Supporting Information for

Divergent Behavior of Glycosylated Threonine and Serine Derivatives in Solid Phase Peptide Synthesis

Yalong Zhang, Saddam M. Muthana, Joseph J. Barchi, Jr., and Jeffrey C. Gildersleeve*

Chemical Biology Laboratory, National Cancer Institute, 376 Boyles Street, Building 376, Frederick, Maryland, 21702

Contents P General methods	' age S3
Preparation of Fmoc-protected glyco-amino acids	S4
Fmoc-Thr(Ac ₃ GalNAcα)-OH (S1)	S4
Fmoc-D-Thr(Ac ₃ GalNAcα)-OH (S6)	
Fmoc-Thr(Ac ₃ GlcNAcβ)-OH (S8)	S7
Fmoc-D-Thr(Ac ₃ GlcNAcβ)-OH (S9)	S8
Fmoc-Thr-Pro-Gly-Hex-OH (1)	S8
Fmoc-D-Thr-Pro-Gly-Hex-OH (S11)	S9
Fmoc-Thr(Ac ₃ GalNAcα)-Pro-Gly-Hex-OH (2)	S10
Fmoc-D-Thr(Ac ₃ GalNAcα)-Pro-Gly-Hex-OH (S12)	S10
Fmoc-Thr(Ac ₃ GlcNAcβ)-Pro-Gly-Hex-OH (3)	S11
Fmoc-D-Thr(Ac ₃ GalNAcα)-Pro-Gly-Hex-OH (S13)	S11
Fmoc-Dehydroaminobutyrate-Pro-Gly-Hex-OH (S14)	S12
HPLC analyses of products in coupling reactions	S13
Figure S1. HPLC trace of Fmoc-Thr-Pro-Gly-Hex-OH.	S13
Figure S2. HPLC trace of Fmoc-Thr(Ac ₃ GalNAcα)-Pro-Gly-Hex-OH.	S14
Figure S3. HPLC trace of Fmoc-Thr(Ac ₃ GlcNAcβ)-Pro-Gly-Hex-OH.	S15
Figure S4. Measurement of the yield, epimerization and β-elimination of condition 7 for Fmoc- Thr(Trt)-OH via a HPLC assay	S16
Figure S5. Measurement of the yield, epimerization and β-elimination of condition 7 for Fmoc- Thr(Ac ₃ GalNAcα)-OH via a HPLC assay.	S17

Figure S6. Measurement of the yield, epimerization and β -elimination of condition 7 for Fmoc-	010
Thr(Ac ₃ GlcNAcβ)-OH via a HPLC assay.	
Table S1. Summary of yields, epimerization and β -elimination for D-amino acids coupling to ProGly	Hex
with condition 2	S19
Table S2. Epimerization and β -elimination as a function of the concentration of TMP	S20
Table S3. Raw data for Table 2	S21
References	S22
NMR spectra	S223

General methods

Unless otherwise stated, reagents were purchased from commercial suppliers and used without purification. 2-Chlorotrityl chloride resin, Fmoc-Thr(Trt)-OH, Fmoc-D-Thr(Trt)-OH, Fmoc-OSu were purchased from AnaSpec, Inc. (San Jose, CA). Fmoc-6-aminohexanoic acid (Fmoc-Hex-OH), Fmoc-Gly-OH, and Fmoc-Pro-OPfp were purchased from Novabiochem (Darmstadt, Germany). 2-(7-Aza-1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyl aminium hexafluorophosphate (HATU), 1-Hydroxy-7-azabenzotriazole (HOAt), 2-(1H-benzotriazol-1-yl)-*N*,*N*,*N*',*N*'-tetramethylaminium hexafluorophosphate (HBTU), *N*-Hydroxybenzotriazole (HOBt), *N*,*N*'-Dicyclohexylcarbodiimide (DCC), benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (BOP), N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), N,N-diisopropylethylamine (DIEA), N-methylmorpholine (NMM), and 2,4,6-trimethylpyridine (TMP) were from Sigma (St. Louis, MO). All RP-HPLC purifications were carried using a preparative C-18 reversed phase column (VYDAC[®] 218 TP Protein & Peptide C18 22 mm×250 mm) on a Waters PropLC 4000 system (HPLC) with a waters 2996 photodiode array detector at room temperature. Analyses of yields, epimerization and β-elimination were recorded on an Agilent 1200 Series HPLC using Waters XTerra[®] RP 18 (5µm 4.6 mm× 250mm). All ¹H and ¹³C NMR spectra were recorded on a 400 MHz or 500 MHz Varian spectrometer. The mass spectra were recorded on Shimadzu Axima-CFR MALDI-TOF or on Agilent LC/MSD SL mass spectrometers.

Preparation of Fmoc-protected glyco-amino acids

Fmoc-Thr(Ac₃GalNAcα)-OH (S1)

N-(9H-fluoren-9ylmethoxycarbonyl)-(2-acetyl-2-deoxy-3,4,6-triacetyl-O-α-D-

galactopyranosyl)-L-threonine acid (S1). Compound **S1** was prepare according to a previously reported method.¹ ¹H-NMR (400 MHz, *N*,*N*-dimethylformamide-d₇) δ 7.96 (d, J = 7.5 Hz, 2H), 7.81 (d, J = 9.9 Hz, 1H), 7.76 (d, J = 8.7 Hz, 2H), 7.65 (d, J = 9.4 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.4 Hz, 2H), 5.44 (d, J = 2.4 Hz, 1H), 5.16 (dd, J = 11.6, 3.2 Hz, 1H), 5.03 (d, J = 3.7 Hz, 1H), 4.53 (dd, J = 6.4, 1.5 Hz, 1H), 4.46 – 4.30 (m, 6H), 4.16 (d, J = 6.8 Hz, 2H), 2.17 (s, 3H), 2.06 (s, 3H), 1.96 (s, 3H), 1.94 (s, 3H), 1.37 (d, J = 6.4 Hz, 3H). ¹³C-NMR (CDCl₃, 100 MHz) δ 172.3, 170.4, 170.3, 170.2, 170.0, 162.4, 157.4, 144.4, 144.3, 141.34, 141.3, 127.9, 127.3, 127.25, 125.52, 125.50, 120.30, 120.29, 99.5, 75.9, 68.3, 67.7, 67.1, 66.7, 62.4, 59.0, 47.3, 22.5, 20.1, 20.08, 20.0, 18.7. HRMS calcd for $C_{33}H_{38}N_2O_{13}Na$ [M + Na]⁺ 693.2272, found 693.2225.

