# Metal-Free Oxidative Trifluoromethylthiolation of Terminal Alkynes with CF<sub>3</sub>SiMe<sub>3</sub> and Elemental Sulfur

Chao Chen<sup>†</sup>, Lingling Chu<sup>†</sup> and Feng-Ling Qing<sup>\*,†,‡</sup>

<sup>†</sup>Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China <sup>‡</sup>College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China Email: <u>flq@mail.sioc.ac.cn</u>

# SUPPORTING INFORMATION

# **Table of Contents**

| General Information                                                          | S2  |
|------------------------------------------------------------------------------|-----|
| Effect of Solvents                                                           | S2  |
| Effect of Addictives                                                         | S3  |
| Preparation of Substrates                                                    | S3  |
| General Procedure for Metal-free Oxidative Trifluoromethylthiolation of      | of  |
| Terminal Alkynes with CF <sub>3</sub> SiMe <sub>3</sub> and Elemental Sulfur | S5  |
| Experiments for Mechanistic Investigations                                   | S15 |
| NMR spectra of Product                                                       | S23 |

#### **General Information**

<sup>1</sup>H NMR and <sup>19</sup>F NMR spectra (CFCl<sub>3</sub> as outside standard and low field is positive) were recorded on a Bruker AM300 spectrometer. <sup>13</sup>C NMR was recorded on a Bruker AM400 spectrometer. Data for <sup>1</sup>H NMR are recorded as follows: chemical shift ( $\delta$ , ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (Hz), integration. Data for <sup>13</sup>C NMR are reported in terms of chemical shift ( $\delta$ , ppm).

Unless otherwise noted, all reagents were obtained commercially and used without further purification. The purity of elemental sulfur used is 99.99%. THF and toluene were distilled from sodium benzophenone ketyl immediately prior to use.  $CH_2Cl_2$  and  $CH_3CN$  were distilled from  $CaH_2$  immediately prior to use. DMF, DMSO and DMAC were distilled from  $CaH_2$  under reduced pressure and stored over 4 Å molecular sieves under nitrogen. Spray-dried KF was dried at 200 °C for 12 h under vacuum prior to use. Substrates  $\mathbf{1d}$ ,  $^1 \mathbf{1n}$ ,  $^2$  and  $\mathbf{1q}^3$  were prepared according to literature procedures. Other substrates were purchased from commercial sources (Aldrich, Acros, Alfa, and TCI). Reactions were performed under an atmosphere of nitrogen or air using glassware that was flame-dried under vacuum.

# **Effect of Solvents**

| Ph-=== + S <sub>8</sub> + CF <sub>3</sub> S<br>1a | SiMe <sub>3</sub> KF<br>solvent<br>air, rt | Ph────SCF <sub>3</sub> + Ph────CF <sub>3</sub><br>2a 3a |
|---------------------------------------------------|--------------------------------------------|---------------------------------------------------------|
| entry                                             | solvent [0.05M]                            | yield of <b>2a</b> ( <b>3a</b> ) <sup>b</sup>           |
| 1                                                 | DMF                                        | 92% (/)                                                 |

Table S1. Screening of Solvents.<sup>a</sup>

<sup>(1)</sup> Hongbin Li, Jeffrey L. Petersen, and Kung K. Wang. J. Org. Chem., 2001, 66, 7804.

<sup>(2)</sup> Tang, Y.; Zhou, Z.; Ogawa, K.; Lopez, G. P.; Schanze, K. S.; Whitten, D. G. Langmuir 2009, 25, 21.

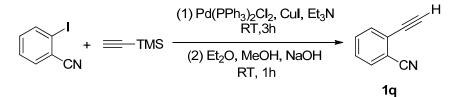
<sup>(3)</sup> Neenan, T. X.; Whitesides, G. M. J. Org. Chem. 1988, 53, 2489.

| 2 | DMAC               | 57% (/) |
|---|--------------------|---------|
| 3 | CH <sub>3</sub> CN | 12% (/) |
| 4 | DCM                | / (/)   |
| 5 | THF                | / (/)   |
| 6 | DMSO               | / (/)   |
| 7 | toluene            | / (/)   |

<sup>a</sup> Reaction conditions: **1a** (0.2 mmol),  $S_8$  (6.0 equiv),  $CF_3SiMe_3$  (5.0 equiv), KF (3.0 equiv), solvent (4 mL), room temperature, 6 h, under air. <sup>b</sup> Yields determined by <sup>19</sup>F NMR spectroscopy using fluorobenzene as an internal standard. Abbreviations: DMF, dimethylformamide; DMAC, dimethylacetamide.

# **Effect of Addictives**

Table S2. Effect of Addictives on Oxidative Trifluoromethylthiolation ofPhenylacetylene 1a with CF3SiMe3 and Elemental Sulfur a


| Ph—⊒<br>1a                                                                                                                                 | $\equiv$ + S <sub>8</sub> + CF <sub>3</sub> SiMe <sub>3</sub> KF, DMF, air $rt$ | PhSCF <sub>3</sub><br>2a |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|--|--|
| entry                                                                                                                                      | addictive                                                                       | yield of <b>2a</b> (%)   |  |  |
| 1                                                                                                                                          | ambient light                                                                   | 92                       |  |  |
| 2                                                                                                                                          | dark                                                                            | 97                       |  |  |
| 3                                                                                                                                          | TEMPO (3 equiv)                                                                 | 79                       |  |  |
| 4                                                                                                                                          | Hydroquinone (20 mol %)                                                         | 79                       |  |  |
| 5                                                                                                                                          | 1,4-Dinitrobenzene (20 mol %)                                                   | 73                       |  |  |
| <sup>a</sup> Reaction conditions: <b>1a</b> (0.2 mmol), S <sub>8</sub> (6.0 equiv), CF <sub>3</sub> SiMe <sub>3</sub> (5.0 equiv), KF (2.0 |                                                                                 |                          |  |  |
| equiv), DMF (4 mL), addictives, room temperature, 6 h, under air. <sup>b</sup> Yields                                                      |                                                                                 |                          |  |  |
| determined by <sup>19</sup> F NMR spectroscopy using fluorobenzene as an internal standard.                                                |                                                                                 |                          |  |  |

