Supporting Information for

Diastereoselective [4+1] Cycloaddition of Alkenyl Propargyl Acetates with CO $Catalyzed\ by\ [RhCl(CO)_2]_2$

Wei Chen, Jia-Hui Tay, Xiao-Qi Yu* and Lin Pu*

I.	Analytical Instruments	S-2
II.	General Data.	S-2
Ш	¹ H NMR, ¹³ C, and 2D NMR Spectra	S-2
	1. Alkenyl Propargylic Ester 3	S-2
	2. Alkenyl Propargylic Acetates 5	S-3
	3. [4+1] cycloaddition products 4 & 6 &11	S-21
	4. NOESY 2D NMR Spectra of <i>E</i> -6d (a) and <i>Z</i> -6d (b).	S-48
	5. NOESY 2D NMR Spectra of Z-11a	S-49
	6. NMR spectra Used to Determine the <i>E-Z</i> ratio	S-50

I. Analytical Instruments:

High resolution mass spectra were obtained by EI [70-VSE(C)] or ESI (Q-TOf) analysis and the [M] or [MH+] was observed.

II. General Data:

All commercial chemicals were used as received unless otherwise noted. [RhCl(CO)₂]₂ was purchased and stored in a dry nitrogen atmosphere.

THF was distilled over sodium and benzophenone under nitrogen atmosphere. to prepare alkenyl propargylic acetate according to the general method used.

III. ¹H NMR, ¹³C, and 2D NMR Spectra

1. Alkenyl Propargylic Ester 3

3. Alkenyl Propargylic Acetates 5

10.5

4. [4+1] cycloaddition products 4 & 6&11

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

10.5

4. NOESY 2D NMR Spectra of E-6d (a) and Z-6d (b).

Following two figures (a) and (b) give the NOESY spectra of E- and Z-6d respectively which allow the determination of their stereochemistry. As shown in (a), NOE effects were observed for E-6d between the aromatic protons H_a and H_b at δ 7.35 and the AcO protons signal at δ 1.80. In contrast, (b) shows no NOE effect between the aromatic protons and the AcO protons for Z-6d.

$$H_3C$$
 H_b
 H_a
 O
 H_b
 H_b
 H_b
 E -6d
 E -6d

(b)

5. NOESY 2D Spectra NMR for cycloaddition products Z-11a

As shown in the figure, NOE effect was observed for Z-11a between the aromatic protons at δ 7.52 and vinyl proton at 6.62 on the cyclopentenone ring.

6. NMR spectra used to determine the *E-Z* ratio

