $\mathrm{CH}), 127.9(2 \times \mathrm{CH}), 128.0(\mathrm{CH}), 128.3(2 \times \mathrm{CH}), 128.4$ $(2 \times \mathrm{CH}), 128.5(2 \times \mathrm{CH}), 128.6(2 \times \mathrm{CH}), 131.9(\mathrm{CH})$, 133.5 (C), 137.2 (C), 137.8 (CH), 140.8 (C), 164.5 (C), 167.3 (C), 168.7 (C); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]$, 486.2155; found, 486.2147.Scheme 10. Preparation of the HWE product 9

(Z)-(N-Benzoyl- O-benzyl-L-seryl)- α, β-dehydro

valine Methyl Ester (9). Obtained from the amino phosphonate 7 ($101 \mathrm{mg}, 0.2 \mathrm{mmol}$), according to the General HWE Procedure, Method B. After purification by column chromatography (hexanes/EtOAc 60:40), compound $9(47 \mathrm{mg}, 57 \%)$ was isolated as a syrup; $[\alpha]_{\mathrm{D}}=$ $+16\left(c \quad 0.56, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3414,1723,1687$, $1658,1507 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}$): δ_{H} $1.78(3 \mathrm{H}, \mathrm{s}), 2.15(3 \mathrm{H}, \mathrm{s}), 3.68(1 \mathrm{H}, \mathrm{m}), 3.69(3 \mathrm{H}, \mathrm{s})$, $4.08(1 \mathrm{H}, \mathrm{dd}, J=4.4,9.5 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz})$, $4.68(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 4.87(1 \mathrm{H}, \mathrm{m}), 7.19(1 \mathrm{H}, \mathrm{d}, J=$ $6.0 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{m}), 7.33-7.36(4 \mathrm{H}, \mathrm{m}), 7.44(2 \mathrm{H}, \mathrm{dd}, J$ $=7.6,7.8 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{dd}, J=7.0,7.8 \mathrm{~Hz}), 7.81(2 \mathrm{H}, \mathrm{d}$, $J=7.9 \mathrm{~Hz}), 7.86(1 \mathrm{H}$, brb $) ;{ }^{13} \mathrm{C}$ NMR (125.7 MHz , $\left.\mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}\right): \delta_{\mathrm{C}} 21.2\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 51.7\left(\mathrm{CH}_{3}\right)$, $52.6(\mathrm{CH}), 69.3\left(\mathrm{CH}_{2}\right), 73.7\left(\mathrm{CH}_{2}\right), 120.7(\mathrm{C}), 127.1(2 \times$ $\mathrm{CH}), 127.9(2 \times \mathrm{CH}), 128.1(\mathrm{CH}), 128.5(2 \times \mathrm{CH}), 128.6$ $(2 \times \mathrm{CH}), 131.9(\mathrm{CH}), 133.6(\mathrm{C}), 137.2(\mathrm{C}), 145.9(\mathrm{C})$, 164.9 (C), 167.3 (C), 168.9 (C); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right] 410.1842$, found 410.1829 .

Scheme 11. Preparation of the HWE product 13

(Z)-(N-Benzyloxycarbonyl-L-leucyl)- α, β -
dehydrophenylalanine Methyl Ester (13). ${ }^{1}$ Obtained from the amino phosphonate $12(94 \mathrm{mg}, 0.2 \mathrm{mmol})$ and benzaldehyde ($41 \mu \mathrm{~L}, 42 \mathrm{mg}, 0.4 \mathrm{mmol}$) according to the General HWE Procedure, Method A. After purification by rotatory chromatography (hexanes/EtOAc 80:20), compound $\mathbf{1 3}(71 \mathrm{mg}, 84 \%)$ was isolated as a syrup; $[\alpha]_{\mathrm{D}}$ $=-11\left(c 0.30, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3430,1716$, $1705,1504 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}$): δ_{H} $0.94(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 0.95(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.54$ $(1 \mathrm{H}, \mathrm{m}), 1.70-1.78(2 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.35(1 \mathrm{H}, \mathrm{m})$, $5.09(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 5.13(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 5.26$ $(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.29-7.34(8 \mathrm{H}, \mathrm{m}), 7.41(1 \mathrm{H}, \mathrm{s}), 7.45$ $(2 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{br} \mathrm{b}) ;{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.26^{\circ} \mathrm{C}\right): \delta_{\mathrm{C}} 22.0\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 24.6(\mathrm{CH}), 40.6\left(\mathrm{CH}_{2}\right)$, $52.6\left(\mathrm{CH}_{3}\right), 53.7(\mathrm{CH}), 67.2\left(\mathrm{CH}_{2}\right), 123.8(\mathrm{C}), 128.0(2 \times$ $\mathrm{CH}), 128.2(2 \times \mathrm{CH}), 128.5(4 \times \mathrm{CH}), 129.5(\mathrm{CH}), 129.7$ (CH), 132.9 (CH), 133.5 (C), 136.0 (C), 156.4 (C), 165.4 (C), 170.8 (C); HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]$, 424.1998; found, 424.1982.

