Supporting information for :

Discrimination of 4-Hydroxyproline Diastereomers by Vibrational Spectroscopy of the Gaseous Protonated Species

Maria Elisa Crestoni,^{*, ‡} Barbara Chiavarino,[‡] Debora Scuderi,[§] Annito Di Marzio,[‡] Simonetta Fornarini[‡]

[‡] Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P. le A. Moro 5, I-00185 Roma, Italy

[§] Laboratoire de Chimie Physique d'Orsay, Université Paris-Sud 11, Batiment 350-Campus d'Orsay 15, avenue Jean Perrin –91405 Orsay Cedex, France

Contents :

Figure 1S. Relative abundances of mass selected (a) HypH⁺ and (b) hypH⁺ ions ($_$, m/z 132) and of daughter ion (\blacktriangle , m/z 86) as a function of collision energy (E_{CM}/eV).

Figure 2S. Photodissociation mass spectrum of protonated (2S,4R)-4-hydroxyproline (HypH⁺) ions at m/z 132 before (a) and after (b) irradiation with OPO/OPA IR frequency fixed at 3550 cm⁻¹.

Figure 3S. Photodissociation mass spectrum of protonated (2S,4S)-4-hydroxyproline (hypH⁺) ions at m/z 132 before (a) and after (b) irradiation with CLIO FEL IR frequency fixed at 1770 cm⁻¹.

Figure 4S. Optimized structures and relative free energies (in parentheses) at 298 K (kJ mol⁻¹) of protonated (2S,4R)-4-hydroxyproline (HypH⁺) conformers **R**-_{endo} **Ic**, **R**-_{exo} **IIIa**, **R**-_{exo} **IIIb**, **R**-_{endo} **IIa**, **R**-_{endo} **IIIa**, **R**-_{endo} **III**, **R**-_{endo} **II**, **R**-_{endo} **I**, **R**-_{endo} **I**,

Figure 6S. Calculated IR spectra of protonated (2S,4R)-4-hydroxyproline (HypH⁺) structures R_{endo} Ic, R_{exo} IIIa, R_{exo} IIIb, R_{endo} IIa, at the MP2/6-311+G** level.

Figure 7S. Calculated IR spectra of protonated (2S,4R)-4-hydroxyproline (HypH⁺) structures **R**endo **IIc**, **R**-endo **IIIa**, **R**-endo **IIIc** at the MP2/6-311+G** level.

Figure 8S. Calculated IR spectra of protonated (2S,4S)-4-hydroxyproline (hypH⁺) structures S-endo

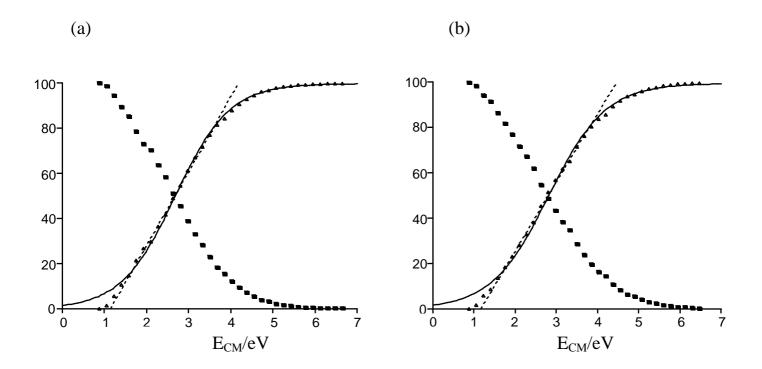

Ic, S-exo Ic, S-endo IIIa, S-exo IIa, S-endo IIIb at the MP2/6-311+G** level.

