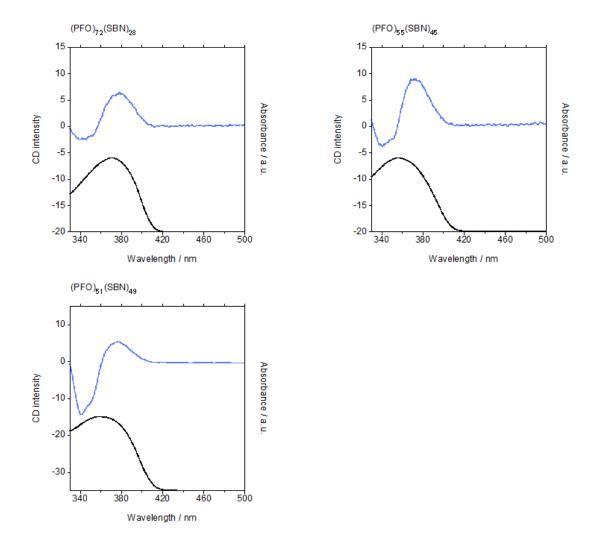

Supporting Information

Recognition and One-pot Extraction of Right- and Left-handed Semiconducting Single-Walled Carbon Nanotube Enantiomers Using Fluorene-Binaphthol Chiral Copolymers


Kojiro Akazaki, ^a Fumiyuki Toshimitsu, ^a Hiroaki Ozawa, ^a Tsuyohiko Fujigaya, ^a and Naotoshi Nakashima*, ^a, ^{b,c}

^aDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan ^bInternational Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University

^cJapan Science and Technology Agency (JST), Core Research of Evolutional Science & Technology (CREST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan

Figure S1. UV-vis absorption (black) and CD (blue) spectra of (PFO)x(RBN)y (x: y= 76: 24, 71: 29 and 68: 32). CD spectra are normalized based on the absorbance intensity of the copolymers at maximum wavelength.

Figure S2. UV-vis absorption (black lines) and CD (blue lines) spectra of (PFO)x(SBN)y (x: y= 72: 28, 55: 45 and 51: 49). The CD spectra are normalized based on the absorbance intensity of the copolymers at their maximum wavelength.

