Title: The 3D structure prediction of TAS2R38 bitter receptors bound to agonists phenylthiocarbamide (PTC) and 6-n-Propylthiouracil (PROP)

Supplementary Information

Methods of Molecular Dynamics Simulation

We performed molecular dynamics (MD) simulations of the predicted structure of bitter taste receptor with and without ligand for 10 ns in explicit lipid bilayer and water. We carried out MD simulations using NAMD including explicit water and a periodically infinite lipid to determine the interactions of the protein with lipid and water. We used the CHARMM22 force field parameters for the protein, the TIP3 model for water, and the CHARMM27 force field parameters for the lipids. Quantum charges from DFT/6311G** method were used for these ligands. We started with the predicted protein structure, stripped away the lipid molecules, and inserted it in a periodic structure of 1-palmytoil-2-oleoylsn-glycero-3-phosphatidylcholine (POPC). In this process, we eliminated lipid molecules within 5 Å of the protein. Then, we inserted this in a box of water molecules and eliminated waters within 5 Å of the lipid and protein. Chloride ions were added to neutralize the charge of the system. The membrane and water molecules were minimized with the protein fixed, and then equilibrated for 500 ps in an NPT simulation. Finally, the entire system was minimized, and then 10 ns of NPT simulation was run. All NPT simulations were run using Langevin dynamics with a damping coefficient of 1 ps⁻¹ and a bath temperature of 310 K. The pressure was kept constant by Nosé-Hoover Langevin piston pressure control, with a target pressure of 1 atm and barostats oscillation and damping times of 200 fs. The step size was 1 fs, with periodic boundary conditions applied. The full system (Figure S4) contains the predicted protein, 101 lipid molecules, 7528 water molecules, and 19 chlorine ions for a total of 41570 atoms per periodic cell for apoPAV protein. That of apo-AVI protein contains the predicted protein, 102 lipid molecules, 7498 water molecules, and 19 chlorine ions for a total of 41619 atoms per periodic cell. That of PAV protein bound to PTC contains the predicted protein, 104 lipid molecules, 5626 water molecules, and 19 chlorine ions for a total of 36284 atoms per periodic cell. That of AVI protein bound to PTC contains the predicted protein, 105 lipid molecules, 7387 water molecules, and 19 chlorine ions for a total of 41706 atoms per periodic cell. The box size is 75 Å by 75 Å by 85 Å. We then used the NAMD program to carry out 10 ns of NPT MD with a bath temperature of 310 K.

Table I. BiHelix and ComBiHelix results for the PAV variation of bitter taste receptors in the different receptor templates.

Receptor			Rota	tional <i>i</i>		Total Energy		
Templates	H1	H2	Н3	H4	Н5	Н6	H7	(Kcal/mol)
tβ1AR	30	330	60	90	180	270	30	598.1
hβ2AR	30	330	60	120	330	90	270	754.5
BovR	0	0	60	150	330	30	330	997.3
$hAA_{2A}R$	0	330	30	180	0	30	0	932.8

Figure S1 Sequence alignment against $t\beta1AR$, $h\beta2AR$, Rhodopsin and hAA2AR for TAS2R38 bitter taste receptor variants PAV.

PAV-TM1 tβ1AR-TM1	14 40			S																																43 69
PAV-TM2 tβ1AR-TM2	55 74			L T																																86 105
PAV-TM3	94 110			I																																127 143
tβ1AR-TM3 PAV-TM4 tβ1AR-TM4	140 154	1	S	CA	M	L	L	G	1	ı	L	С	s	С	1	С	Т	V	L	С	V	W	С	F	F	S	R		U	K	1	L	P			165 179
PAV-TM5 tβ1AR-TM5	190 204	N	ı L	F	Υ	S	F	L	F	С	Υ	L	W	S	V	P	P	F	L	L	F	L	V	s	s	G	M	L								222 236
PAV-TM6 tβ1AR-TM6	244 284			L																																271 311
PAV-TM7 tβ1AR-TM7	276 321			G																																299 344
PAV-TM1 hβ2AR-TM1	11 29			E																																42 60
PAV-TM2 hβ2AR-TM2	56 67			L																													ŀ			85 96
PAV-TM3 hβ2AR-TM3	95 103			N																																128 136
PAV-TM4 hβ2AR-TM4	139 149			S																													l		İ	161 171
PAV-TM5 hβ2AR-TM5	190 197			F																																222 229
PAV-TM6 hβ2AR-TM6	244 267			L																													l	İ	İ	271 294
PAV-TM7 hβ2AR-TM7	277 306			Y																																299 328
PAV-TM1 rhodop-TM1	13 35			/R																																42 64
PAV-TM2 rhodop-TM2	57 71			C N																																86 100
PAV-TM3 rhodop-TM3	95 107			N																																127 139
PAV-TM4 rhodop-TM4	142 151			1L																																164 173
PAV-TM5 rhodop-TM5	189 200			L																																214 225
PAV-TM6 rhodop-TM6	244 247			L																																271 274
PAV-TM7 rhodop-TM7	277 286	1		N																													ŀ		ļ	297 306
PAV-TM1 hAA2AR-TM1	14 5			SS																									1							41 32
PAV-TM2 hAA2AR-TM2	57 41			C																																83 67
PAV-TM3 hAA2AR-TM3	95 75			N																																127 107
PAV-TM4 hAA2AR-TM4	139 119	K	(I	S	Q	M	L	L	G	1	I C	L	C	S	C S	l F	C	T I	V G	L L	C T	V P	W	,												160 140
PAV-TM5 hAA2AR-TM5	190 175			F																																219 204
PAV-TM6 hAA2AR-TM6	242 222			K																													ŀ			271 251
PAV-TM7 hAA2AR-TM7	277 269	I L		V																																299 291