Figure 9S. Calculated IR spectra of protonated (2S,4S)-4-hydroxyproline (hypH⁺) structures S-exo

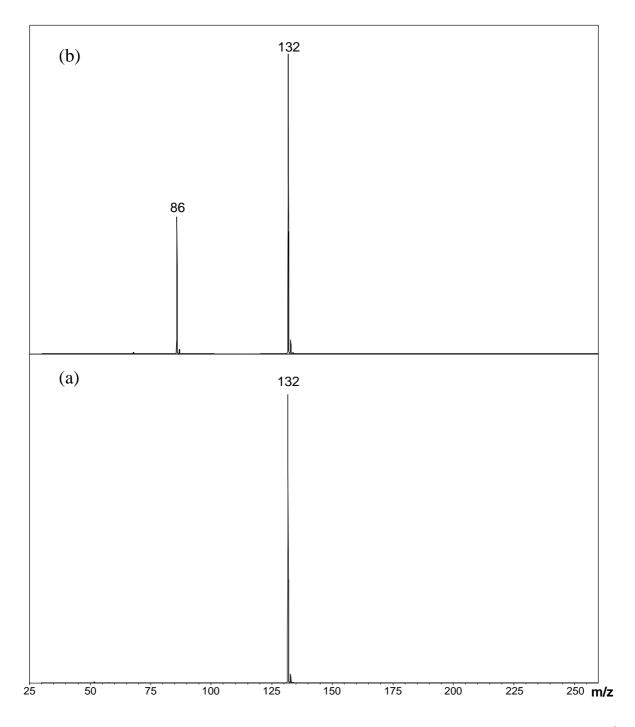
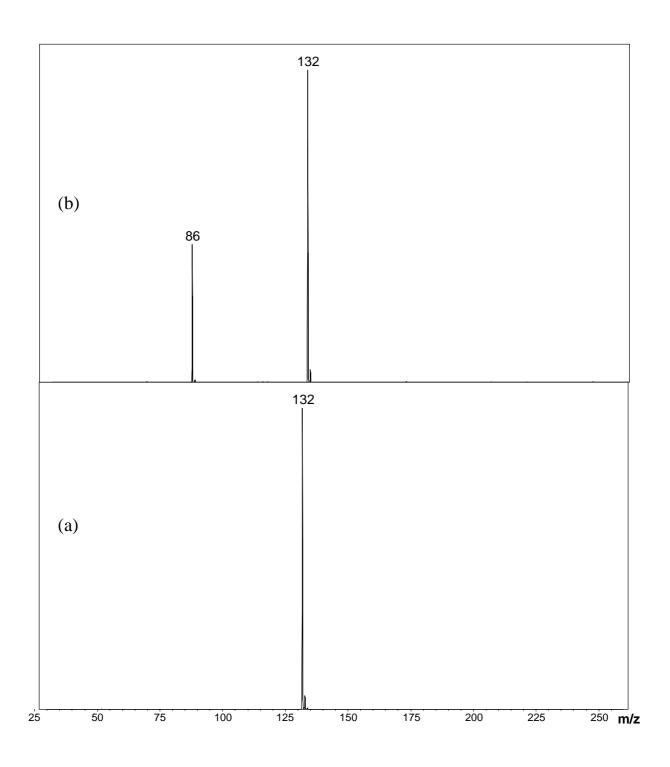
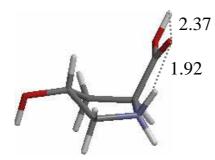
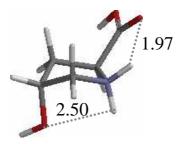

IIc, **S**-_{**exo**} **IIIa**, **S**-_{**endo**} **IIIc**, **S**-_{**exo**} **IIIc** at the MP2/6-311+G** level.

Figure 10S. Experimental IRMPD spectra of protonated (2S,4R)-4-hydroxyproline $(HypH^+)$ enlarged in the higher frequency OH stretch region, showing all data points.


Figure 11S. Experimental IRMPD spectra of protonated (2S,4S)-4-hydroxyproline $(hypH^+)$ enlarged in the higher frequency OH stretch region, showing all data points.


Figure 1S. Relative abundances of mass selected (a) HypH+ and (b) hypH+ ions ($_$, m/z 132) to afford daughter ion (\blacktriangle , m/z 86) as a function of collision energy (center of mass, E_{CM}/eV).