# **Preparation of Substrates**

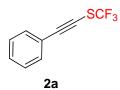
$$Br \xrightarrow{O} Ph + = TMS \xrightarrow{(1) Pd(PPh_3)_2Cl_2, Cul, Et_3N} \xrightarrow{O} Ph$$

$$RT, 1h \xrightarrow{H} 10$$

To a mixture of (4-bromophenyl)(phenyl)methanone (2.13 g, 8.00 mmol), Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (0.281g, 0.40 mmol), and CuI (0.107g, 0.56 mmol) in 30 mL of triethylamine, (trimethylsilyl)acetylene (0.865 g, 8.80 mmol) was added, and the mixture was stirred at 70°C for 24h. The reaction mixture was cooled to room temperature, diluted with diethyl ether, quenched with saturated NH<sub>4</sub>Cl, and the aqueous layer was extracted with Et<sub>2</sub>O (3 times). The combined organic layers were washed with brine, dried over sodium sulfate, and concentrated to afford the crude product, to which was added diethyl ether (20 mL), methanol (20 mL), and 10% sodium hydroxide solution (10 mL). The resulting mixture was stirred at rt for 1h, and neutralized with a 1 M HCl solution. The organic layer was washed with water and brine, dried over sodium sulfate, and concentrated. The resulting residue was purified by flash column chromatography (silica gel, Petroleum ether/ Ethyl acetate=10:1,  $R_f=0.40$ ), and the title compound 10 was obtained as a light red solid (1.26) g, two steps: 76% yield). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.80-7.75 (m, 4H), 7.63-7.51 (m, 3H), 7.50-7.46 (m, 2H), 3.25 (s, 1H). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 195.88, 137.43, 137.25, 132.65, 131.99, 129.99, 129.94, 128.39, 126.26, 82.82, 80.13. IR (ATR): v<sub>max</sub> 3288.31, 1659.11, 1601.43, 1446.93, 1285.23, 1273.34, 924.00, 853.67, 699.75 cm<sup>-1</sup>. MS (EI): m/z (%) 206 (100). HRMS: Calculated for C<sub>15</sub>H<sub>10</sub>O: 206.0732; Found: 206.0734.

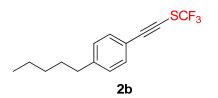


To a mixture of 2-iodobenzonitrile (2.29 g, 10.00 mmol), Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (0.211 g, 0.30


mmol), and copper(I) idodide (0.096 g, 0.50 mmol) in 30ml of triethylamine, (trimethylsilyl)acetylene (1.08 g, 11.00 mmol) was added, and the mixture was stirred at rt for 3h. The reaction mixture was diluted with diethyl ether, quenched with saturated NH4Cl, and the aqueous layer was extracted with Et<sub>2</sub>O (3 times). The combined organic layers were washed with brine, dried over sodium sulfate, and concentrated to afford the crude product, to which was added diethyl ether (20 mL), methanol (20 mL), and 10% sodium hydroxide solution (10 mL). The resulting mixture was stirred at rt for 1h, and neutralized with a 1 M HCl solution. The organic layer was washed with water and brine, dried over sodium sulfate, and concentrated. The resulting residue was purified by flash column chromatography (silica gel, Petroleum ether/ Ethyl acetate=5:1, R<sub>f</sub>=0.45), and the title compound 1q was obtained as a light red solid (1.10 g, two steps: 87% yield).  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.68-7.54 (m, 3H), 7.48-7.43 (m, 1H), 3.49 (s, 1H). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 133.01, 132.68, 132.41, 128.99, 125.94, 117.24, 115.87, 83.80, 79.58. IR (ATR): v<sub>max</sub> 3243.33, 2228.41, 1480.35, 910.32, 761.72, 733.44, 683.29cm<sup>-1</sup>. MS (EI): *m/z* (%) 127 (100). HRMS: Calculated for C<sub>9</sub>H<sub>5</sub>N: 127.0422; Found: 127.0421.

General Procedure for the Metal-free Oxidative Trifluoromethylthiolation of Terminal Alkynes with CF<sub>3</sub>SiMe<sub>3</sub> and Elemental Sulfur (0.2 mmol Scale)

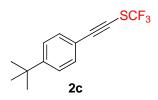
$$R \longrightarrow S_8 + CF_3SiMe_3 \longrightarrow R \longrightarrow SCF_3$$
1 air, rt 2


In a glove box, KF (0.4 mmol, 24mg) and  $S_8$  (1.2 mmol, 39mg) were added to an oven-dried reaction tube containing a magnetic stir bar. The tube was capped with a septum and taken out. The vial was evacuated and then refilled with dry air for three times. DMF (4.5 mL) was added and the mixture was stirred at room temperature for 30 minutes. Terminal alkyne **1** (0.2 mmol) was then added to the mixture, followed by addition of CF<sub>3</sub>SiMe<sub>3</sub> (1.0 mmol, 0.15 mL). The resulting orange-yellow reaction mixture

was stirred at room temperature for 6 h. The reaction solution was quenched with water and extracted with diethyl ether, and the organic layer was washed with brine, dried with  $Na_2SO_4$  and concentrated. The resulting residue was purified by flash column chromatography using petroleum ether and dichloromethane as fluent solvent.



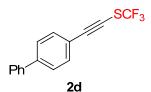
#### (Phenylethynyl)(trifluoromethyl)sulfane 2a:


**2a** was obtained as a light yellow oil in 74% yield ( $R_f = 0.80$  in petroleum ether). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS):  $\delta$  ppm 7.51-7.48 (m, 2H), 7.39-7.33 (m, 3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$  ppm -44.07 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS):  $\delta$  ppm 132.18, 129.70, 128.45, 128.12 (q, *J* = 313.4 Hz), 121.573, 101.28 (d, *J* = 1.5 Hz), 66.67 (q, *J* = 4.5 Hz). IR (ATR):  $v_{max}$  2927.19, 2854.73, 2179.79, 1488.05, 1443.73, 1161.97, 1105.59, 755.54, 688.17cm<sup>-1</sup>. MS (EI): *m/z* (%) 202 (100). HRMS: Calculated for C<sub>9</sub>H<sub>5</sub>F<sub>3</sub>S: 202.0064; Found: 202.0067.



#### ((4-pentylphenyl)ethynyl)(trifluoromethyl)sulfane 2b

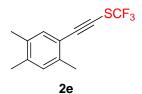
**2b** was obtained as a yellow oil in 83% yield ( $R_f = 0.80$  in petroleum ether).


<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.41 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 2.61 (t, J = 7.5 Hz, 2H), 1.65-1.55 (m, 2H), 1.34-1.27 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -44.26 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 145.26, 132.32, 128.57, 128.14 (q, J = 313.4 Hz), 118.64, 101.55, 65.79 (q, J = 4.5 Hz), 35.92, 31.37, 30.81, 22.47, 13.96. IR (ATR): v<sub>max</sub> 2958.60, 2930.93, 1508.05, 1159.26, 1104.94cm<sup>-1</sup>. MS (EI): m/z (%) 272, 215 (100). HRMS: Calculated for C<sub>9</sub>H<sub>5</sub>F<sub>3</sub>S: 272.0847; Found: 272.0843.



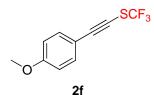
## ((4-*tert*-Butylphenyl)ethynyl)(trifluoromethyl)sulfane 2c

2c was obtained as a colorless oil in 85% yield ( $R_f = 0.80$  in petroleum ether).