Fmoc-D-Thr(Ac₃GalNAcα)-OH (S6)

The unnatural glyco-amino acid, Fmoc-D-Thr(Ac₃GalNAc α)-OH **S6**, was synthesized using similar procedures reported for **S1**. Briefly, *N*-Fmoc-D-threonine benzyl ester **S2** (0.85 g, 0.1.97 mmol), the bromide donor **S3** (0.93 g, 2.36 mmol), and 2 g 4 Å molecular sieve were added to a flask under argon. The mixture was dissolved in 20 mL CH₂Cl₂, then silver perchlorate (0.81 g, 3.94 mmol) was added and the reaction mixture was stirred at room temperature for 2 h. The mixture was filtered, concentrated, and the residue was purified by flash chromatography with silica gel (80g) by EtOAc/Hexane (1:3) to give compound **S4** (0.93 g, 64 %) as a white solid. Reductive acetylation using thiolacetic acid produced the fully protected Fmoc-D-Thr(Ac₃GalNAc α)-OBn **S5** (0.60 g) in a 63% yield. Hydrogenation of **S5** with10% Pd/C in MeOH/H₂O/Formic acid (10/1/1, 6 mL) followed by RP- HPLC purification using a 0-48% acetonitrile/H₂O (0.1% TFA) gradient over 45 minutes to provide compound **S6** (0.38 g) in 72% yield as a white solid.

N-(9H-fluoren-9ylmethoxycarbonyl)-D-threonine benzyl ester (S2). ¹H-NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.6 Hz, 2H), 7.61 (d, *J* = 7.4 Hz, 2H), 7.29-7.42 (m, 9H), 5.71 (d, *J* = 8.9 Hz, 1H), 5.22 (dd, *J* = 17.1, 12.3 Hz, 2H), 4.38-4.46 (m, 3H), 4.23 (t, *J* = 7.0 Hz, 1H), 2.16 (br,

1H), 1.24 (d, J = 6.0 Hz, 3H). ¹³C-NMR(100 MHz, CDCl₃) δ 171.0, 156.7, 143.6, 141.3, 141.2, 135.2, 128.5, 127.6, 125.1, 120.0, 119.9, 68.0, 67.4, 67.2, 59.2, 47.1, 19.9, HRMS calcd fro C₂₆H₂₅NO₅ [M + H]⁺ 432.2, found432.1

N-(9H-fluoren-9ylmethoxycarbonyl)-(2-azido-2-deoxy-3,4,6-tri-*O*-α-D-galactopyranosyl)-Dthreonine benzyl ester (S4). ¹H-NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.6 Hz, 2H), 7.61 (d, J = 7.5 Hz, 2H), 7.29-7.42 (m, 9H), 5.61 (d, J = 9.7 Hz, 1H), 5.23-5.26 (m, 3H), 5.19 (dd, J = 11.2, 3.2 Hz, 1H), 5.11 (d, J = 3.6 Hz, 1H), 4.59 (dd, J = 9.7, 2.3 Hz, 1H), 4.47 (dd, J = 6.4, 2.3 Hz, 1H), 4.41 (dd, J = 7.5, 1.5 Hz, 2H), 4.23 (t, J = 7.1 Hz, 1H), 3.85-3.91 (m, 3H), 3.55 (dd, J = 11.2, 3.6 Hz, 1H), 2.13 (s, 3H), 2.09 (s, 3H), 1.99 (s, 3H), 1.30 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 170.3, 169.93, 169.9, 169.6, 156.6, 143.6, 414.3, 141.2, 134.9, 128.7, 125.1, 119.9, 95.2, 73.1, 67.3, 61.7, 58.4, 57.2, 47.1, 20.6, 20.5, 15.2. HRMS calcd for C₃₈H₄₀N₄O₁₂Na [M + Na]⁺ 744.2540, found744.2548.

N-(9H-fluoren-9ylmethoxycarbonyl)-(2-acetyl-2-deoxy-3,4,6-triacetyl-O-α-D-

galactopyranosyl)-D-threonine benzyl ester (S5). ¹H-NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.5 Hz, 2H), 7.64 (d, J = 7.3 Hz, 2H), 7.28-7.41 (m, 9H), 5.75 (t, J = 9.8 Hz, 2H), 5.24-5.16 (m, 3H), 4.98-4.93 (m, 2H), 4.56-4.44 (m, 3H), 4.30 (dd, J = 6.2, 3.1 Hz, 1H), 4.23 (d, J = 6.6 Hz, 1H), 3.93-3.88 (m, 3H), 2.13 (s, 3H), 2.01 (s, 3H), 1.94 (s, 6H), 1.31 (d, J = 6.4 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 170.9, 170.3, 170.2, 170.0, 156.5, 143.7, 143.5, 141.3, 134.8, 128.7, 128.5, 127.7, 127.0, 124.9, 124.8, 120.0, 119.97, 94.9, 72.9, 68.0, 67.7, 67.1, 67.07, 67.0, 61.8, 58.5, 47.7, 47.2, 23.1, 20.73, 20.7, 20.5, 15.5. ESI MS calcd for C₄₀H₄₄N₂O₁₃Na [M + Na]⁺ 783.2741, found 783.2795.