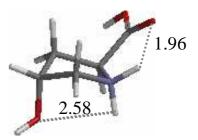
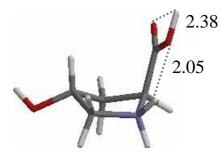
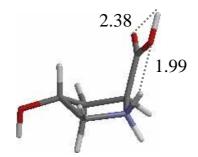
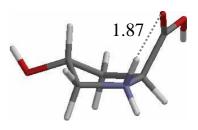

Figure 2S. Photodissociation mass spectrum of protonated (2S,4R)-4-hydroxyproline (HypH⁺) ions at m/z 132 before (a) and after (b) irradiation with OPO/OPA IR frequency fixed at 3550 cm⁻¹.

Figure 3S. Photodissociation mass spectrum of protonated (2S,4S)-4-hydroxyproline (hypH⁺) ions at m/z 132 before (a) and after (b) irradiation with CLIO FEL IR frequency fixed at 1770 cm⁻¹.



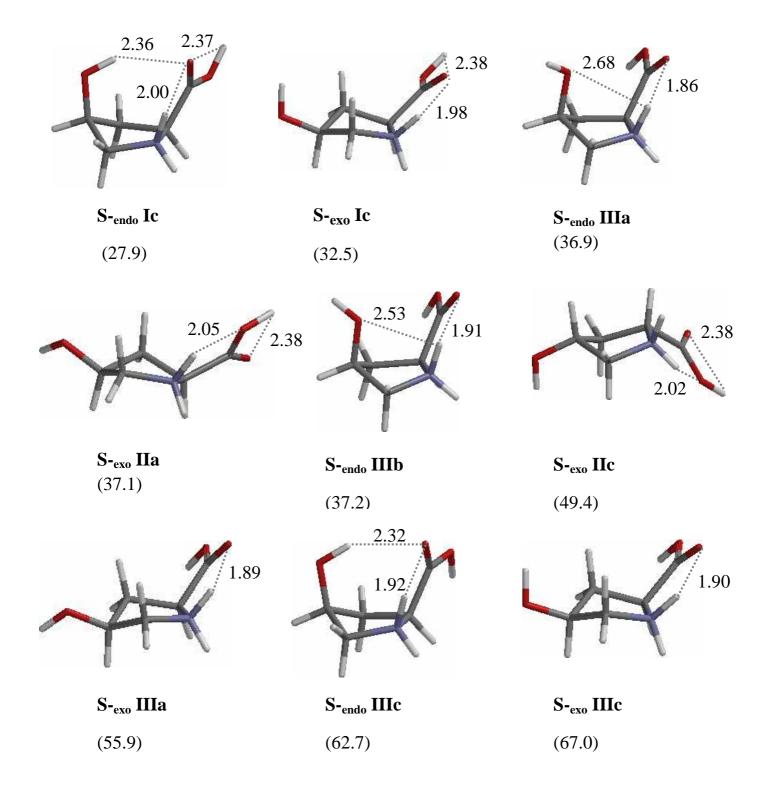



R-endo **Ic** (33.6)

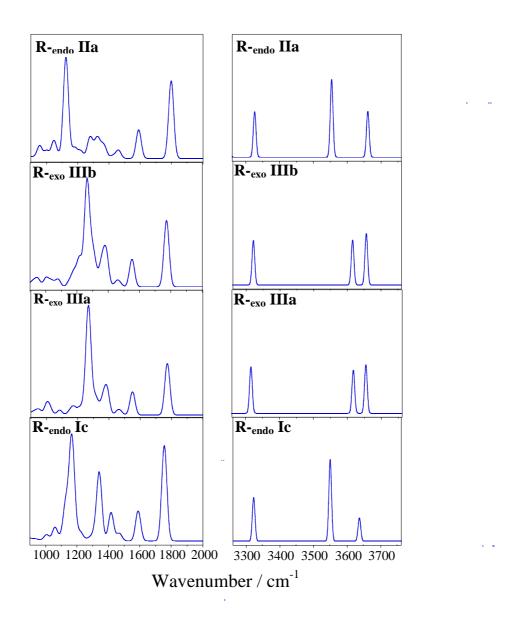
R-_{exo} **IIIa** (34.8)

R-_{exo} **IIIb** (35.2)