[^0]Scheme 12. Preparation of the HWE product 14

(Z)-(N-Benzyloxycarbonyl-L-leucyl)- α, β-dehydro leucine Methyl Ester (14). Obtained from the amino phosphonate 12 ($94 \mathrm{mg}, 0.2 \mathrm{mmol}$) and isobutyraldehyde ($37 \mu \mathrm{~L}, 29 \mathrm{mg}, 0.4 \mathrm{mmol}$), according to the General HWE Procedure, Method A. After purification by column chromatography (hexanes/EtOAc 85:15), compound 15 ($62 \mathrm{mg}, 79 \%$) was isolated as a syrup; $[\alpha]_{\mathrm{D}}=-25(c 0.19$, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3430,1717,1701,1508 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}} 0.95(6 \mathrm{H}, \mathrm{d}, J=$ $6.3 \mathrm{~Hz}), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.02(3 \mathrm{H}, \mathrm{d}, J=6.3$ $\mathrm{Hz}), 1.56(1 \mathrm{H}, \mathrm{m}), 1.69-1.78(2 \mathrm{H}, \mathrm{m}), 2.54(1 \mathrm{H}, \mathrm{m}), 3.72$ $(3 \mathrm{H}, \mathrm{s}), 4.34(1 \mathrm{H}, \mathrm{m}), 5.11(2 \mathrm{H}, \mathrm{s}), 5.38(1 \mathrm{H}, \mathrm{d}, J=7.3$ $\mathrm{Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}), 7.28-7.37(5 \mathrm{H}, \mathrm{m}), 7.51$ (1H, br b). ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}\right): \delta_{\mathrm{C}} 21.5$ $\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 24.7(\mathrm{CH})$, $27.9(\mathrm{CH}), 41.1\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{CH}_{3}\right), 53.6(\mathrm{CH}), 67.1$ $\left(\mathrm{CH}_{2}\right), 122.9(\mathrm{C}), 127.9(2 \times \mathrm{CH}), 128.1(\mathrm{CH}), 128.5(2 \times$ CH), 136.1 (C), 146.0 (CH), 156.3 (C), 165.0 (C), 171.2 (C); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$ [M $\left.\mathrm{M}^{+}\right], 390.2155$; found, 390.2163.

Scheme 13. Preparation of the HWE product 15

(Z)-(N-Benzyloxycarbonyl-L-leucyl)- α, β -

dehydrovaline Methyl Ester (15). Obtained from the amino phosphonate $\mathbf{1 2}$ ($94 \mathrm{mg}, 0.2 \mathrm{mmol}$), according to the General HWE Procedure, Method B. After purification by column chromatography (hexanes/EtOAc $75: 25)$, compound $\mathbf{1 5}(49 \mathrm{mg}, 65 \%)$ was isolated as a syrup; $[\alpha]_{\mathrm{D}}=-39\left(c 0.13, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3428$, $1718,1507 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}$): δ_{H} $0.93(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 0.94(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.54$ $(1 \mathrm{H}, \mathrm{m}), 1.67-1.73(2 \mathrm{H}, \mathrm{m}), 1.76(3 \mathrm{H}, \mathrm{s}), 2.12(3 \mathrm{H}, \mathrm{s})$, $3.67(3 \mathrm{H}, \mathrm{s}), 4.30(1 \mathrm{H}, \mathrm{m}), 5.09(2 \mathrm{H}, \mathrm{brs}), 5.39(1 \mathrm{H}$, brb), 7.26-7.38 (5H, m), $7.50\left(1 \mathrm{H}\right.$, brb); ${ }^{13} \mathrm{C}$ NMR (125.7 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}\right): \delta_{\mathrm{C}} 21.2\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right), 22.4$ $\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 24.7(\mathrm{CH}), 40.9\left(\mathrm{CH}_{2}\right), 51.6\left(\mathrm{CH}_{3}\right)$, $53.5(\mathrm{CH}), 67.1\left(\mathrm{CH}_{2}\right), 120.7(\mathrm{C}), 128.0(2 \times \mathrm{CH}), 128.2$
(CH), 128.5 ($2 \times \mathrm{CH}$), 136.1 (C), 146.3 (C), 156.3 (C), 164.9 (C), 170.9 (C); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]$, 376.1998; found, 376.2004.