<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.43 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 1.31 (s, 9H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -44.2 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 153.35, 132.19, 128.17 (q, J = 313.4 Hz), 125.49, 118.51, 101.53, 65.84 (q, J = 4.5 Hz), 34.92, 31.05. IR (ATR):  $v_{max}$  2965.94, 2176.92, 1504.11, 1159.25, 1103.21, 834.84, 757.34 cm<sup>-1</sup>. MS (EI): m/z (%) 258, 243 (100). HRMS: Calculated for C<sub>13</sub>H<sub>13</sub>F<sub>3</sub>S: 258.0690; Found: 258.0691.



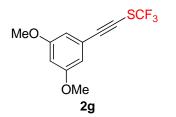
#### (Biphenyl-4-ylethynyl)(trifluoromethyl)sulfane 2d


**2d** was obtained as a white crystal in 91% yield ( $R_f = 0.70$  in petroleum ether).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.57-7.52 (m, 6H), 7.43 (t, J = 5.7 Hz, 2H), 7.37-7.33 (m, 1H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -43.6 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 142.55, 139.99, 132.74, 128.97, 128.19 (q, J = 312.6 Hz), 128.01, 127.15, 127.11, 120.36, 101.29, 67.31 (q, J = 4.5 Hz). IR (ATR): v<sub>max</sub> 3032.94, 2929.22, 2175.83, 1601.06, 1486.46, 1156.89, 1106.95, 908.15, 840.57, 763.29, 735.03 cm<sup>-1</sup>. MS (EI): m/z (%) 278, 209 (100). HRMS: Calculated for C<sub>15</sub>H<sub>9</sub>F<sub>3</sub>S: 278.0377; Found: 278.0373. Anal. Calcd for C<sub>15</sub>H<sub>9</sub>F<sub>3</sub>S: C, 64.74; H, 3.26. Found: C, 64.82; H, 3.60.

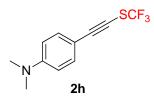


#### (Trifluoromethyl)((2,4,5-trimethylphenyl)ethynyl)sulfane 2e


**2e** was obtained as a pale yellow solid in 61% yield ( $R_f$ = 0.85 in petroleum ether). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS):  $\delta$  ppm 7.22 (s, 1H), 6.98 (s, 1H), 2.36 (s, 3H), 2.23 (s, 3H), 2.19 (s, 3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$  ppm -44.6 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS):  $\delta$  ppm 138.90, 138.74, 133.93, 133.56, 131.01, 128.21 (q, *J* = 312.6 Hz), 118.54, 100.73, 68.74 (q, *J* = 3.7 Hz), 19.77, 19.74, 18.93. IR (ATR):  $v_{max}$  2924.22, 2165.82, 1503.44, 1454.55, 1180.84, 1157.66, 1105.73, 874.92 cm<sup>-1</sup>. MS (EI): *m/z* (%) 244 (100). HRMS: Calculated for C<sub>12</sub>H<sub>11</sub>F<sub>3</sub>S: 244.0534; Found: 244.0533.



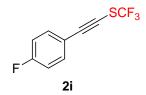
#### ((4-Methoxyphenyl)ethynyl)(trifluoromethyl)sulfane 2f


**2f** was obtained as a pale yellow oil in 50% yield ( $R_f = 0.60$  in petroleum ether/dichloromethane=6:1).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.46 (d, J = 9.0 Hz, 2H), 6.86 (d, J = 9.3 Hz, 2H), 3.82 (s, 3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -44.5 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 160.88, 134.34, 128.15 (q, J = 313.4 Hz), 114.09, 113.50, 101.47, 65.11 (q, J = 4.5 Hz), 55.29. IR (ATR):  $v_{max}$  2841.48, 2175.03, 1604.88, 1510.18, 1153.67, 1102.61, 832.48cm<sup>-1</sup>. MS (EI): m/z (%) 232, 163 (100). HRMS: Calculated for C<sub>10</sub>H<sub>7</sub>F<sub>3</sub>OS: 232.0170; Found: 232.0168.



#### ((3,5-Dimethoxyphenyl)ethynyl)(trifluoromethyl)sulfane 2g

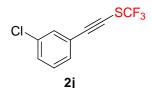

**2g** was obtained as a pale yellow oil in 71% yield ( $R_f$  = 0.20 in petroleum ether). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 6.63 (d, *J* = 2.1 Hz, 2H), 6.49 (t, *J* = 2.1 Hz, 1H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -44.0 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 160.59, 128.12 (q, *J* = 313.3 Hz), 122.69, 109.80, 103.15 (d, *J* = 1.5 Hz), 101.35, 66.24 (q, *J* = 4.5 Hz), 55.39. IR (ATR):  $v_{max}$  2961.53, 2938.52, 2179.74, 1597.60, 1456.54, 1421.45, 1332.90, 1156.55, 1103.24, 837.17, 678.69 cm<sup>-1</sup>. MS (EI): *m/z* (%) 262 (100). HRMS: Calculated for C<sub>11</sub>H<sub>9</sub>F<sub>3</sub>O<sub>2</sub>S: 262.0275; Found: 262.0274.



# N,N-dimethyl-4-((trifluoromethylthio)ethynyl)aniline 2h

**2h** was obtained as a white solid in 45% yield ( $R_f = 0.20$  in petroleum ether).

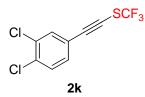
<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.39 (d, J = 9.0 Hz, 2H), 6.61 (d, J = 9.0 Hz, 2H), 3.00 (s, 6H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -45.1 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 151.13, 134.37, 128.20 (q, J = 313.3 Hz), 111.43, 107.70, 103.15(d, J = 1.5 Hz), 63.87 (q, J = 4.4 Hz), 40.01. IR (ATR):  $v_{max}$  2924.40, 2159.42, 1604.45, 1524.99, 1373.62, 1179.95, 1132.81, 1105.37, 907.77, 733.50cm<sup>-1</sup>. MS (EI): m/z (%) 245, 176 (100). HRMS: Calculated for C<sub>11</sub>H<sub>10</sub>F<sub>3</sub>NS: 245.0486; Found: 245.0488.




#### ((4-Fluorophenyl)ethynyl)(trifluoromethyl)sulfane 2i

**2i** was obtained as a pale yellow oil in 84% yield ( $R_f = 0.80$  in petroleum ether).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS):  $\delta$  ppm 7.49 (dd,  $J_1 = 8.8$  Hz,  $J_2 = 5.2$  Hz, 2H),


7.04 (t, J = 8.8 Hz, 2H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$  ppm -45.1 (s, 3F), -109.3 (s, 1F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS):  $\delta$  ppm 163.40 (d, J = 253.6 Hz), 134.48 (d, J = 9.0 Hz), 128.08 (q, J = 313.3 Hz), 117.66 (d, J = 3.7 Hz), 115.87 (d, J = 22.5 Hz), 100.20, 66.64 (q, J = 4.5 Hz). IR (ATR):  $v_{max}$  2180.77, 1600.97, 1508.01, 1241.52, 1157.52, 1103.07, 836.20cm<sup>-1</sup>. MS (EI): m/z (%) 220, 151 (100). HRMS: Calculated for C<sub>9</sub>H<sub>4</sub>F<sub>4</sub>S: 219.9970; Found: 219.9966.