N-(9H-fluoren-9ylmethoxycarbonyl)-(2-acetyl-2-deoxy-3,4,6- triacetyl-*O*-α-Dgalactopyranosyl)-D-threonine acid (S6). ¹H-NMR (400 MHz, *N*,*N*-dimethylformamide-d₇) δ 7.98 – 7.92 (m, 3H), 7.77 (dd, J = 21.1, 7.5 Hz, 2H), 7.63 (d, J = 9.8 Hz, 1H), 7.46 (td, J = 7.4, 4.4 Hz, 2H), 7.40 – 7.30 (m, 2H), 5.37 (d, J = 2.4 Hz, 1H), 5.11 – 5.03 (m, 2H), 4.56 – 4.37 (m, 6H), 4.24 (m, 3H), 3.99 (dd, J = 10.8, 6.3 Hz, 1H), 2.15 (s, 3H), 2.01 (s, 3H), 1.97 (s, 3H), 1.96 (s, 3H), 1.24 (d, J = 6.2 Hz, 3H). ¹³C-NMR (100 MHz, *N*,*N*-dimethylformamide-d₇) δ 172.5, 170.6, 170.4, 170.3, 169.9, 157.4, 144.7, 144.3, 141.5, 128.1, 127.4, 125.7, 125.6, 120.4, 94.2, 71.7, 68.6, 67.6, 67.2, 66.7, 61.8, 59.1, 47.5, 47.3, 22.5, 20.3, 20.2, 14.8. HRMS calcd for C₃₃H₃₈N₂O₁₃Na [M + Na]⁺ 693.2272, found 693.2282.

N-(9H-fluoren-9-ylmethoxycarbonyl)-O-(2-acetyl-2-deoxy-3,4,6-triacetyl-O-β-Dgluctopyranosyl)-L-threonine S8 was synthesized according to a reported method². Peracetylated GlcNAc S7(1.2 g, 3.08 mmol) and 4 Å molecular sieves were placed in a flask under argon, and anhydrous CH₂Cl₂ (15 mL) was added. The reaction mixture was cooled to 0 °C, BF₃·Et₂O (1.17 mL, 9.25 mmol) was added dropwise, and the reaction was stirred at room temperature overnight. The reaction mixture was cooled to 0 °C, Et₃N (0.43 mL, 1 equiv.) was added, and the reaction was stirred for 10 min. A solution of Fmoc-Thr(Trt)-OH (1.28, 3.76 mmol) in CH₂CL₂/MeCN (1:2) was added, and the reaction was allowed to stir at room temperature for 4d and monitored by TLC CDCl₃/MeOH/AcOH (10:1:0.2). The reaction mixture with neutralized with Et₃N, diluted with CH₂Cl₂, filtered over celite, and concentrated. The residue was first filtered through a silica gel column with CHCl₃/MeOH (40:1-10:1), then purified by RP-HPLC, and filtered through silica gel column $CH_2Cl_2/MeOH$ (20:1-5:1) to provide compound S8 as a white solid (0.28 g, 28%). ¹H-NMR (400 MHz, N,N-dimethylformamide-d₇) δ 7.94 (d, J = 7.5 Hz, 2H), 7.82 (d, J = 7.5 Hz, 2H), 7.47-7.43 (m, 2H), 7.40 – 7.34 (m, 2H), 6.65 (d, J = 8.9 Hz, 1H), 5.31 (t, J = 10.0 Hz, 1H), 4.96 (dd, J = 18.8, 9.2 Hz, 2H), 4.48-4.42 (m, 1H), 4.36-4.25 (m, 5H), 4.12 (dd, J = 12.1, 2.5 Hz, 1H), 3.93-3.88 (m, 1H), 3.83 (dd, J = 19.2, 8.8 Hz, 1H), 2.03 (s,

3H), 2.027 (s, 3H), 1.99 (s, 3H), 1.90 (s, 3H), 1.28 (d, J = 6.3 Hz, 3H). ¹³C-NMR (100 MHz, *N*,*N*-dimethylformamide-d₇) δ 171.9, 170.5, 170.2, 170.15, 169.8, 157.0, 144.5, 144.4, 141.5, 128.0, 127.5, 125.8, 125.8, 120.4, 120.38, 99.6, 75.3, 73.0, 71.6, 69.6, 67.0, 62.6, 59.2, 54.5, 47.4, 22.7, 20.3, 20.25, 20.2, 17.1. HRMS calcd for C₃₃H₃₈N₂O₁₃Na [M + Na]⁺ 693.2272, found 693.2266.

The synthesis of *N*-(9H-fluoren-9-ylmethoxycarbonyl)-*O*-(2-acetyl-2-deoxy-3,4,6-triacetyl-*O*- β -D- gluctopyranosyl)-D-threonine (**S9**) was carried out using a similar procedure as described for compound **S8** to provide compound **S9** as a white solid (0.14 g, 14%). ¹H NMR (400 MHz, *N*,*N*-dimethylformamide-d₇) δ 7.94 (d, *J* = 7.5 Hz, 2H), 7.85 (d, *J* = 7.4 Hz, 2H), 7.80 (d, *J* = 8.9 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.40 – 7.32 (m, 2H), 6.97 (d, *J* = 9.2 Hz, 1H), 5.32 (dd, *J* = 10.4, 9.5 Hz, 1H), 4.93 (dd, *J* = 18.3, 9.0 Hz, 2H), 4.44 – 4.25 (m, 6H), 4.14 (dd, *J* = 12.1, 2.4 Hz, 1H), 3.95 – 3.79 (m, 2H), 2.06 (s, 3H), 2.03 (s, 3H), 1.98 (s, 3H), 1.88 (s, 3H), 1.34 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100MHz, *N*,*N*-dimethylformamide-d₇) δ 171.9, 170.5, 170.4, 170.1, 169.9, 162.7, 162.4, 162.1, 157.2, 144.5, 144.47, 141.4, 141.43, 128.0, 127.5, 127.4, 125.9, 120.4, 102.1, 77.2, 73.0, 71.5, 69.6, 66.9, 62.5, 59.1, 54.5, 47.3, 22.8, 20.3, 20.2, 18.9. HRMS calcd for C₃₃H₃₈N₂O₁₃Na [M + Na]⁺ 693.2272, found 693.2254.