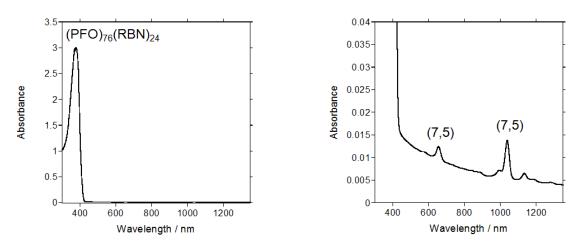
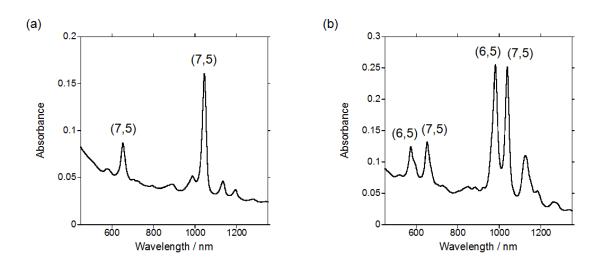
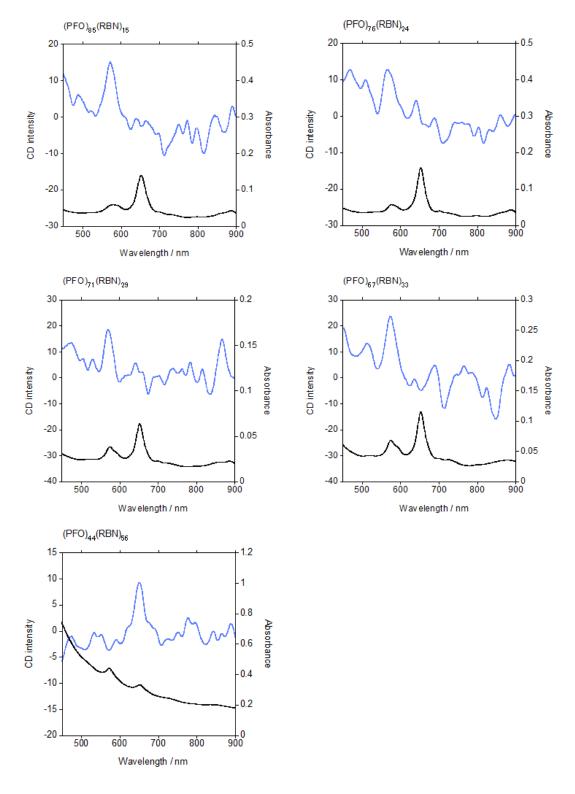
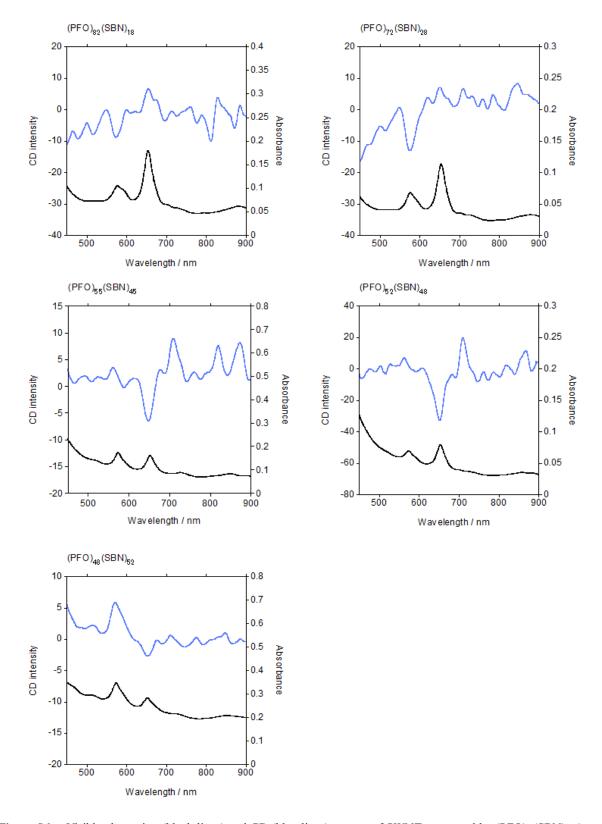
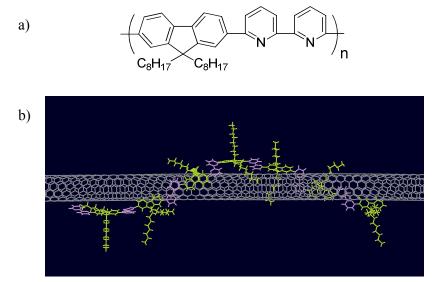
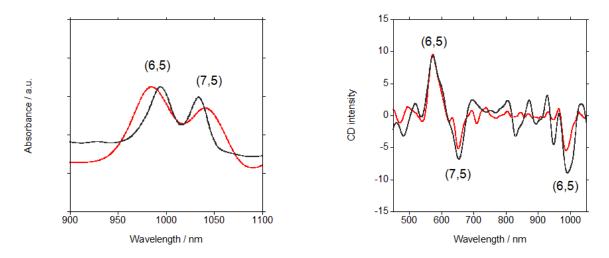


Figure S3. Absorption spectra of SWNTs solubilized by (PFO)₇₆(RBN)₂₄ (1 mm cell).


Figure S4. Absorption spectra of SWNTs solubilized by PFO (a) and (PFO)₆₁(RBN)₃₉ (b).


Figure S5. Visible absorption (black lines) and CD (blue lines) spectra of SWNTs extracted with (PFO)x(RBN)y (x: y = 85: 15, 76: 24, 71: 29, 67: 33 and 44: 56). The CD spectra are normalized based on the absorbance intensity of the SWNTs at 574 nm.

