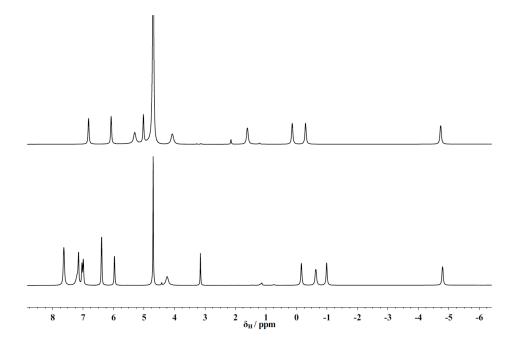

An Isostructural Series of Chiral Nine-Coordinate Lanthanide Complexes Based on Triazacyclononane


James W. Walton, Rachel Carr, Nicholas H. Evans, Alexander M. Funk, Alan M. Kenwright,

David Parker* Dmitry Yufit, Mauro Botta^a, Sara De Pinto^a and Ka-Leung Wong^b

Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.

Figure S1 ¹H NMR spectra for [EuL³] (upper, D₂O, 4.7T) and [EuL¹] (lower, CD₃OD). See main text for assignments

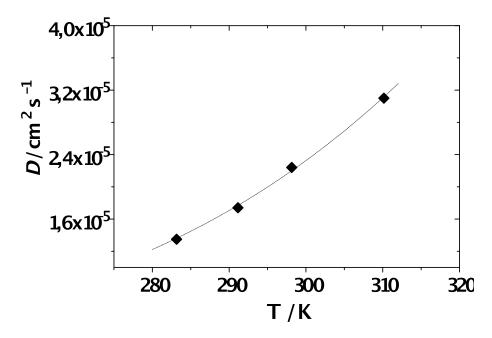
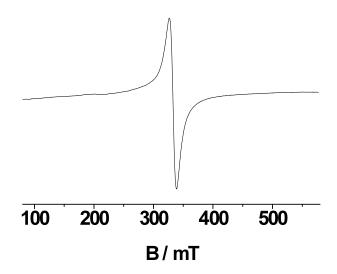


Figure S2 ¹H NMR spectra for [EuL³] (upper, D₂O, 16.5T) and [EuL¹] (lower, CD₃OD)

Table S1 Best Fit parameters for the T dependence of NMRD profiles of [GdL²]

"outer sphere" parameters						
	10°C	18°C	25°C	37°C		
$r_{1p}^{20} (\text{mM}^{-1} \text{s}^{-1})$	2.90	2.33	1.93	1.57		
$\Delta^2(s^{-2}; \times 10^{19})$	2.75*	2.75*	2.75±0.07	2.75*		
τ _V (ps)	13±1	12±1	10±1	7.5±0.7		
q*	0	0	0	0		
a (Å)	4.3*	4.3*	4.3±0.1	4.3*		
D (cm ² s ⁻¹ ;×10 ⁵)	1.35±0.02	1.74±0.01	2.24*	3.10±0.02		


^{*} fixed during the fit

From the fit of the data a $\Delta H_{\rm D}^{\circ}$ value of -24.8 kJ/mol is calculated.

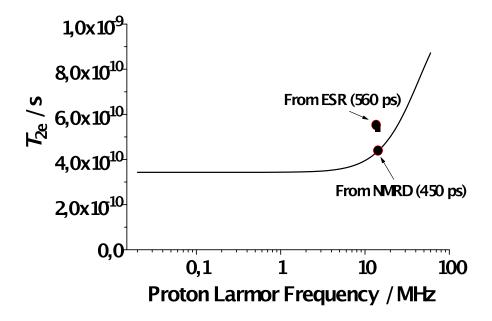
$$(D)^{-1} = \frac{\left(D_0^{-1}\right)^{998,15} T}{298.15} \exp\left[\frac{\Delta H_D}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right]$$

Figure S3 ESR spectrum of [GdL²] recorded at 25 °C (0.9 mM solution)

Center field = 0.33 T (14 MHz for 1 H). The experiment was repeated at 4 temperatures and estimated the T_{2e} values from the bandwidth according to a simplified equation:

$$1/T_{2e} = (g\beta\pi 3^{1/2}/h)\Delta H$$

^a J. Reuben *The Journal of Physical Chemistry*, **1972**, *Vol.* **76**, N° **20**, 3164; D. H. Powell, A. Merbach, *Helvetica Chimica Acta*, (76) 2139 – 2146, **1993** (n.b. in this paper there is an error in the equation)