S8

Compound 1 was synthesized starting from S10. Prior to coupling, the resin (60 mg, 17.8 µmol) was swollen in CH₂Cl₂ for 0.5 h, followed by removal of the Fmoc-group with 20% piperidine in DMF (2×2.0 mL) for 15 min, and then washed with CH₂Cl₂ (3×2.0 mL) and DMF (2×2.0 mL). The appropriate amount of Fmoc-Thr(Trt)-OH (2 eq, 35.6 µmol), HATU (2 eq, 35.6 µmol), HOAt (2 eq, 35.6 µmol), and TMP (2eq, 35.6 µmol) in DMF(0.5 mL) were mixed and immediately added to the resin. The reaction was allowed to mix at room temperature for 2 h, followed by washing and capping the unreacted amino groups with $Ac_2O(10\%)$ /pyridine (10%) in THF (2×1 mL) at room temperature for 15 min. The resin was washed with DMF (2×5 mL), CH₂Cl₂ (3×5 mL), and the peptide was cleaved off with a mixture TFA/ CH₂Cl₂ (90:10) (1.0 mL) at room temperature for 1.5 h. The crude product was purified by silica gel flash chromatography using a mixture of MeOH and CH_2Cl_2 (1:20)to give 1 as white foam. ¹H-NMR $(400 \text{ MHz}, \text{CD}_3\text{OD}) \delta 7.83 \text{ (d}, J = 7.5 \text{ Hz}, 2\text{H}), 7.69 \text{ (d}, J = 7.4 \text{ Hz}, 2\text{H}), 7.42 \text{ (t}, J = 7.4 \text{ Hz}, 2\text{H}),$ 7.34 (t, J = 7.6 Hz, 2H), 4.49 - 4.36 (m, 3H), 4.26 (t, J = 6.5 Hz, 1H), 4.11 (dd, J = 10.0, 4.1 Hz, 1H), 4.00 - 3.82 (m, 2H), 3.79 - 3.67 (m, 1H), 3.30 - 3.16 (m, 2H), 2.29 (dd, J = 14.7, 7.3 Hz, 2H), 2.17 - 1.96 (m, 3H), 1.67 - 1.54 (m, 5H), 1.45 - 1.30 (m, 4H), 1.24 (d, J = 6.4 Hz, 3H). 13C-NMR (100 MHz, CD₃OD) δ 173.5, 170.8, 169.9, 157.2, 143.8, 141.2, 127.4, 126.7, 124.7, 119.5, 67.0, 66.5, 61.0, 58.2, 42.1, 38.9, 38.8, 28.9, 28.6, 28.4, 26.1, 26.0, 24.8, 24.5, 24.3, 21.1, 18.4. HRMS calcd for $C_{32}H_{40}N_4O_8$ [M + Na]⁺ 631.2744, measured 631.2732.

Compound **S11** was synthesized and purified according to the general procedure described for **1**. ¹H-NMR (400 MHz, CD₃OD) δ 7.83 (d, *J* = 7.5 Hz, 2H), 7.69 (d, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 7.6 Hz, 2H), 4.49 – 4.36 (m, 3H), 4.26 (t, *J* = 6.5 Hz, 1H), 4.14-4.07 (m, 1H), 4.00 – 3.82 (m, 2H), 3.79 – 3.67 (m, 1H), 3.30-3.16 (m, 2H), 2.29 (dd, *J* = 14.7, 7.3 Hz, 2H), 2.17 – 1.96 (m, 3H), 1.69-1.52 (m, 5H), 1.45 – 1.30 (m, 4H), 1.24 (d, *J* = 6.4 Hz, 3H). ¹³C-NMR (100 MHz, CD₃OD) δ 173.5, 170.8, 169.9, 157.2, 143.8, 141.2, 127.4, 126.7, 124.7, 119.5, 67.0, 66.5, 61.0, 58.2, 42.1, 38.9, 38.8, 28.9, 28.6, 28.4, 26.1, 26.0, 24.8, 24.5, 24.3, 21.1, 18.4. HRMS calcd for C₃₂H₄₀N₄O₈ [M + Na]⁺ 631.2744, measured 631.2737.