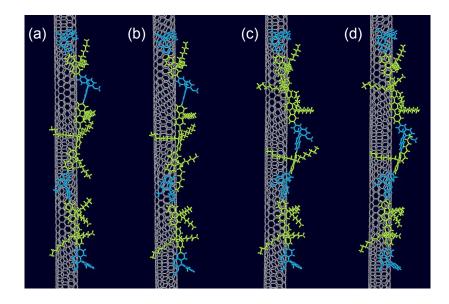

Figure S6. Visible absorption (black lines) and CD (blue lines) spectra of SWNTs extracted by (PFO)x(SBN)y (x: y= 82: 18, 72: 28, 55: 45, 52: 48 and 48: 52). The CD spectra are normalized based on the absorbance intensity of the SWNTs at 574 nm.

Figure S7. a) Chemical structure of PFO-BPy b) optimized calculated structure of complex of PFO-BPy and (6,5)SWNT.

Figure S8. Near-IR absorption (left) and CD (right) spectra of the SWNTs extracted by (PFO)₆₁(RBN)₃₉ before (red lines) and after (black lines) the addition of PFO-BPy. The absorption spectra are normalized at their maximum absorption wavelength. The CD spectra are normalized based on the absorbance intensity of the SWNTs at 574 nm.

Figure S9. Modeled structures of left-handed SWNT with $(PFO)_{60}(RBN)_{40}$ -2 (a), right-handed SWNT with $(PFO)_{60}(SBN)_{40}$ -2 (b), left-handed SWNT with $(PFO)_{60}(RBN)_{40}$ -3 (c), and right-handed SWNT with $(PFO)_{60}(SBN)_{40}$ -3 (d).

Table S1. Calculated Potential and Binding Energies Between (6,5)SWNT Enantiomers with PFO-Bpy.

(6,5)SWNTs	potential energy of SWNT	potential energy of PFO-BPy	total potential	potential energy of complex	binding energy $E_{\rm bind} =$
	(E_{SWNT})	$(E_{polymer})$	$(E_{polymer} + E_{SWNT})$	$(E_{complex})$	$E_{complex} - (E_{polymer} + E_{SWNT})$
	/ kcal mol ⁻¹	/ kcal mol ⁻¹	/ kcal mol ⁻¹	/ kcal mol ⁻¹	/ kcal mol ⁻¹
Left-handed	88163	491	88654	87795	-859

Table S2. Calculated Potential and Binding Energies Between (6,5)SWNT Enantiomers with (PFO)₆₀(RBN)₄₀-2.

(6,5)SWNTs	potential energy of	potential energy of	total potential	potential energy	binding energy
	SWNT	(PFO)60(RBN)40-2	energy	of complex	$E_{bind} =$
	(E_{SWNT})	$(E_{polymer})$	$(E_{polymer} + E_{SWNT})$	$(E_{complex})$	$E_{complex} - (E_{polymer} + E_{SWNT})$
	/ kcal mol ⁻¹	/ kcal mol ⁻¹	/ keal mol ⁻¹	/ kcal mol ⁻¹	/ keal mol ⁻¹
Left-handed	88163	1380	89543	88953	-590
Right-handed	88163	1380	89543	88961	-582

Table S3. Calculated Potential and Binding Energies Between (6,5)SWNT Enantiomers with $(PFO)_{60}(RBN)_{40}$ -3.

(6,5)SWNTs	potential energy of SWNT	potential energy of (PFO) ₆₀ (RBN) ₄₀ -3	total potential	potential energy of complex	binding energy $E_{bind} =$
	(E_{SWNT})	$(E_{polymer})$	$(E_{polymer} + E_{SWNT})$	$(E_{complex})$	$E_{complex} - (E_{polymer} + E_{SWNT})$
	/ kcal mol ⁻¹	/ kcal mol ⁻¹	/ kcal mol ⁻¹	/ kcal mol ⁻¹	/ kcal mol ⁻¹
Left-handed	88163	1414	89577	88953	-624
Right-handed	88163	1414	89577	88956	-621