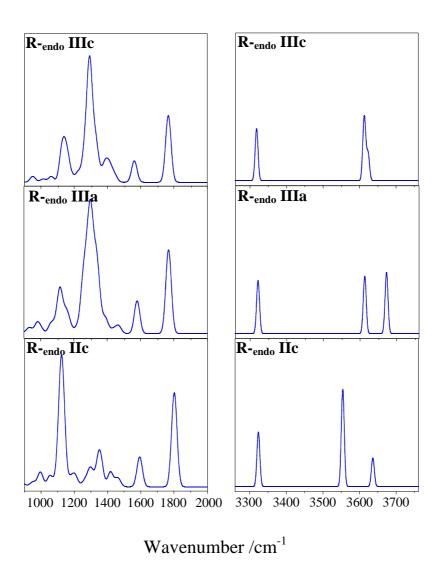
 $\mathbf{R-}_{endo}\mathbf{IIa}$ (37.4)

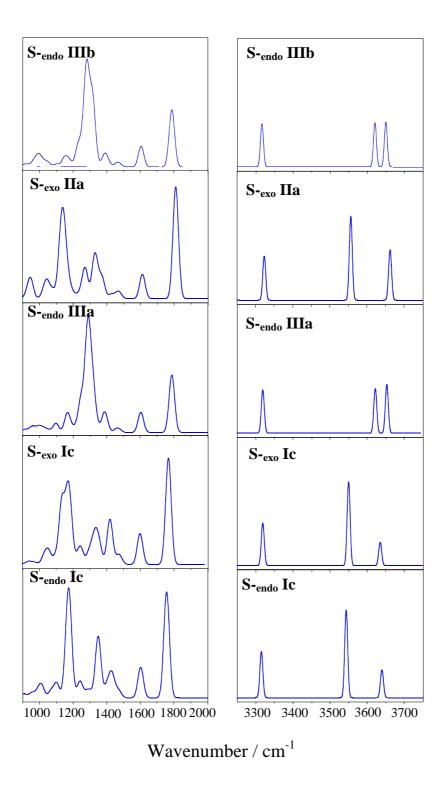

 $\mathbf{R-}_{endo}$ IIc (51.1)

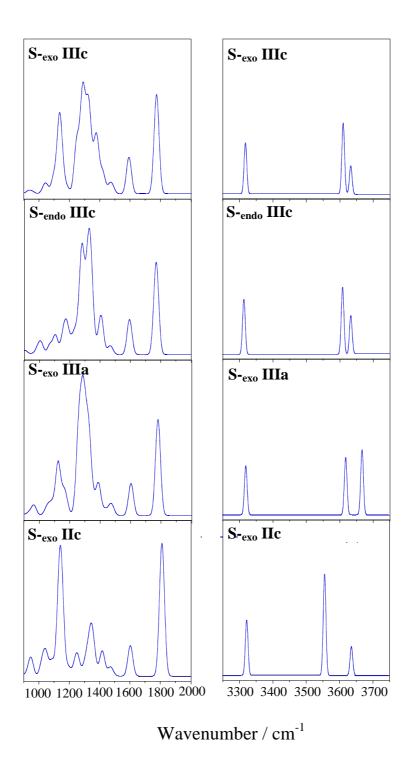
 \mathbf{R} -endo IIIa (55.5)

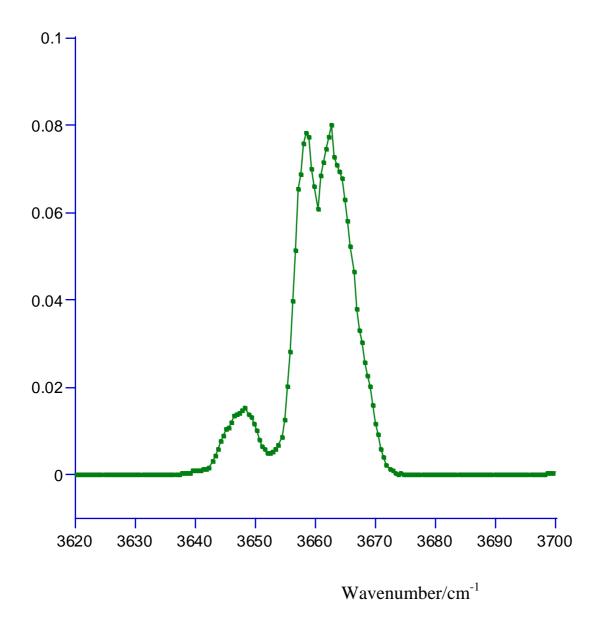


 $\mathbf{R-}_{endo}$ IIIc (69.1)