# ((3-Chlorophenyl)ethynyl)(trifluoromethyl)sulfane 2j

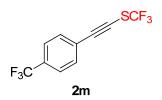
**2j** was obtained as a pale yellow oil in 81% yield ( $R_f = 0.90$  in petroleum ether).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.47 (t, J = 1.8 Hz, 1H), 7.38-7.35 (m, 2H), 7.30-7.25 (m, 1H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -43.7 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 134.38, 131.81, 130.09, 129.92, 129.67, 127.97 (q, J = 313.3 Hz), 123.14, 99.74 (d, J = 1.5 Hz), 68.31 (q, J = 3.8 Hz). IR (ATR):  $v_{max}$  2927.12, 1591.65, 1561.51, 1473.86, 1161.76, 1103.67, 915.58, 784.12cm<sup>-1</sup>. MS (EI): m/z (%) 236, 167 (100). HRMS: Calculated for C<sub>9</sub>H<sub>4</sub>ClF<sub>3</sub>S: 235.9674; Found: 235.9675.



#### ((3,4-Dichlorophenyl)ethynyl)(trifluoromethyl)sulfane 2k

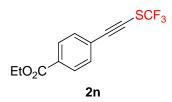
**2k** was obtained as a white solid in 56% yield ( $R_f = 0.80$  in petroleum ether).


<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.56 (d, J = 1.6 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.29 (dd,  $J_1 = 8.0$  Hz,  $J_2 = 1.6$  Hz, 1H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -43.5 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 134.34, 133.59, 132.87, 131.05, 130.56, 127.85 (q, J = 313.4 Hz), 121.33, 98.82, 69.30 (q, J = 4.5 Hz). IR (ATR):  $v_{max}$  2926.77, 1475.83, 1462.50, 1163.90, 1130.53, 1103.84, 845.61 cm<sup>-1</sup>. MS (EI): m/z

(%) 270, 201 (100). HRMS: Calculated for C<sub>9</sub>H<sub>3</sub>Cl<sub>2</sub>F<sub>3</sub>S: 269.9285; Found: 269.9283.

#### ((4-Bromophenyl)ethynyl)(trifluoromethyl)sulfane 21

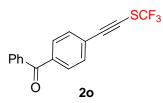
**21** was obtained as a pale yellow solid in 44% yield ( $R_f = 0.80$  in petroleum ether).


<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.49 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -43.8 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 133.52, 131.86, 127.99 (q, J = 313.0 Hz), 124.31, 120.48, 100.23, 68.18 (q, J = 4.3 Hz). IR (ATR):  $v_{max}$  2926.59, 1585.23, 1485.27, 1160.67, 1099.48, 1071.38, 1011.85, 823.31cm<sup>-1</sup>. MS (EI): m/z (%) 280, 282 (100). HRMS: Calculated for C<sub>9</sub>H<sub>4</sub>BrF<sub>3</sub>S: 279.9139; Found: 279.9167.



#### (Trifluoromethyl)((4-(trifluoromethyl)phenyl)ethynyl)sulfane 2m

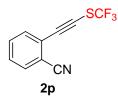
**2m** was obtained as a colorless oil in 74% yield ( $R_f = 0.85$  in petroleum ether).


<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.62 (d, J = 9.0 Hz, 2H), 7.58 (d, J = 9.0 Hz, 2H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -43.6 (s, 3F), -63.5 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 132.03, 131.20 (q, J = 33.0 Hz), 127.90 (q, J = 313.3 Hz), 125.40 (q, J = 3.7 Hz), 125.20 (d, J = 1.5 Hz), 123.62 (q, J = 272.8 Hz), 99.77, 69.73 (q, J = 4.5 Hz). IR (ATR):  $v_{max}$  2931.64, 1616.60, 1404.90, 1324.58, 1166.46, 1130.04, 1102.52, 1067.28, 841.65 cm<sup>-1</sup>. MS (EI): m/z (%) 270, 201 (100). HRMS: Calculated for C<sub>10</sub>H<sub>4</sub>F<sub>6</sub>S: 269.9938; Found: 269.9936.



#### Ethyl 4-((trifluoromethylthio)ethynyl)benzoate 2n

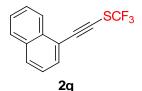
**2n** was obtained as a yellow oil in 71% yield ( $R_f = 0.60$  in petroleum ether).


<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 8.01 (d, J = 8.7 Hz, 2H), 7.52 (d, J = 8.7 Hz, 2H), 4.37 (q, J = 6.9 Hz, 2H), 1.39 (t, J = 6.9 Hz, 3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -43.7 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 165.66, 131.59, 131.03, 129.49, 127.95 (q, J = 313.1 Hz), 125.80, 100.49, 69.85 (q, J = 3.7 Hz), 61.26, 14.19. IR (ATR):  $v_{max}$  2984.45, 1723.30, 1606.70, 1288.19, 1275.31, 1177.45, 1101.55, 1020.14, 857.94, 767.95cm<sup>-1</sup>. MS (EI): m/z (%) 274, 229 (100). HRMS: Calculated for C<sub>12</sub>H<sub>9</sub>F<sub>3</sub>O<sub>2</sub>S: 274.0275; Found: 274.0278.



#### Phenyl(4-((trifluoromethylthio)ethynyl)phenyl)methanone 20

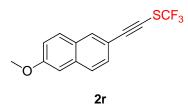
**20** was obtained as a a yellow solid in 55% yield ( $R_f = 0.70$  in petroleum ether/dichloromethane=1:1).


<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.81-7.78 (m, 4H), 7.64-7.59 (m, 3H), 7.652-7.48 (m, 2H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -43.6 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 195.71, 137.98, 137.09, 132.77, 131.63, 130.23, 129.99, 128.43, 127.95 (q, J = 313.3 Hz), 125.47, 100.47, 70.09 (q, J = 4.5 Hz). IR (ATR):  $v_{max}$  2926.95, 1661.83, 1600.24, 1447.91, 1275.16, 1177.54, 1102.50, 923.89, 698.63cm<sup>-1</sup>. MS (EI): m/z (%) 306. HRMS: Calculated for C<sub>16</sub>H<sub>9</sub>F<sub>3</sub>OS: 306.0326; Found: 306.0322.