Fmoc-Thr(Ac₃GalNAcα)-Pro-Gly-Hex-OH **2** was synthesized and purified according to the general procedure described for **1**. ¹H-NMR (400 MHz, CD₃OD) δ 7.90 – 7.80 (m, 3H), 7.71 (d, J = 7.2 Hz, 2H), 7.56 (d, J = 9.2 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.4 Hz, 2H), 5.43 (d, J = 2.4 Hz, 1H), 5.16 (d, J = 3.5 Hz, 1H), 5.10 (dd, J = 11.4, 3.0 Hz, 1H), 4.56 (dd, J = 6.1, 2.8 Hz, 2H), 4.49 – 4.05 (m, 9H), 3.81 (d, J = 3.5 Hz, 2H), 3.69 (t, J = 5.2 Hz, 2H), 3.21 (m, 3H), 2.31 (t, J = 7.3 Hz, 3H), 2.17 (s, 3H), 2.05 (s, 3H), 1.97 (s, 3H), 1.94 (d, J = 7.5 Hz, 3H), 1.66 (m, 2H), 1.55 (m, 2H), 1.43 – 1.35 (m, 2H), 1.32 (d, J = 5.2 Hz, 3H), 0.92 (m, 2H). ¹³C-NMR (100 MHz, CD₃OD) 175.7, 174.6, 173.0, 172.9, 172.1, 172.0, 159.7, 146.1, 146.05, 143.6, 143.58, 129.7, 129.1, 129.0, 127.0, 126.9, 121.9, 101.7, 78.2, 71.2, 69.8, 69.1, 68.5, 64.2, 62.7, 59.7, 44.4, 41.2, 36.0, 31.3, 31.0, 30.9, 28.4, 28.35, 26.9, 26.7, 23.9, 23.4, 21.6, 21.5, 21.4, 20.3. HRMS calcd for $C_{46}H_{59}N_5O_{16} [M + Na]^+ 960.3854$, measured 960.3845.

Fmoc-D-Thr(Ac₃GalNAca)-Pro-Gly-Hex-OH (S12)

Compound **S12** was synthesized and purified according to the general procedure described for **1**. ¹H-NMR (400 MHz, CD₃OD) δ 7.83 (d, *J* = 7.5 Hz, 2H), 7.72 (dd, *J* = 6.8, 2.7 Hz, 2H), 7.42 (m, 2H), 7.35 (m, 2H), 7.29 (d, *J* = 8.6 Hz, 1H), 5.41 (d, *J* = 2.8 Hz, 1H), 5.09 (dd, *J* = 11.6, 3.1 Hz, 1H), 5.04 (d, *J* = 3.6 Hz, 1H), 4.72 (dd, *J* = 10.8, 5.8 Hz, 1H), 4.55-4.50 (m, 2H), 4.37 (dd, *J* = 8.4, 4.7 Hz, 1H), 4.27 (t, *J* = 5.9 Hz, 1H), 4.21-4.00 (m, 4H), 3.88 – 3.81 (m, 1H), 3.80 – 3.63 (m, 2H), 3.31 – 3.03 (m, 1H), 2.28 (t, *J* = 7.5 Hz, 2H), 2.18 – 2.09 (m, 4H), 2.07 – 1.92 (m, 10H), 1.69 – 1.49 (m, 4H), 1.44 – 1.28 (m, 6H), 1.21 (d, *J* = 6.1 Hz, 3H), 0.94-0.88 (m, 1h). ¹³C-NMR (100 MHz, CD₃OD) δ 175.6, 174.3, 173.0, 172.9, 172.7, 172.2, 171.8, 159.8, 146.1, 146.0, 143.6, 143.55, 129.73, 129.71, 129.1, 129.07, 127.0, 126.9, 121.9, 96.2, 73.1, 70.4, 69.3, 68.8, 68.7, 63.4, 63.3, 59.7, 44.5, 41.2, 35.7, 31.64, 31.63, 31.56, 31.5, 31.2, 31.19, 30.7, 28.2, 26.9, 26.5, 23.5, 21.5, 21.47, 21.4, 16.7. HRMS calcd for $C_{46}H_{59}N_5O_{16}$ [M + Na]⁺ 960.3854, measured 960.3843.

Fmoc-Thr(Ac₃GlcNAcβ)-Pro-Gly-Hex-OH (3)

Fmoc-Thr(Ac₃GlcNAcβ)-Pro-Gly-Hex-OH **3** was synthesized and purified according to the general procedure described for 1. ¹H-NMR (400 MHz, CD₃OD) δ 7.71 (d, J = 7.1 Hz, 3H), 7.55 (d, J = 7.4 Hz, 2H), 7.30 (t, J = 7.2 Hz, 2H), 7.27 – 7.18 (m, 2H), 5.19 – 5.10 (m, 1H), 4.91 – 4.82 (m, 1H), 4.62 (d, J = 8.5 Hz, 1H), 4.38 – 4.22 (m, 3H), 4.16-4.11 (m, 2H), 4.03 – 3.64 (m, 7H), 3.50 (dd, J = 16.4, 7.4 Hz, 1H), 3.15 – 3.04 (m, 2H), 2.18 (t, J = 7.4 Hz, 3H), 1.92 – 1.81 (m, 13H), 1.56 – 1.41 (m, 5H), 1.26 (dt, J = 14.5, 7.4 Hz, 4H), 1.12 (d, J = 6.3 Hz, 3H). ¹³C-NMR (100 MHz, CD₃OD) δ 173.2, 172.2, 170.8, 170.3, 170.0, 169.8, 162.0, 161.6, 156.9, 143.7, 143.66, 141.2, 141.18, 127.4, 126.8, 124.7, 124.6, 119.6, 118.1, 115.2, 99.6, 75.9, 72.4, 71.6, 68.7, 66.4, 61.8, 61.3, 57.8, 54.1, 42.1, 38.9, 29.0, 28.6, 28.5, 26.1, 26.0, 24.8, 24.4, 24.38, 21.4, 19.3, 19.1, 19.09, 15.6. HRMS calcd for C₄₆H₅₉N₅O₁₆ [M + Na]⁺ 960.3854, measured 960.3839.

Fmoc-D-Thr(Ac₃GalNAcα)-Pro-Gly-Hex-OH (S13) $= \frac{1.20\% \text{ piperidine/DMF}}{1.20\% \text{ piperidine/DMF}} \xrightarrow{AcO} \xrightarrow{OAc} \xrightarrow$

Compound **S13** was synthesized and purified according to the general procedure described for **1**. ¹H-NMR (400 MHz, CD₃OD) δ 7.70 (d, *J* = 7.5 Hz, 2H), 7.56 (dd, *J* = 7.2, 4.3 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.22 (t, *J* = 7.1 Hz, 2H), 5.15 – 5.06 (m, 1H), 4.85 (t, *J* = 9.7 Hz, 1H), 4.64 (d, *J* = 8.4 Hz, 1H), 4.41 – 4.27 (m, 3H), 4.19 – 3.92 (m, 4H), 3.79 – 3.59 (m, 5H), 3.06 (dd, *J* = 13.8, 7.0 Hz, 1H), 2.97 – 2.86 (m, 1H), 2.21 – 2.10 (m, 3H), 1.95 – 1.71 (m, 14H), 1.56 – 1.32 (m, 5H), 1.24 – 1.15 (m, 6H). ¹³C-NMR (100 MHz, CD₃OD) δ 173.2, 172.3, 170.8, 170.4, 169.9, 169.9, 169.8, 157.1, 143.7, 143.5, 141.2, 141.18, 127.4, 126.8, 126.78, 124.7, 124.6, 119.6, 101.2, 77.0, 72.6, 71.4, 68.7, 66.6, 61.8, 61.3, 57.6, 54.2, 42.1, 38.8, 28.9, 28.6, 28.4, 25.9, 24.3, 21.7, 19.2, 19.1, 17.3. HRMS calcd for $C_{46}H_{59}N_5O_{16}$ [M + Na]⁺ 960.3854, measured 960.3838.

Compound S14 was synthesized starting from S10. Prior to coupling, the resin (60 mg, 17.8 μ mol) was swollen in CH₂Cl₂ for 0.5 h, treated with 20% piperidine in DMF (2× 2.0 mL) for 15 min to remove the Fmoc-group, and then washed with CH_2Cl_2 (3× 2.0 mL) and DMF (2× 2.0 mL). The appropriate amounts of Fmoc-Thr(Ac₃GlcNAcβ)-OH (2 eq, 35.6 μmol), HATU (2 eq, 35.6 µmol), and NMM (8 eq, 142.4 µmol) were preincubated at room temperature in DMF (0.5 mL) for 3 h, and then the mixture was immediately added to the resin. The reaction was allowed to mix at room temperature for 12 h, followed by washing and capping the unreacted amino groups with $Ac_2O(10\%)$ /pyridine (10%) in THF (2×1 mL) at room temperature for 15 min. The resin was washed with DMF ($2 \times 5 \text{ mL}$), CH₂Cl₂ ($3 \times 5 \text{ mL}$), and the peptide was cleaved off with a mixture TFA/CH₂Cl₂ (90:10) (1.0 mL) at room temperature for 1.5 h. The crude product was purified by RP-HPLC using MeCN/water and silica flash chromatography using MeOH/ CH₂Cl₂ (1:20) to give 1 as white foam. ¹H-NMR (400 MHz, CD₃OD) δ 7.83 (d, J = 7.5 Hz, 2H), 7.72 (d, J = 7.3 Hz, 2H), 7.43 (t, J = 7.3 Hz, 2H), 7.40 – 7.32 (m, 2H), 5.70 (q, J = 6.8 Hz, 1H), 4.76 (dd, J = 10.9, 5.8 Hz, 1H), 4.49 (dd, J = 10.9, 5.9 Hz, 1H), 4.41 – 4.33 (m, 1H), 4.26 (t, J = 5.6 Hz, 1H), 3.89 (dd, J = 110.2, 17.0 Hz, 2H), 3.57 - 3.46 (m, 1H), 3.27 - 3.09 (m, 3H), 2.40 - 2.18 (m, 2H)3H), 2.07 - 1.83 (m, 3H), 1.74 (d, J = 7.1 Hz, 3H), 1.63 - 1.45 (m, 4H), 1.39 - 1.28 (m, 4H), 0.93 (t, J = 6.7 Hz, 1H). ¹³C-NMR (100 MHz, CD₃OD) δ 175.5, 172.3, 170.2, 157.8, 146.0, 145.8, 143.7, 143.6, 133.0, 129.8, 129.7, 129.1, 127.0, 126.9, 122.8, 122.7, 121.9, 121.8, 68.5, 63.6, 51.4, 44.3, 41.1, 31.4, 30.6, 28.3, 26.9, 26.8, 12.9. HRMS calcd for C₃₂H₃₈N₄O₇ [M + Na^{+} 613.2638, measured 613.2624.

HPLC analyses of products in coupling reactions

Figure S1. HPLC trace of Fmoc-Thr-Pro-Gly-Hex-OH.

Analyses of Fmoc-Thr-Pro-Gly-Hex-OH **1**, its racemized D isomer **S11**, β -elimination product **S14** and the unreacted starting peptide Fmoc-Pro-Gly-Hex-OH **S10** were performed with Waters XTerra[®] RP 18 (4.6 mm × 250 mm) reverse phase column. UV absorption was measured at 280 nm and the flow rate was 1 mL/min with water (0.1 % TFA, solvent A) and acetonitrile (0.1% TFA, solvent B). The percentage of B was increased according to a linear gradient of 1%-25% in 9 min, kept at 25% for 1 min, increased from 25% to 29% in 8 min, kept at 29% for 1.5 min, increased from 29% to 32% for 3.5 min, and then increased from 32% to 45% in 16 min. All data have an error of less than 0.3% based on repeat HPLC assays using the same standard glycopeptide sample from our previous studies. The yield, epimerization, and β -elimination were calculated from the peak area of corresponding peptides or glycopeptides that are absorbed at 280 nm by Fmoc groups.

