Supporting Information

Ultrathin, Single-Crystal WO₃ Nanosheets by Two-Dimensional Oriented Attachment toward Enhanced Photocatalystic Reduction of CO₂ into Hydrocarbon Fuels under Visible Light

Xiaoyu Chen, ^{a, c} Yong Zhou, ^{a, b,} * Qi Liu, ^{a, c, d} Zhengdao Li, ^{a,c} Jianguo Liu, ^{a,c} Zhigang Zou, ^{a, b, c,} * Email: zhouyong1999@nju.edu.cn; zgzou@nju.edu.cn

^a Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China.

^b School of Physics, Nanjing University, Nanjing 210093, P. R. China.

^c Department of Materials Science and Engineering, Nanjing University, Nanjing, P.

R. China

^d Anhui Polytechnic University, Wuhu 241000, P. R. China

Figure S1 Schematic setup of the SLPAD route.

Figure S2 TEM image of the WO₃ nanosheet.

Figure S3 UV-vis absorption spectra of the commercial powder and nanosheet.

Figure S4 Valence band XPS spectra of (a) the WO₃ nanosheets and (b) commercial powder.