#### 2-((Trifluoromethylthio)ethynyl)benzonitrile 2p

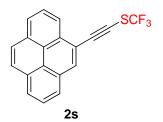
**2p** was obtained as a light yellow oil in 75% yield ( $R_f = 0.30$  in petroleum ether/dichloromethane=3:1).


<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.68 (d, J = 7.8 Hz, 1H), 7.64-7.59 (m, 2H), 7.54-7.47 (m, 1H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -43.1 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 132.82, 132.54, 132.53, 129.60, 127.75 (q, J = 313.9 Hz), 125.18, 116.75, 115.27, 97.24(d, J = 1.5 Hz), 74.25 (q, J = 4.4 Hz). IR (ATR):  $v_{max}$  2927.22, 2231.64, 1479.58, 1445.40, 1160.77, 1101.62, 760.34 cm<sup>-1</sup>. MS (EI): m/z (%) 227, 158 (100). HRMS: Calculated for C<sub>10</sub>H<sub>4</sub>F<sub>3</sub>NS: 227.0017; Found: 227.0020.



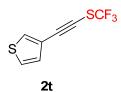
#### (Naphthalen-1-ylethynyl)(trifluoromethyl)sulfane 2q

**2q** was obtained as a colorless oil in 80% yield ( $R_f$ = 0.75 in petroleum ether). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 8.23 (d, *J* = 8.1 Hz, 1H), 7.86 (t, *J* = 8.1 Hz, 2H), 7.72 (dd, *J*<sub>1</sub> = 7.2 Hz, *J*<sub>2</sub> = 0.9 Hz, 1H), 7.62-7.49 (m, 2H), 7.44-7.39 (m, 1H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -43.9 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 133.42, 133.09, 131.64, 130.32, 128.42, 128.21 (q, *J* = 313.3 Hz), 127.38, 126.73, 125.71, 125.08, 119.13, 99.68, 71.18 (q, *J* = 4.5 Hz). IR (ATR):  $v_{max}$  3060.42,


1508.20, 1158.39, 1103.11, 798.35, 771.03 cm<sup>-1</sup>. MS (EI): m/z (%) 252, 183 (100). HRMS: Calculated for C<sub>13</sub>H<sub>7</sub>F<sub>3</sub>S: 252.02214; Found: 252.0222.



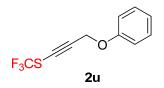
#### ((6-Methoxynaphthalen-2-yl)ethynyl)(trifluoromethyl)sulfane 2r


**2r** was obtained as a white solid in 45% yield ( $R_f = 0.35$  in petroleum ether).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS):  $\delta$  ppm 7.94 (s, 1H), 7.68-7.63 (m, 2H), 7.47-7.44 (m, 1H), 7.17-7.07 (m, 1H), 7.06 (d, J = 2.1 Hz, 1H), 3.89 (s, 3H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$  ppm -44.2 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS):  $\delta$  ppm 159.01, 135.02, 132.92, 129.62, 128.97, 128.27 (q, J = 313.1 Hz), 128.24, 127.05, 119.80, 116.33, 105.87, 102.10, 66.10 (q, J = 4.3 Hz), 55.35. IR (ATR):  $v_{max}$  2967.13, 2163.44, 1622.41, 1483.09, 1271.64, 1161.54, 1030.84, 734.32cm<sup>-1</sup>. MS (EI): m/z (%) 282, 213 (100). HRMS: Calculated for C<sub>14</sub>H<sub>9</sub>F<sub>3</sub>OS: 282.0326; Found: 282.0324.



#### (Pyren-4-ylethynyl)(trifluoromethyl)sulfane 2s


**2s** was obtained as an orange-yellow solid in 74% yield ( $R_f$ = 0.70 in petroleum ether). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS):  $\delta$  ppm 8.27 (d, *J* = 9.3 Hz, 1H), 8.08 (d, *J* = 7.2 Hz, 2H), 8.00-7.83 (m, 6H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$  ppm -44.8 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS):  $\delta$  ppm 132.65, 132.10, 130.92, 130.68, 129.98, 128.83, 128.78, 128.37 (q, *J* = 313.4 Hz), 126.92, 126.26, 125.97, 125.89, 124.64, 124.18, 123.99, 123.81, 115.37, 100.80, 71.52 (q, *J* = 4.5 Hz). IR (ATR):  $v_{max}$  3044.90, 2171.32, 1594.11, 1153.70, 1099.37, 844.79, 714.73 cm<sup>-1</sup>. MS (EI): *m/z* (%) 326, 256 (100). HRMS: Calculated for C<sub>19</sub>H<sub>9</sub>F<sub>3</sub>S: 326.0377; Found: 326.0381.



#### 3-((Trifluoromethylthio)ethynyl)thiophene 2t

2t was obtained as a yellow oil in 72% yield ( $R_f = 0.80$  in petroleum ether).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.65-7.63 (m, 1H), 7.32-7.29 (m, 1H), 7.19-7.17 (m, 1H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -44.14 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 132.09, 130.08, 128.01(q, J = 313.4 Hz), 125.71, 120.67, 96.37, 66.50 (q, J = 4.4 Hz). IR (ATR):  $v_{max}$  2926.98, 2170.08, 1358.54, 1158.93, 1103.83, 783.81cm<sup>-1</sup>. MS (EI): m/z (%) 208, 163 (100). HRMS: Calculated for C<sub>7</sub>H<sub>3</sub>F<sub>3</sub>S<sub>2</sub>: 207.9628; Found: 207.9624.



#### (3-Phenoxyprop-1-ynyl)(trifluoromethyl)sulfane 2u

**2u** was obtained as a yellow liquid in 57% yield ( $R_f = 0.50$  in petroleum ether).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.34-7.28 (m, 2H), 7.04-6.94 (m, 3H), 4.85 (s, 2H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ ppm -43.7 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 157.30, 129.55, 127.91 (q, J = 313.3 Hz), 121.81, 114.88, 98.60, 66.56 (q, J = 4.4 Hz), 56.43. IR (ATR):  $v_{max}$  2918.53, 1599.44, 1589.45, 1495.40, 1214.85, 1103.41, 753.15, 690.15cm<sup>-1</sup>. MS (EI): m/z (%) 232, 139 (100), 163 (100). HRMS: Calculated for C<sub>10</sub>H<sub>7</sub>F<sub>3</sub>OS: 232.0170; Found: 232.0167.