Figure S2. HPLC trace of Fmoc-Thr(Ac₃GalNAc α)-Pro-Gly-Hex-OH. Analyses of Fmoc-Thr(Ac₃GalNAc α)-Pro-Gly-Hex-OH 2, its racemized D isomer S12, β elimination product S14 and the unreacted starting peptide Fmoc-Pro-Gly-Hex-OH S10 were performed with the same conditions as those described in Figure S1.

Figure S3. HPLC trace of Fmoc-Thr(Ac₃GlcNAc β)-Pro-Gly-Hex-OH. Analyses of Fmoc-Thr(Ac₃GlcNAc β)-Pro-Gly-Hex-OH 3, its racemized D isomer S13, β elimination product S14 and the unreacted starting peptide Fmoc-Pro-Gly-Hex-OH S10 were performed with the same conditions as those described in Figure S1.

Figure S4. Measurement of the yield, epimerization and β-elimination of condition 7 for Fmoc-Thr(Trt)-OH via a HPLC assay.

(A) HPLC trace of three standard peptides mixtures, Fmoc-Pro-Gly-Hex-OH **S10**, Fmoc-Thr-Pro-Gly-Hex-OH **1**, and its racemized D isomer **S11**; (B) HPLC trace of the products from coupling Fmoc-Thr(Trt)-OH to ProGlyHex resin using condition 7. Analyses were performed with the same conditions as those for obtaining Figure S1. The β -Elimination product standard, which was only obtained with small amount and not stable in solution, was not added to the standard peptide mixtures for routine analysis. Three standard peptides mixtures, **S10**, **1**, and **S11**, were analyzed each time and compared with the HPLC trace in Figure S1 to determine the retention time of the β -elimination product for each HPLC assay.

Figure S5. Measurement of the yield, epimerization and β -elimination of condition 7 for Fmoc-Thr(Ac₃GalNAc α)-OH via a HPLC assay.

(A) HPLC trace of three standard peptides mixtures, Fmoc-Pro-Gly-Hex-OH **S10**, Fmoc-Thr(Ac₃GalNAc α)-Pro-Gly-Hex-OH **2**, and its racemized D isomer **S12**; (B) HPLC trace of the products from coupling Fmoc-Thr(Ac₃GalNAc α)-OH to ProGlyHex resin using condition 7. Analyses were performed with the same conditions as those described in Figure S1. The retention time of the β -elimination product for each HPLC assay was derived from Figure S2 using the similar method as that in Figure S4.

Figure S6. Measurement of the yield, epimerization and β-elimination of condition 7 for Fmoc-Thr(Ac₃GlcNAcβ)-OH via a HPLC assay.

(A) HPLC trace of three standard peptides mixtures, Fmoc-Pro-Gly-Hex-OH **S10**, Fmoc-Thr(Ac₃GlcNAc β)-Pro-Gly-Hex-OH **3**, and its racemized D isomer **S13**; (B) HPLC trace of the products from coupling Fmoc-Thr(Ac₃GlcNAc β)-OH to ProGlyHex resin using condition 7. Analyses were performed with the same conditions as those described in Figure S1. The retention time of the β -elimination product for each HPLC assay was derived from Figure S3 using the similar method as that in Figure S4.

		Fmoc-D-Thr(R)-OH, where R =			
Coupling Conditions ^a		Trt	Ac ₃ GalNAca	Ac ₃ GlcNAcβ	
AAs: 4.4 eq	Yields (%) ^b	40.3	97.0	7.6	
HATU/HOAt: 4.4/0 eq	Epimerization (%) ^b	4.13	0.18	24.4	
NMM: 8.8 eq in NMP	β -Elimination (%) ^b	16.6	2.3	92.4	
3/12 h					

Table S1. Summary of yields, epimerization and β -eliminaion for D-amino acids coupling to ProGlyHex with condition 2

^aGlyco-amino acids were coupled to Pro-Gly-Hex resin (10 mg, 2.97 μ mol) in 0.15 mL NMP. Preincubation time and coupling times are listed as x/y h format. (e.g. 3/12 h = 3 h pre-incubation followed by 12 h reaction time). ^bAll yield and epimerization data have an error of less than 0.3%. The yield refers to the percentage of D+L products relative to the total peptide (D+L products, β -elimination product, and truncated peptide). Epimerization referes to the ratio of D glycopetide to the combined amount of D+L glycopeptide products.

Coupling Conditions ^a		Fmoc-Thr(R)-OH, where R =			
AA/HATU /TMP (1:1:x), x=		Trt	Ac ₃ GalNAca	Ac ₃ GlcNAcβ	
1 eq	Yields (%) ^b	74.2	86.6	93.2	
	Epimerization (%) ^b	<0.2%	0.6	0.3	
	β -Elimination (%) ^b	0.2	<0.2%	0.4	
2 eq	Yields (%) ^b	82.6	91.2	99.0	
	Epimerization (%) ^b	<0.2%	0.5	0.4	
	β -Elimination (%) ^b	0.2	<0.2%	0.8	
4 eq	Yields (%) ^b	88.8	98.5	97.9	
	Epimerization (%) ^b	<0.2%	0.5	0.3	
	β -Elimination (%) ^b	<0.2%	0.2	1.6	
8 eq	Yields (%) ^b	99.7	95.6	95.2	
	Epimerization (%) ^b	0.2	0.5	0.5	
	β -Elimination (%) ^b	<0.2%	0.2	4.2	
12 eq	Yields (%) ^b	99.6	97.5	93.6	
	Epimerization (%) ^b	0.2	0.5	0.6	
	β -Elimination (%) ^b	0.2	<0.2%	6.1	
16 eq	Yields (%) ^b	99.7	93.2	92.1	
	Epimerization (%) ^b	<0.2%	0.5	0.5	
	β -Elimination (%) ^b	0.2	0.2	7.5	
20 eq	Yields (%) ^b	94.2	94.8	90.6	
	Epimerization (%) ^b	<0.2%	0.6	0.2	
	β -Elimination (%) ^b	<0.2%	0.2	9.0	

