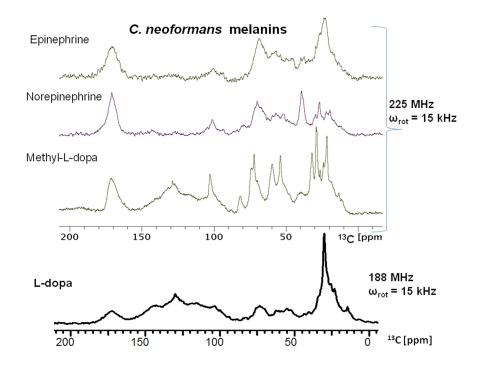
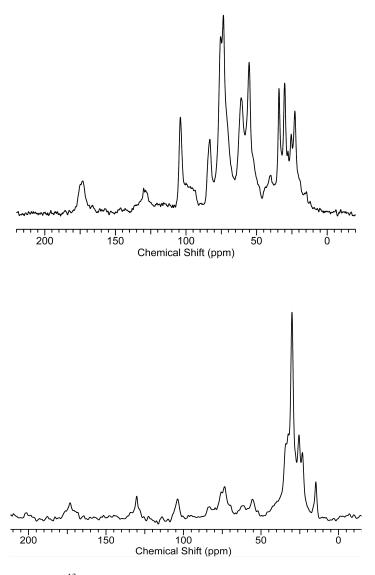
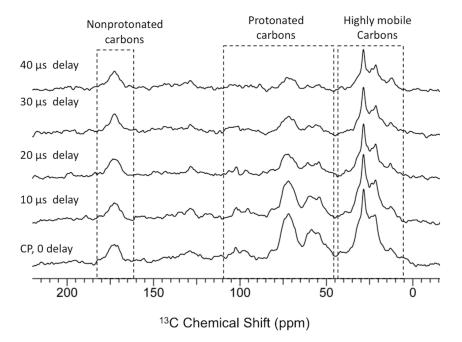
Supporting Information for


Using Solid-State NMR to Monitor the Molecular Consequences of *Cryptococcus neoformans* Melanization with Different Catecholamine Precursors

Subhasish Chatterjee,[†] Rafael Prados-Rosales,[‡] Susana Frases,^{‡,⊥} Boris Itin,[§] Arturo Casadevall,[‡] and Ruth E. Stark*,[†]


[†]Department of Chemistry, City College of New York, Graduate Center and Institute for Macromolecular Assemblies, City University of New York, New York, New York 10031, United States

[‡]Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, United States


[§]New York Structural Biology Center, New York, New York 10027, United States

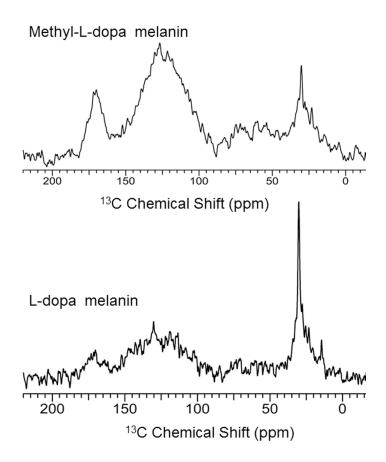

Figure S1. 188 and 225 MHz CPMAS solid-state ¹³C NMR spectra of *C. neoformans* melanins obtained by *in vitro* biosynthesis, showing enhanced resolution as compared with analogous spectra at a ¹³C frequency of 150 MHz (Figure 1). Comparisons of the L-dopa and epinephrine melanin spectra in Figures 1 and S1, which are derived from separate fungal preparations, also attest to the reproducibility of the growth and extraction procedures.

Figure S2. (Top) 150 MHz ¹³C CPMAS Spectrum of *C. neoformans* melanin produced with norepinephrine and U-¹³C-glucose. The spectrum was acquired at 15 kHz spinning frequency. (Bottom) 150 MHz ¹³C CPMAS Spectrum of *C. neoformans* melanin produced with epinephrine and U-¹³C-glucose. The spectrum was acquired at 10 kHz spinning frequency.

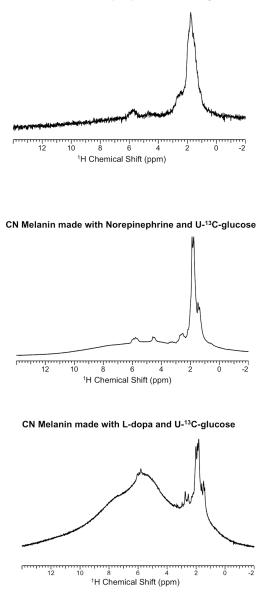


Figure S3. 150 MHz CPMAS solid-state ¹³C spectra of *C. neoformans* melanin produced with natural abundance L-dopa and $[U^{-13}C_6]$ -glucose. All data were acquired at a 10 kHz spinning frequency and with delayed decoupling, the introduction of a series of time delays (10-40 μ s) in the proton decoupling which permitted the dephasing of NMR signals from rigid singly and doubly protonated carbons.

Figure S4. 150 MHz ¹³C DPMAS spectra of *C. neoformans* melanins produced with L-dopa and methyl-L-dopa. All spectra were acquired at a 15 kHz spinning speed.

CN Melanin made with Epinephrine and U-¹³C-glucose

Figure S5. Solid-state MAS ¹H spectra of *C. neoformans* (CN) melanins produced from U-¹³Cglucose and natural abundance L-dopa, norepinephrine, and epinephrine acquired at a ¹H frequency of 600 MHz. A spinning rate of 35 kHz was used to acquire all spectra except for epinephrine, which was obtained at 15 kHz; chemical shifts were referenced indirectly, using a calculation from gyromagnetic ratios of ¹H and ¹³C according to IUPAC recommendations. ¹

Reference Cited

(1) Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.; Goodfellow, R.; Granger, P. Solid State Nucl Mag **2002**, 22, 458.