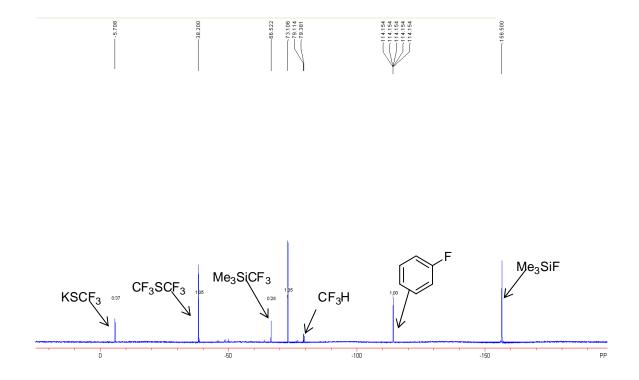
# (4-Phenylbut-1-yn-1-yl)(trifluoromethyl)sulfane 2v

2v was obtained as a yellow liquid in 21% yield ( $R_f = 0.80$  in petroleum ether).

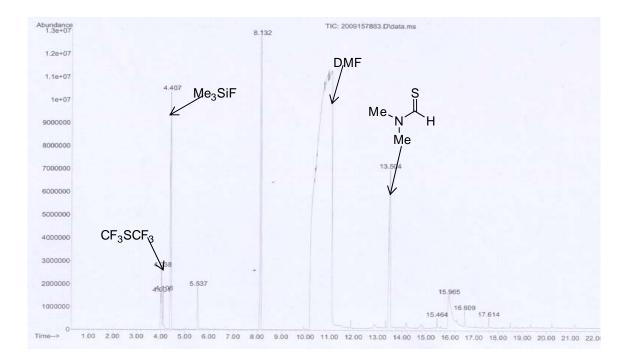
<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 293K, TMS): δ ppm 7.31-7.28 (m, 2H), 7.24-7.19 (m, 3H),

2.86 (t, J = 7.2 Hz, 2H), 2.66 (t, J = 7.2 Hz, 2H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$  ppm -44.5 (s, 3F). <sup>13</sup>C NMR (100.7 MHz, CDCl<sub>3</sub>, 293K, TMS):  $\delta$  ppm 139.82, 128.45, 128.40 (q, J = 310.3 Hz), 128.38, 126.50, 102.94, 57.90 (q, J = 4.5 Hz), 34.33, 22.36. IR (ATR): v<sub>max</sub> 2927.27, 1454.53, 1156.40, 1106.93, 698.16 cm<sup>-1</sup>. MS (EI): m/z (%) 230 (100). HRMS: Calculated for C<sub>11</sub>H<sub>9</sub>F<sub>3</sub>S: 230.0377; Found: 230.0375.

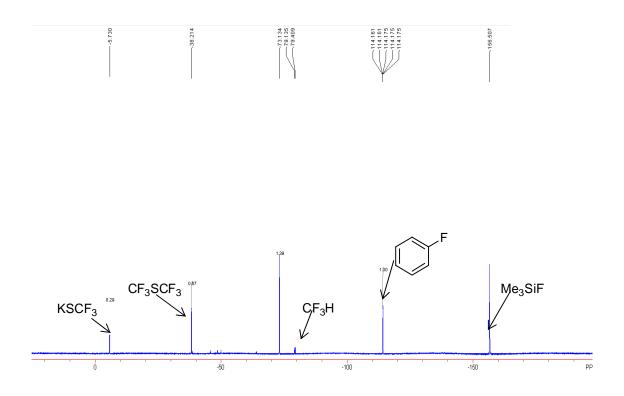
# **Experiments for Mechanistic Investigations**


# **1.** Control experiments

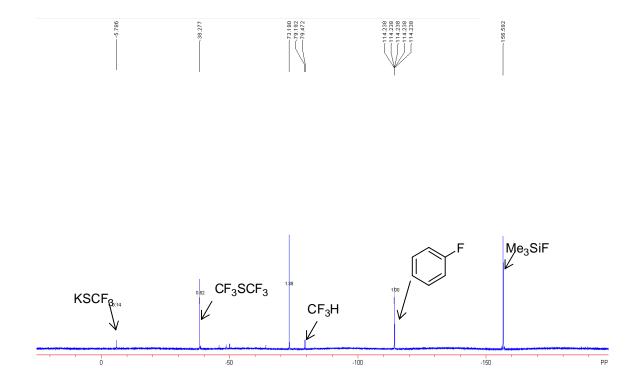
(**1-a**):


$$CF_{3}SiMe_{3} \xrightarrow{S_{8}, KF} CF_{3}SCF_{3} + KSCF_{3} + Me_{N} H + CS_{2}$$

In a glove box, KF (0.4 mmol, 24mg) and  $S_8$  (1.2 mmol, 39mg) were added to an oven-dried reaction tube containing a magnetic stir bar. The tube was capped with a septum and taken out. The vial was evacuated and then refilled with dry air for three times. DMF (4.5 mL) and fluorobenzene (0.6 mmol, 56µL) were added and the mixture was stirred at room temperature for 30 min. CF<sub>3</sub>SiMe<sub>3</sub> (1.0 mmol, 0.15mL) was then added to the mixture. The resulting reaction mixture was stirred at room temperature for a certain period of time. This sample was then analyzed by GC and <sup>19</sup>F NMR.


<sup>19</sup>F NMR spectrum (10 min):

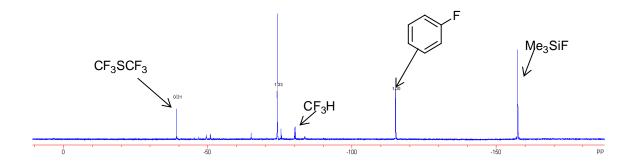



GC-MS analysis (10 min):

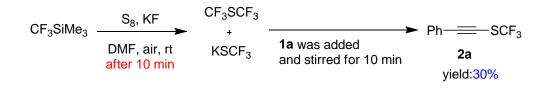


<sup>19</sup>F NMR spectrum ( 25 min):



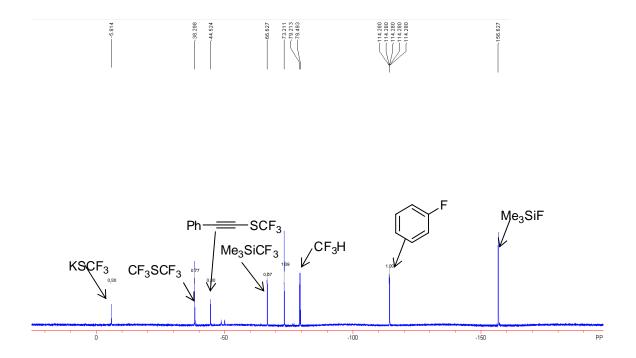

<sup>19</sup>F NMR spectrum ( 40 min):



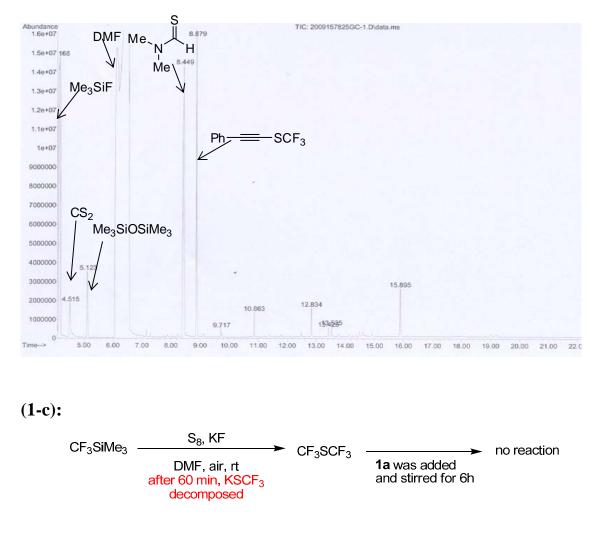

<sup>19</sup>F NMR spectrum ( 60 min):



 $\mathsf{KSCF}_3$  was decomposed completely

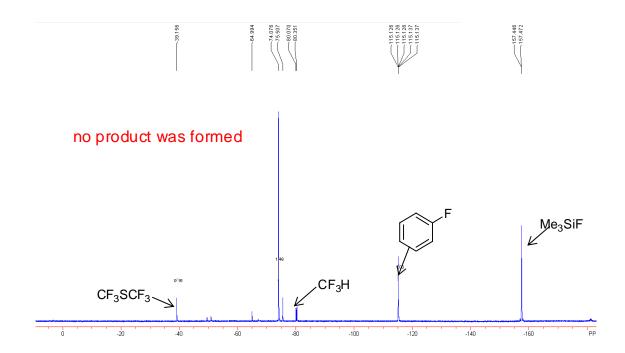





In a glove box, KF (0.4 mmol, 24mg) and  $S_8$  (1.2 mmol, 39mg) were added to an oven-dried reaction tube containing a magnetic stir bar. The tube was capped with a septum and taken out. The vial was evacuated and then refilled with dry air for three times. DMF (4.5 mL) and fluorobenzene (0.6 mmol, 56µL) were added and the mixture was stirred at room temperature for 30 min. CF<sub>3</sub>SiMe<sub>3</sub> (1.0 mmol, 0.15mL) was then added to the mixture. The resulting reaction mixture was stirred at room temperature for 10 min. Terminal alkyne **1a** was then added, and the reaction mixture was stirred at room temperature for another 10 min. This sample was then analyzed by GC and <sup>19</sup>F NMR, and the yield was determined by <sup>19</sup>F NMR.

<sup>19</sup>F NMR spectrum:

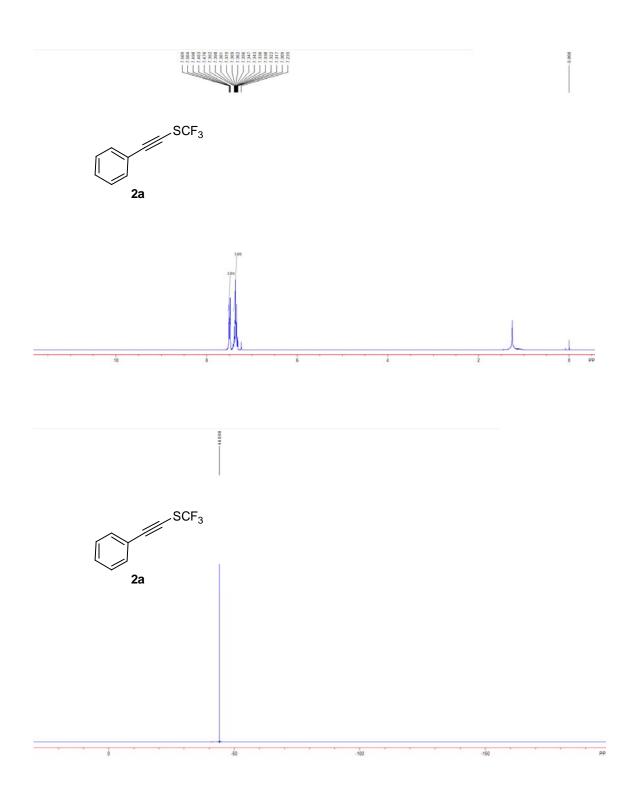


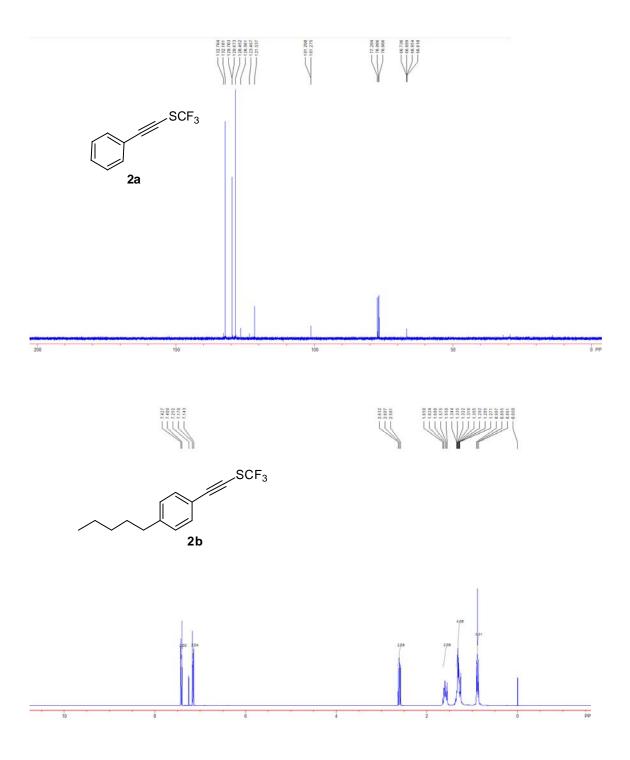

GC-MS analysis:

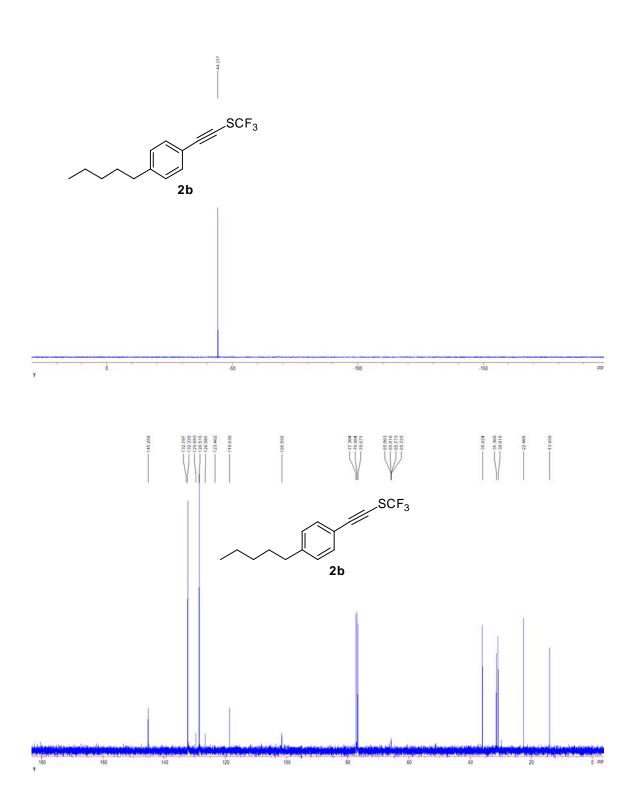


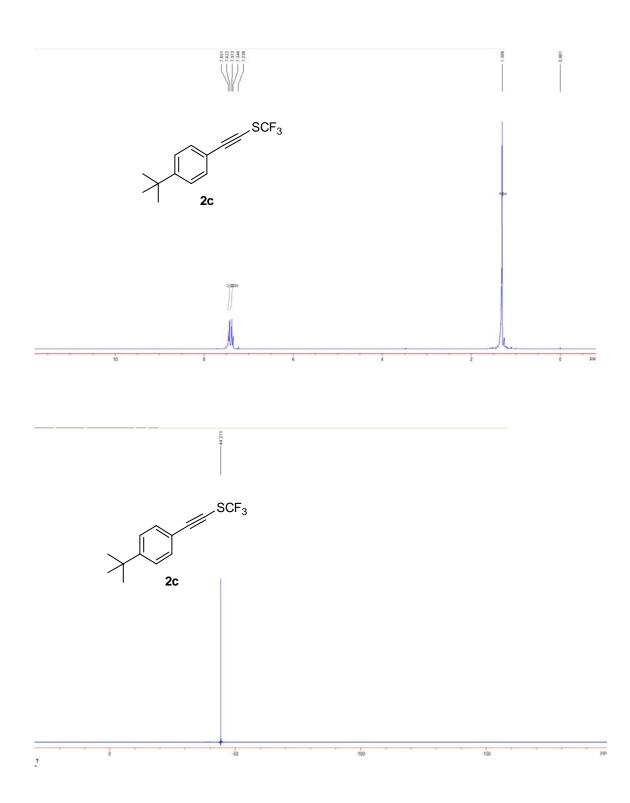
In a glove box, KF (0.4 mmol, 24mg) and  $S_8$  (1.2 mmol, 39mg) were added to an oven-dried reaction tube containing a magnetic stir bar. The tube was capped with a septum and taken out. The vial was evacuated and then refilled with dry air for three times. DMF (4.5 mL) and fluorobenzene (0.6 mmol, 56µL) were added and the mixture was stirred at room temperature for 30 min. CF<sub>3</sub>SiMe<sub>3</sub> (1.0 mmol, 0.15mL) was then added to the mixture. The resulting reaction mixture was stirred at room temperature for 60 min. Terminal alkyne **1a** was then added, and the reaction mixture was stirred at room temperature for 60 min. This sample was then analyzed by GC and <sup>19</sup>F NMR, and the yield was determined by <sup>19</sup>F NMR.

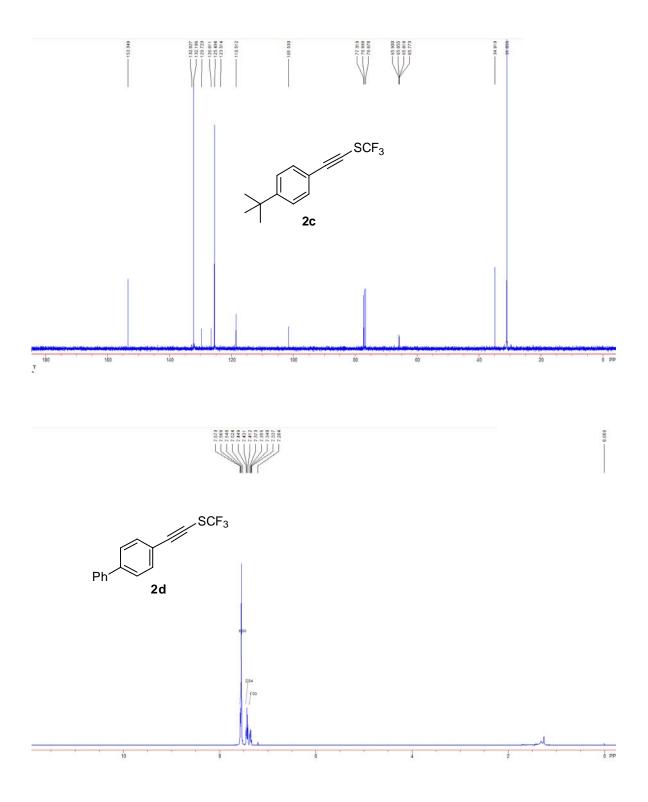
<sup>19</sup>F NMR spectrum:





# 2. Radical inhibition experiments


| Ph-=== | + S <sub>8</sub> + CF <sub>3</sub> SiMe <sub>3</sub> — | addictive          | $\rightarrow$ Ph——SCF <sub>3</sub> |
|--------|--------------------------------------------------------|--------------------|------------------------------------|
| 1a     |                                                        | KF, DMF, air<br>rt | <b>2 2 2</b>                       |
| entry  | addictive                                              |                    | yield of <b>2a</b> (%)             |
| 1      | TEMPO (3 equiv)                                        |                    | 79                                 |
| 2      | Hydroquinone (20 m                                     | ol %)              | 79                                 |
| 3      | 1,4-Ditrobenzene (20                                   | ) mol %)           | 73                                 |


In a glove box, KF (0.4 mmol, 24mg),  $S_8$  (1.2 mmol, 39mg), and TEMPO (0.6 mmol, 97mg) or hydroquinone (0.04mmol, 4.5mg) or 1, 1-dibenzenethene (0.04 mmol, 6.8mg) were added to an oven-dried reaction tube containing a magnetic stir bar. The tube was capped with a septum and taken out. The vial was evacuated and then refilled with dry air for three times. DMF (4.5 mL) was added and the mixture was stirred at room temperature for 30 min. Terminal alkyne **1a** (0.2 mmol, , 24µl) was then added to the mixture, followed by addition of CF<sub>3</sub>SiMe<sub>3</sub> (1.0 mmol, 0.15mL). The resulting reaction mixture was stirred at room temperature for 6h. This sample was then analyzed by GC


and <sup>19</sup>F NMR, and the yield was determined by <sup>19</sup>F NMR. Fluorobenzene (0.6 mmol,  $56\mu$ L) was added as an internal standard. The sample was analyzed by <sup>19</sup>F NMR, and the yield was determined by <sup>19</sup>F NMR.

