Supporting Information Facile, Rapid and Surfactant-free Synthesis of Bimetallic Pt-Cu Nanoparticles via Ultrasound-Assisted Redox Replacement Zhenyu Sun,^a Justus Masa,^b Wei Xia,^a Dennis König,^c Alfred Ludwig,^c Zi-An Li,^d Michael Farle,^d Wolfgang Schuhmann,^b Martin Muhler^{*a} Estimation of the number densities of Cu and Pt-Cu NPs: Assuming a sphere model and uniformity in particle size, the number of Cu NPs per gram of NCNTs (N_{Cu}) at a given loading (A) can be calculated by $A/(\rho_{Cu}V_{Cu})$. ρ_{Cu} and V_{Cu} are the density of Cu and the volume of a single Cu particle $(4\pi r_{Cu}^3/3)$, respectively. Given a molar ratio of Cu-to-Pt at B in the alloy NPs, the remaining mass of Cu (m_{Cu}) after the displacement is AB/(B+1); the mass of Pt (m_{Pt}) is $AM_{Pt}/(M_{Cu}(B+1))$, where M_{Pt} and M_{Cu} are the molecular weight of Pt and Cu, respectively. The number of Pt-Cu NPs per gram of NCNTs (N_{Pt-Cu}) can thus be estimated by $(m_{Cu}+m_{Pt})/(\rho_{Pt-Cu}V_{Pt-Cu})$, that is $(AB/((B+1)\rho_{Pt-Cu}V_{Pt-Cu})) + (AM_{Pt}/(M_{Cu}(B+1)\rho_{Pt-Cu}V_{Pt-Cu}))$. In cases of B=1, $M_{Cu}=64$ g mol⁻¹, $M_{Pt}=195$ g mol⁻¹, the equation can be simplified as $2.02A/(\rho_{Pt-Cu}V_{Pt-Cu})$. Moreover, based on the approximation of $\rho_{Pt-Cu}\approx 2$ ρ_{Cu} when B=1, N_{Pt-Cu} can be approximated as $A/(\rho_{Cu}V_{Pt-Cu})$. In such a scenario, $N_{Pt-Cu}/N_{Cu}=(r_{Pt-Cu}/r_{Cu})^3$, which is determined to be about 35 given that the diameters of Cu and Pt-Cu NPs are 9.4 and 2.89 nm, respectively. ^a Laboratory of Industrial Chemistry, Ruhr-University Bochum D-44780, Bochum, Germany. E-mail: muhler@techem.rub.de ^b Analytische Chemie-Elektroanalytik & Sensorik, Ruhr-University Bochum D-44780 Bochum, Germany ^c Department of Mechanical Engineering, Institute for Materials, Ruhr-University Bochum D-44780 Bochum, Germany ^d Fakultät für Physik and CeNIDE, Universität Duisburg-Essen, Lotharstr. 1,D- 47057 Duisburg, Germany **Figure S1.** (a) Sonochemical system used in this work to prepare the metal nanoparticles. (b) Electrical power versus ultrasonic power for the system used in this work. **Figure S2.** (a) Pt 4f and (b) Cu 2p core level XPS spectra of Pt-Cu/NCNT. The molar ratio of Pt:Cu in the sample is 1:1. **Figure S3.** TEM images of (a) Cu/NCNTs at 7.3 wt.% of Cu loading, the inset shows HRTEM observation of the sample, (b) Pt-Cu/NCNTs, SAED pattern of the circled sample is displayed in Fig. 4e. (c) STEM image of an individual Pt-Cu/NCNT. (d) EDX pattern of the circled individual NP shown in c. The Au peaks are from the TEM grid. (e) EELS Cu spectrum. **Figure S4.** TEM images of (a) Pt-Cu/NCNTs prepared via tip sonication for 10 s, (b) Pd-Cu/NCNT, (c) Pd-Ag/NCNT and (d) Au-Pd/NCNT. The inset in c is a HRTEM image of the sample. **Table S1.** Quantitative SEM-EDX analysis results for the Pt-Cu/NCNT shown in Figure 3 | Element | Wt. % | At. % | K-Ratio | Z | A | F | |---------|--------|--------|---------|--------|--------|--------| | СК | 52.40 | 72.76 | 0.0978 | 1.0471 | 0.1782 | 1.0001 | | ОК | 2.13 | 2.22 | 0.0037 | 1.0295 | 0.1689 | 1.0006 | | Al K | 38.86 | 24.02 | 0.3089 | 0.9589 | 0.8289 | 1.0000 | | Cu K | 2.47 | 0.65 | 0.0214 | 0.8406 | 1.0091 | 1.0189 | | Pt L | 4.14 | 0.35 | 0.0277 | 0.6436 | 1.0407 | 1.0000 | | Total | 100.00 | 100.00 | | | | | **Table S2.** Tafel slopes of Pt-Cu/NCNTs with varying Pt:Cu molar ratios and Pt-ETEK (20% Pt on Vulcan carbon) | Catalyst | Tafel slopes | | | | |----------|-----------------|------------------|--|--| | Pt:Cu | mV / dec | mV / dec | | | | | | | | | | 25: 75 | 57.5 ± 4.5 | 80.5 ± 7.2 | | | | 50: 50 | 88.8 ± 5.2 | 130.3 ± 13.4 | | | | 75: 25 | 86.0 ± 13 | 132.2 ± 24.8 | | | | Pt-ETEK | 74.1 ± 11.4 | 134.9 ± 21.6 | | |