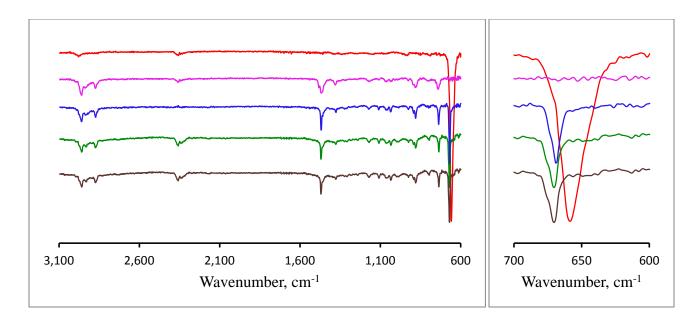
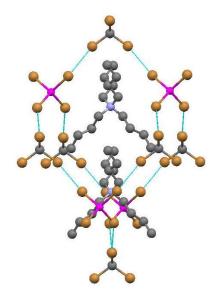
Supporting Information


Sergiy V Rosokha,* Michael K. Vinacos

Hybrid Networks Formation via Halogen Bonding of the Neutral Bromo-Substituted Organic Molecules with Anionic Metal-Bromide Complexes

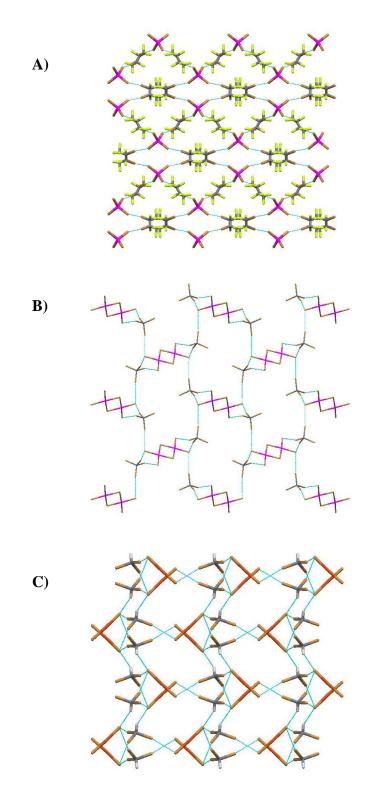
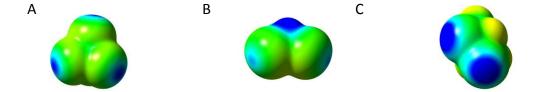

Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago IL 60605

E-mail: srosokha@roosevelt.edu

IR spectra of components and co-crystals (Figure S1), elementary cage of the network in the $(NBu_4)_2[ZnBr_4] \cdot CBr_4$ co-crystals (Figure S2), halogen-bonded hybrid networks (Figure S3) ESP and LUMO of halogen-bond donors (Figures S4 and S5), UV-Vis spectra of the $C_3Br_2F_6/Br^-$ solutions (Figure S6).

Figure S1. A) FT-IR spectra of individual $CBr_4(red)$ and $(Bu_4N)_2[ZnBr_4]$ (magenta) as well as $(Bu_4N)_2[ZnBr_4] \cdot CBr_4$ (blue) $(Bu_4N)_2[CoBr_4] \cdot CBr_4 \cdot (green)$ and) $(Bu_4N)_2[CdBr_4] \cdot CBr_4 \cdot (brown)$ co-crystals. B) Fragments of the IR spectra showing consistent shift of C-Br vibrations of CBr₄ in its associates with metal-bromide complexes.

Figure S2. Elementary cage of the diamandoid network formed via halogen bonds between tetrahedral CBr₄ and ZnBr4 counterparts in the structure of $(NBu_4)_2[ZnBr_4]$ ·CBr₄ co-crystals. Colors as follows: C, grey; N, blue; Br, brown; Zn, magenta; halogen bonds are shown as light blue lines (for clarity, tetrabutylammonium hydrogen atoms are not shown).

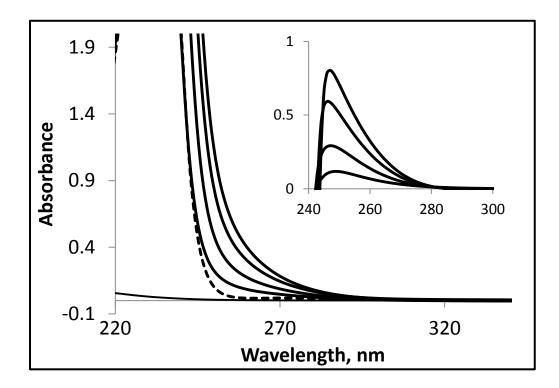

Figure S3. Halogen-bonded hybrid networks: A) in the $(NBu_4)_2[ZnBr_4]\cdot 2C_3Br_2F_6$ salt (view along axis a); B) in the $(NBu_4)_2$ [Pt₂Br₆]·2CBr₄ co-crystals (view along axis a) C) in the (*NPr₄*) [*CuBr₂*]·2*CHBr₃* co-crystals (view along axis c).

Figure S4. Electrostatic potential on the molecular surfaces of (A) CBr_4 , (B) $CHBr_3$ and (C) $C_2F_6Br_2$ (bromines are in forefront and left). Blue, green and red colors depict positive, neutral and negative potentials, respectively, on the 0.0004 electrons bohr⁻³ molecular surfaces.

Figure S5. Lowest unoccupied molecular orbital (LUMO) of (A) CBr_4 (B) $CHBr_3$ and (C) $C_2F_6Br_2$ (bromines are in forefront and left) showing segments along C-Br axes.

Figure S6. Spectral changes attendant upon the addition of Bu_4NBr to 2.5 mM solution of $C_3Br_2F_6$ (in CH_2Cl_2 , 22°C). Concentration of Bu_4NBr (mM, solid lines from bottom to top): 0, 150,309, 464, 620. Dashed line corresponds to separate 150 mM solution of Bu_4NBr . Inset: UV-Vis spectra of the $C_3Br_2F_6$ / Bu_4NBr mixtures after subtraction of the components' absorption.