Figure 4S. Optimized structures and relative free energies (kJ mol⁻¹, in parentheses) at 298 K of protonated (2S,4R)-4-hydroxyproline (HypH⁺) conformers **R**-_{endo} **Ic**, **R**-_{exo} **IIIa**, **R**-_{endo} **IIa**, **R**-_{endo} **II**, **R**-_{endo} **II**,


Figure 5S. Optimized structures and relative free energies (kJ mol⁻¹, in parentheses) at 298 K of hypH⁺ conformers S-_{endo} Ic, S-_{exo} Ic, S-_{endo} IIIa, S-_{exo} IIa, S-_{endo} IIIb, S-_{exo} IIc, S-_{exo} IIIa, S-_{endo} IIIc, S-_{exo} IIIc, calculated at MP2/6-311+G^{**} level of theory. Hydrogen bond lengths, marked by dashed lines, are given in Å.


Figure 6S. Calculated IR spectra of protonated (2S,4R)-4-hydroxyproline (HypH⁺) structures R_{endo} Ic, R_{exo} IIIa, R_{exo} IIIb, R_{endo} IIa, at the MP2/6-311+G** level.


Figure 7S. Calculated IR spectra of protonated (2S,4R)-4-hydroxyproline (HypH⁺) structures **R**endo **IIc**, **R**-endo **IIIa**, **R**-endo **IIIc** at the MP2/6-311+G** level.

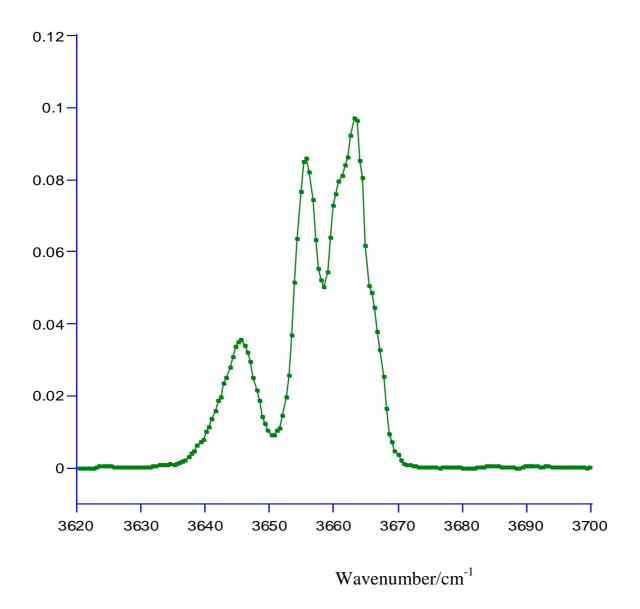

Figure 8S. Calculated IR spectra of protonated (2S,4S)-4-hydroxyproline (hypH⁺) structures S-_{endo} Ic, S-_{endo} IIIa, S-_{exo} IIa, S-_{endo} IIIb at the MP2/6-311+G** level.

Figure 9S. Calculated IR spectra of protonated (2S,4S)-4-hydroxyproline (hypH⁺) structures **S**-_{exo} **IIIc**, **S**-_{exo} **IIIc**, **S**-_{exo} **IIIc** at the MP2/6-311+G** level.

Figure 10S. Experimental IRMPD spectra of protonated (2S,4R)-4-hydroxyproline (HypH⁺) enlarged in the higher frequency OH stretch region, showing all data points.

Figure 11S. Experimental IRMPD spectra of protonated (2S,4S)-4-hydroxyproline (hypH⁺) enlarged in the higher frequency OH stretch region, showing all data points.