Figure S2. The prediction of 7 hydrophobic regions from PredicTM

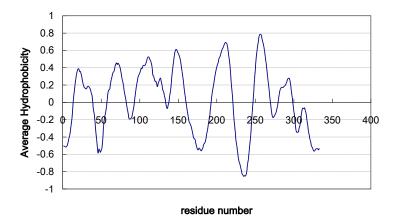


Figure S3 Predicted 3D structures of bitter taste receptors PAV based on the four templates (a) $t\beta 1AR$, (b) $h\beta 2AR$, (c) Rhodopsin and (d) $hAA_{2A}R$ from BiHelix. (Residue A262 in the TM6 are highlighted here)

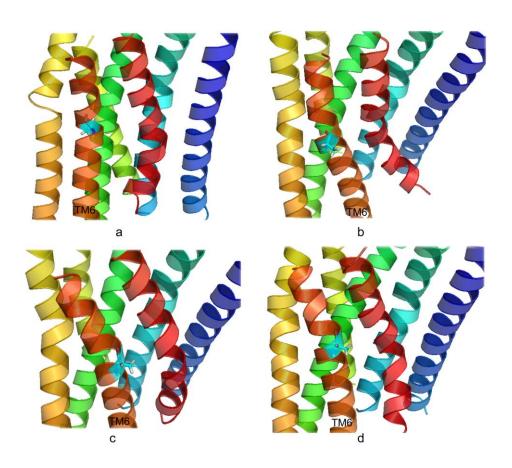


Figure S4. The molecular dynamics simulation box of TAR2S38 bitter receptor with lipid and water. The EC region is at the top.

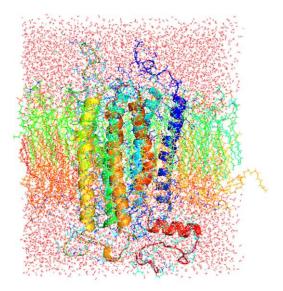


Figure S5 The 2 conformations of PTC and 4 of PROP docked to bitter taste receptor hTAS2R38.

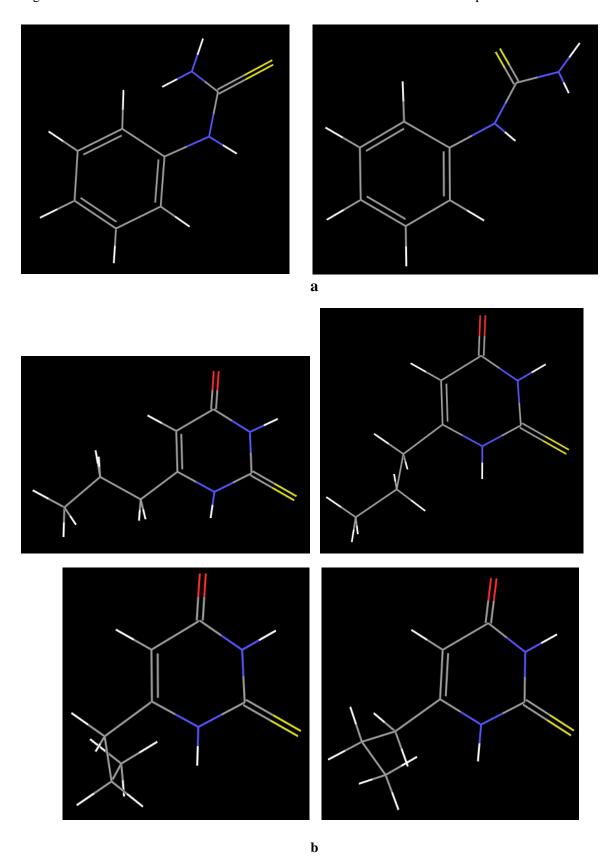
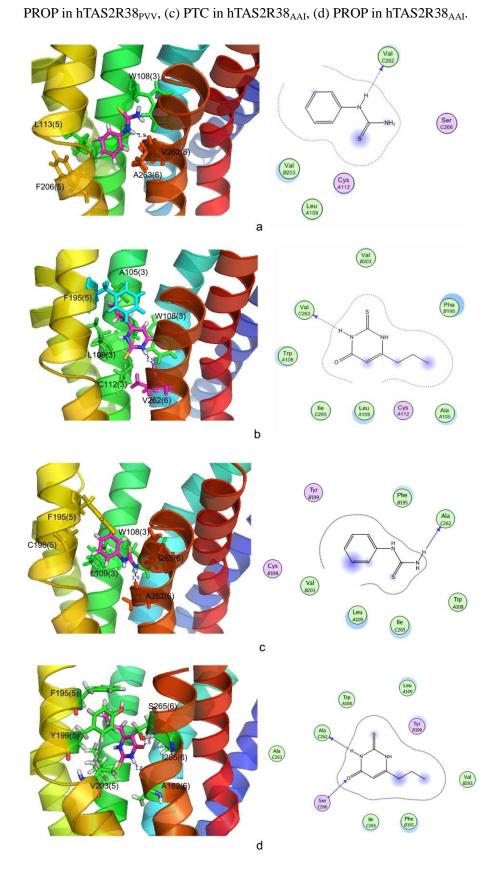



Figure S6 Predicted binding sites of agonists in bitter taste receptors. (a) PTC in hTAS2R38_{PVV}, (b)