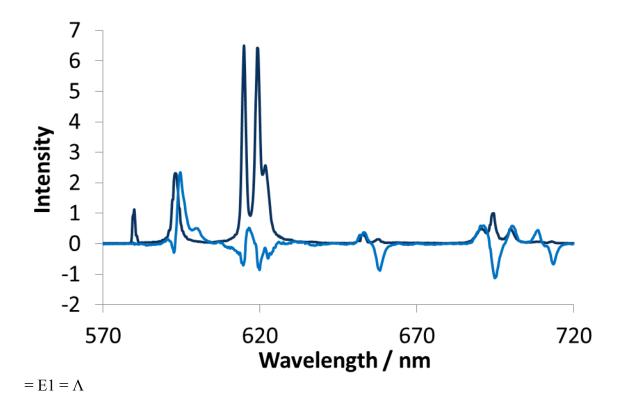

Temperature (K)	△Hpp (mT)	T_{2e} (ps)
283,75	14,18	462,34
290,85	13,20	497,36
296,55	11,73	561,13
306,85	9,78	669,92

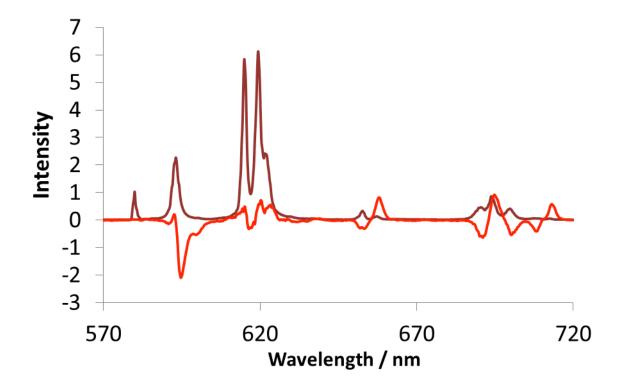
In comparison, these are correlated data for GdDOTA and GdDTPA, under the same conditions

GdDOTA				
Temperatura (K)	△Hpp (mT)	T_{2e} (ps)		
283,75	8,30	790,99		
296,55	8,79	746,05		
306,85	9,28	705,94		

GdDTPA				
Temperatura (K)	Δ Hpp (mT)	T_{2e} (ps)		
283,75	64,02	102,55		
296,55	63,54	103,34		
306,85	63,54	103,34		

The ESR bandwidths of [GdDOTA] and [GdL2] are similar, confirming their similar electronic relaxation times (in the former this has in the past often been interpreted as a result of high symmetry and rigidity)




Figure S4 A simulation of the field dependence of T_{2e} according to SBM theory, (Morgan equation) using the best-fit parameters from the reported NMRD data. The agreement is good considering the approximations of the equations for each technique.

Morgan equation for T_{2e} in a form suitable for Gd(III):

$$\left(\frac{1}{T_{2e}}\right) = \Delta^2 \tau_{v} \left[\frac{5.26}{1 + 0.372\omega_{S}^2 \tau_{v}^2} + \frac{7.18}{1 + 1.24\omega_{S} \tau_{v}} \right]$$

Figure S5 CPL and total emission spectra for Δ (blue) and Λ (red)-[EuL¹]. (The scale used in each CPL figure refers to (I_L - I_R) and is on a scale of x42 with respect to (I_L + I_R).)

Figure S6 Emission spectra for $[EuL^1]$ at 298 and 77K in MeOH (λ_{exc} 365 nm)

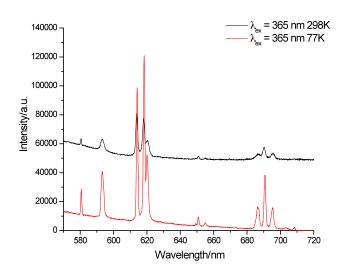
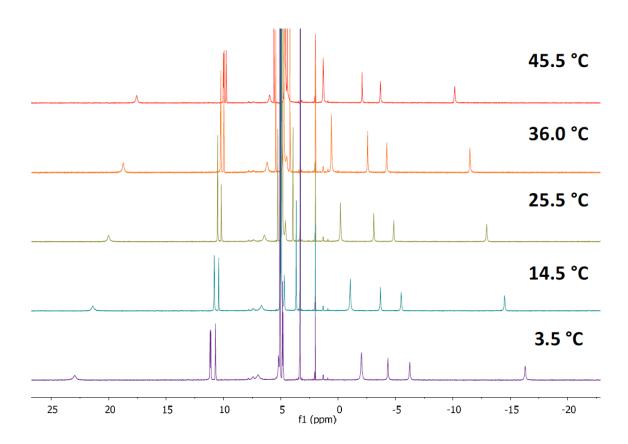



Figure S7 Variable temperature ¹H NMR spectra for [YbL¹] (CD₃OD, 500MHz)

Figure S9 Eu emission spectra for (*upper*) [EuL¹] and (lower) [EuL³] (λ_{exc} 272 nm, H₂O, A = 0.1, 295K) showing the increase in the $\Delta J = 2$ (ca 620 nm): $\Delta J = 1$ (ca 593 nm) ratio for [EuL³], (6.4 vs 5.2). (Increment 0.1 nm, integration time 0.5 s, excitation slits 2.5 nm, emission slits 1 nm)