Scheme 14. Preparation of the HWE product 16

(Z)-(N-Benzyloxycarbonyl-L-leucyl)- α, β-dehydro-5(phenyl)norvaline Methyl Ester (16). Obtained from the amino phosphonate $12(94 \mathrm{mg}, 0.2 \mathrm{mmol})$ and hydrocinnamaldehyde ($53 \mu \mathrm{~L}, 54 \mathrm{mg}, \quad 0.4 \mathrm{mmol}$), according to the General HWE Procedure, Method A. After purification by column chromatography (hexanes/EtOAc $75: 25$), compound 16 ($67 \mathrm{mg}, 74 \%$) was isolated as a syrup; $[\alpha]_{\mathrm{D}}=-27$ (c 0.24, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3420,1716,1703,1504 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}\right): \delta_{\mathrm{H}} 0.95(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.53$ $(1 \mathrm{H}, \mathrm{m}), 1.65-1.75(2 \mathrm{H}, \mathrm{m}), 2.45(2 \mathrm{H}, \mathrm{m}), 2.77(2 \mathrm{H}, \mathrm{dd}$, $J=7.2,7.6 \mathrm{~Hz}), 3.73(3 \mathrm{H}, \mathrm{s}), 4.25(1 \mathrm{H}, \mathrm{m}), 5.08(1 \mathrm{H}, \mathrm{d}, J$ $=12.6 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{br} \mathrm{b})$, $6.72(1 \mathrm{H}, \mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}), 7.17-7.21(4 \mathrm{H}, \mathrm{m}), 7.28$ $(2 \mathrm{H}, \mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}), 7.33-7.40(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}\right): \delta_{\mathrm{C}} .21 .9\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right)$, $24.7(\mathrm{CH}), 30.3\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 41.2\left(\mathrm{CH}_{2}\right), 52.3$ $\left(\mathrm{CH}_{3}\right), 53.7(\mathrm{CH}), 67.1\left(\mathrm{CH}_{2}\right), 125.2(\mathrm{C}), 126.1(\mathrm{CH})$, $128.0(2 \times \mathrm{CH}), 128.2(\mathrm{CH}), 128.4(2 \times \mathrm{CH}), 128.44(2 \times$ $\mathrm{CH}), 128.49(2 \times \mathrm{CH}), 136.1(\mathrm{C}), 137.8(\mathrm{CH}), 140.9(\mathrm{C})$, 156.2 (C), 164.6 (C), 170.8 (C); HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right], 452.2311$; found, 452.2297.

Scheme 15. Preparation of the HWE product 19

18

19

(Z)-(N-Benzyloxycarbonyl-L-leucyl-L-leucyl)- α, β -dehydro-5-(phenyl)norvaline Methyl Ester (19).

 Obtained from the amino phosphonate $18(117 \mathrm{mg}, 0.2$ mmol) and hydrocinnamaldehyde ($53 \mu \mathrm{~L}, 54 \mathrm{mg}, 0.4$ mmol), according to the General HWE Procedure, Method A. After purification by column chromatography (hexanes/EtOAc 40:60), compound 19 ($76 \mathrm{mg}, 67 \%$) was isolated as a syrup; $[\alpha]_{\mathrm{D}}=-50\left(c \quad 0.26, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3422,1716,1504 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 26^{\circ} \mathrm{C}$): $\delta_{\mathrm{H}} 0.81-0.87(12 \mathrm{H}, \mathrm{m}), 1.38-1.71$ $(6 \mathrm{H}, \mathrm{m}), 2.35-2.40(2 \mathrm{H}, \mathrm{m}), 2.65-2.72(2 \mathrm{H}, \mathrm{m}), 3.64$ $(3 \mathrm{H}, \mathrm{s}), 4.13(1 \mathrm{H}, \mathrm{m}), 4.45(1 \mathrm{H}, \mathrm{ddd}, J=6.0,8.2,8.2$$\mathrm{Hz}), 4.98(1 \mathrm{H}, \mathrm{d}, J=11 \mathrm{~Hz}), 5.03(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz})$, $5.24(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.58(1 \mathrm{H}$, br d, $J=8.2 \mathrm{~Hz})$, $6.62(1 \mathrm{H}, \mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}), 7.10-7.14(3 \mathrm{H}, \mathrm{m})$, 7.19-7.30 ($7 \mathrm{H}, \mathrm{m}$), $7.50(1 \mathrm{H}, \mathrm{br} \mathrm{b})$; ${ }^{13} \mathrm{C}$ NMR (125.7 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 26{ }^{\circ} \mathrm{C}\right): \delta_{\mathrm{C}} 21.8\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right), 22.8$ $\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 24.7(2 \times \mathrm{CH}), 30.2\left(\mathrm{CH}_{2}\right), 34.1$ $\left(\mathrm{CH}_{2}\right), 40.6\left(\mathrm{CH}_{2}\right), 41.1\left(\mathrm{CH}_{2}\right)$,. $51.8(\mathrm{CH}), 52.3\left(\mathrm{CH}_{3}\right)$, $53.6(\mathrm{CH}), 67.2\left(\mathrm{CH}_{2}\right), 125.3(\mathrm{C}), 126.1(\mathrm{CH}), 128.1(2 \times$ $\mathrm{CH}), 128.2(\mathrm{CH}), 128.4(2 \times \mathrm{CH}), 128.5(4 \times \mathrm{CH}), 136.0$ (C), 137.8 (CH), 140.9 (C), 156.4 (C), 164.6 (C), 170.4 (C), 172.5 (C); HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]$, 565.3152; found, 565.3165.

[^1]

 ll

[^2]

14
N.

16

16

[^3]
18

\qquad

[^0]: ${ }^{1}$ Buck, R. T.; Clarke, P. A.; Coe, D. M.; Drysdale, M. J.; Ferris, L.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Swann, E. Chem. Eur. J. 2000, 6, 2160-2167.

[^1]:

[^2]:

[^3]:

