Supporting Information Sorbent-enhanced steam methane reforming over a Ni-Ca-based, bi-functional catalyst sorbent

Marcin Broda^a, Agnieszka M. Kierzkowska^a, David Baudouin^b, Qasim Imtiaz^a, Christophe Copéret^b, and Christoph R. Müller^{a,*}

^a Laboratory of Energy Science and Engineering, Institute of Energy Technology, ETH Zurich, Leonhardstrasse 27, 8092 Zurich, Switzerland.

^b Institute of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland.

CORRESPONDING AUTHOR'S EMAIL: muelchri@ethz.ch.

Figure S1. Schematic diagram of the fixed-bed reactor in which the cyclic SE-SMR reaction was performed at 550 $^{\circ}$ C.

Figure S2: X-ray diffraction patterns of reduced nickel based catalysts. The following compounds were identified: (\blacktriangle) nickel, (\bullet) – bunsenite, NiO, (\bullet) – periclase, MgO, (\blacksquare) – lime, CaO, (\diamondsuit) - magnesium nickel oxide, MgNiO₂ and (\circ) – nickel aluminium oxide, NiAl₂O₄.

Figure S3. X-ray diffraction patterns of carbonated Ca-Ni-ex-Htlc. The following compounds were identified: (\Box) – calcite, CaCO₃, (\bullet) – lime, CaO, (\bullet) – bunsenite, NiO, (\diamond) - periclase, MgO and (\blacktriangle) - magnesium nickel oxide, MgO NiO.

Table S1. The conversion of methane and the mole fraction of H_2 during the 1st, 5th and 10th cycle for the catalysts used. At thermodynamic equilibrium, the conversion of methane and the mol fraction of hydrogen for the SE-SMR reaction at 550 °C are 99 % and 0.99, respectively.

1 st cycle		
Sorbent	CH ₄ conversion [%]	H ₂ mole fraction
Ca-Ni-ex-Htlc	96 (150s)	0.99 (150s)
Ni-ex-Htlc	95 (300s)	0.98 (300s)
Ni-SiO ₂	92 (60s)	0.98 (60s)
5 th cycle		
Sorbent	CH ₄ conversion [%]	H ₂ mole fraction
Ca-Ni-ex-Htlc	96 (150s)	0.99 (150s)
Ni-ex-Htlc	97 (150s)	0.99 (150s)
Ni-SiO ₂	-	-
10 th cycle		
Sorbent	CH ₄ conversion [%]	H ₂ mole fraction
Ca-Ni-ex-Htlc	95 (150s)	0.98 (150s)
Ni-ex-Htlc	96 (90s)	0.98 (90s)
Ni-SiO ₂	-	-

This material is available free of charge via the Internet at http://pubs.acs.org.