Table S2. Epimerization and β-elimination as a function of the concentration of TMP

^aGlyco-amino acids were coupled to Pro-Gly-Hex resin (10 mg, 2.96 μ mol) using the condition: AA/HATU/TMP=1:1:x in 0.15 mL DMF with 3 h pre-incubation followed by 2 h reaction time. ^bAll data have an error of less than 0.3%. The yield refers to the percentage of D+L products relative to the total peptide (D+L products, β -elimination product, and truncated peptide). Epimerization referes to the ratio of D glycopetide to the combined amount of D+L glycopeptide products.

Table S3. Raw data for Table 2 (relative reaction rates)

Entry	Rx time (min)/Vol (mL)	Activation reagent (eq)	GAAs(eq) Fmoc-AAs-OH	Fmoc- Thr(OTrt)- OH (eq)	Base (eq)	A(Truncated)	A(Thr)	A(Other)	GAA/Thr ratio
						23.97min ^a	21.26 min ^a	28.49 min [Thr(GalNAcα)]ª	
Trla	5/1.5	HATU/HOAt (4.0/4.0)	Thr(GalNAca) (2.0)	2.0	TMP (4.0)	3531.1	512.8	373.7	0.73
Tr1b	5/1.5	HATU/HOAt (4.0/4.0)	Thr(GalNAca) (2.0)	2.0	TMP (4.0)	3562.1	478	325.3	0.68
Tr1c	5/1.5	HATU/HOAt (4.0/4.0)	Thr(GalNAcα) (2.0)	2.0	TMP (4.0)	2749	411.4	283.1	0.69
						23.97min ^a	21.26 min ^a	25.18 min [D- Thr(GalNAcα)] ^a	
Tr2a	5/1.5	HATU/HOAt (4.0/4.0)	D- Thr(GalNAca) (2.0)	2.0	TMP (4.0)	2856.4	409.5	376.8	0.92
Tr2b	5/1.5	HATU/HOAt (4.0/4.0)	D- Thr(GalNAca) (2.0)	2.0	TMP (4.0)	3023.3	441.2	391.6	0.89
Tr2c	5/1.5	HATU/HOAt (4.0/4.0)	D- Thr(GalNAca) (2.0)	2.0	TMP (4.0)	2935.1	382	344	0.90
						23.97min ^a	21.26 min ^a	20.25 min (Ser) ^a	
Tr3a	5/1.5	HATU/HOAt (4.0/4.0)	Ser(OTrt) (2.0)	2.0	TMP (4.0)	2467.6	327.6	1133.1	3.46
Tr3b	5/1.5	HATU/HOAt (4.0/4.0)	Ser(OTrt) (2.0)	2.0	TMP (4.0)	4031	539.6	1481.7	2.75
Tr3c	5/1.5	HATU/HOAt (4.0/4.0)	Ser(OTrt) (2.0)	2.0	TMP (4.0)	2637.9	341.6	1288.2	3.77
						38.78 min ^b	32.91 min ^b	44.71 min [Thr(GlcNAcβ)] ^b	
Tr4a	5/1.5	HATU/HOAt (4.0/4.0)	Thr(GlcNAcβ) (2.0)	2.0	TMP (4.0)	881	372.8	950.3	2.55
Tr4b	5/1.5	HATU/HOAt (4.0/4.0)	Thr(GlcNAcβ) (2.0)	2.0	TMP (4.0)	815.6	400	1070.2	2.68
Tr4c	5/1.5	HATU/HOAt (4.0/4.0)	Thr(GlcNAcβ) (2.0)	2.0	TMP (4.0)	840.5	356.8	939.7	2.63
						38.78 min ^b	32.91 min ^b	46.15 min [D- Thr(GlcNAcβ)] ^b	
Tr5a	5/1.5	HATU/ HOAt (4.0/4.0)	D-Thr(GlcNAcβ) (2.0)	2.0	TMP (4.0)	848.8	510.7	533.8	1.05
Tr5b	5/1.5	HATU/ HOAt (4.0/4.0)	D-Thr(GlcNAcβ) (2.0)	2.0	TMP (4.0)	962.5	533.9	541.4	1.01
Tr5c	5/1.5	HATU/ HOAt (4.0/4.0)	D-Thr(GlcNAcβ) (2.0)	2.0	TMP (4.0)	846.8	446.9	434.7	0.97

Product ratios were evaluated with Waters XTerra® RP 18 (4.6 mm \times 250 mm) reverse phase column using 2 different HPLC methods. UV absorption was measured at 280 nm and the flow rate was 1 mL/min with water (0.1 % TFA, solvent A) and acetonitrile (0.1% TFA, solvent B). a) the percentage of solvent B was increased according to a linear gradient of 1%-35% in 9 min, kept at 35% for 3 min, increased from 35% to 48% in 27 min; b) the percentage of solvent B was increased according to a linear gradient of 1%-28% in 8 min, kept at 28% for 3 min, increased from 28% to 36% in 39 min.

References

- (1) Kuduk, S. D.; Schwarz, J. B.; Chen, X.-T.; Glunz, P. W.; Sames, D.; Ragupathi, G.; Livingston, P. O.; Danishefsky, S. J. J. Am. Chem. Soc. **1998**, 120, 12474.
- (2) Arsequell, G.; Krippner, L.; Dwek, R. A.; Wong, S. Y. C. *Journal of the Chemical Society-Chemical Communications* **1994**, 2383.

