Supporting Information

Discriminating D-Amino Acid Containing Peptide Epimers by

Radical Directed Dissociation Mass Spectrometry

Yuanqi Tao*, Neil Quebbemann*, Ryan R. Julian†

* Department of Chemistry, University of California, Riverside, California, 92521

† Corresponding author: Ryan R. Julian, Department of Chemistry, University of California,

Riverside, California, 92521

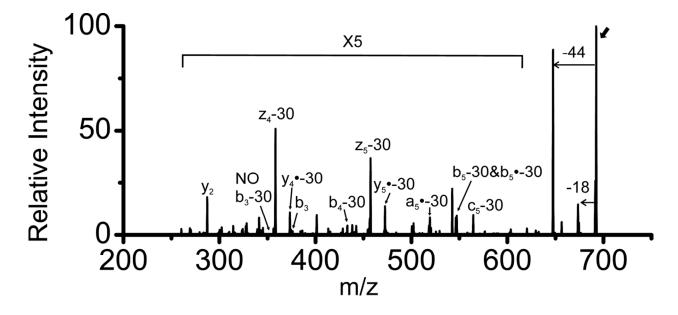
Phone: (951) 827-3958,

Email: ryan.julian@ucr.edu

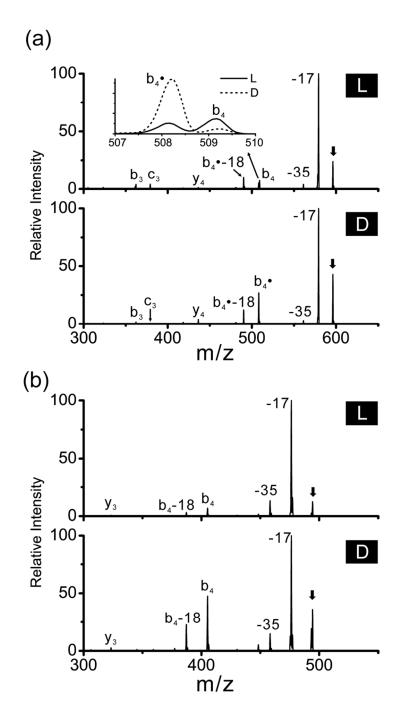
Abstract for Supporting Information

The supporting information contains some experimental details and several mass spectra for the

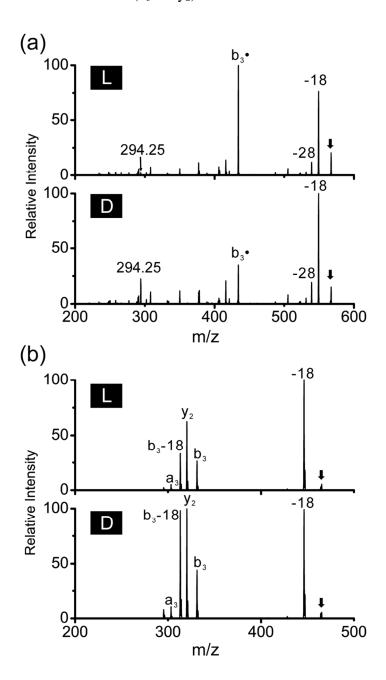
D-amino acid containing peptides mentioned in the text. The first figure confirms the -30 loss

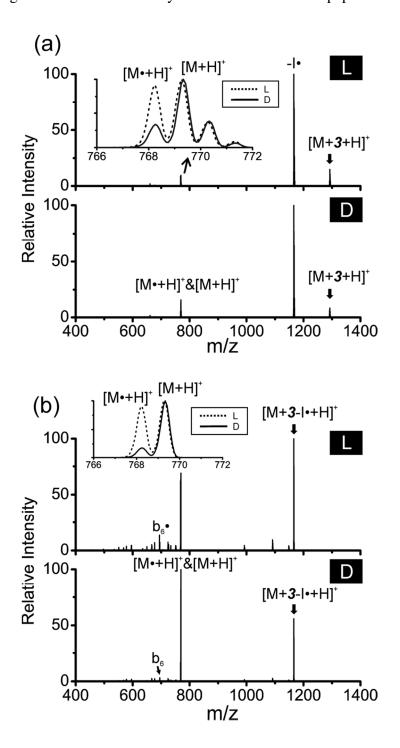

from PD of D-ser ¹DVGSNK-NH₂ is from serine side chain. Figure S-2 and S-3 compare RDD

and CID spectra for GLSFA-NH₂ and GSWD. Figure S-4 and S-5 show the radical transfer


efficiency differences for $YAFDVVG-NH_2$ and $ASTTTNYT-NH_2$.

Page S-1


Figure S-1. CID of -30 loss from PD of $[^{1}DVG\underline{S}NK-NH_{2} + H]^{+}$ (D-ser epimer). A series of b_{3} , b_{4} -30, b_{5} -30 fragments are observed, while b_{3} -30 ion is not present in the spectrum, which verifies that the -30 loss is from serine.


Figure S-2. (a) PD-CID of $[{}^{1}GL\underline{S}FA-NH_{2}+H]^{+}$ and (b) CID of $[GL\underline{S}FA-NH_{2}+H]^{+}$. Relative intensities of b₄• are significantly different between the two epimers. The R_{Chiral} value is 32±4 (b₄•/c₃) for RDD and 6.9±0.2 (b₄-18/-17) for CID.

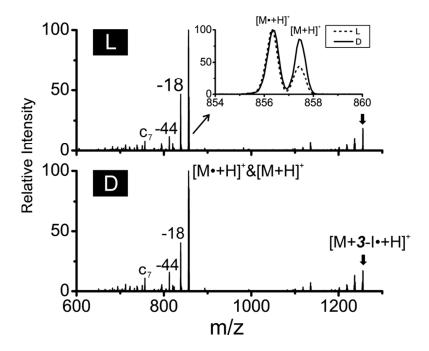

Figure S-3. (a) PD-CID of $[^{1}G\underline{S}WD + H]^{+}$ and (b) CID of $[G\underline{S}WD + H]^{+}$. RDD shows a better chiral discrimination ability with a R_{Chiral} value of 12 ± 1 (peak $294.17/b_{3}\bullet$) while the number for CID is 1.85 ± 0.05 (b₃-18/y₂).

Figure S-4. (a) PD of $[Y\underline{\mathbf{A}}FDVVG-NH_2+\mathbf{3}+H]^+$ and (b) PD-CID of $[Y\underline{\mathbf{A}}FDVVG-NH_2+\mathbf{3}+H]^+$ epimers. The hydrogen abstraction efficiency is limited in the D-Ala peptide.

Figure S-5. PD-CID of [$\underline{\mathbf{A}}$ STTTNYT-NH₂+**3**+H]⁺ epimers. The radical transfer efficiency difference is very easy to identify.

Figure S-6. (a) PD-CID of $[^{1}\underline{\mathbf{D}}AEFR + H]^{+}$ and (b) CID of $[\underline{\mathbf{D}}AEFR + H]^{+}$ epimers. RDD shows a better chiral discrimination ability with a R_{Chiral} value of 6.2 ± 0.3 (peak $z_{4}^{+}/-44$) while the number for CID is 2.33 ± 0.07 ($y_{4}^{+}/-17$).

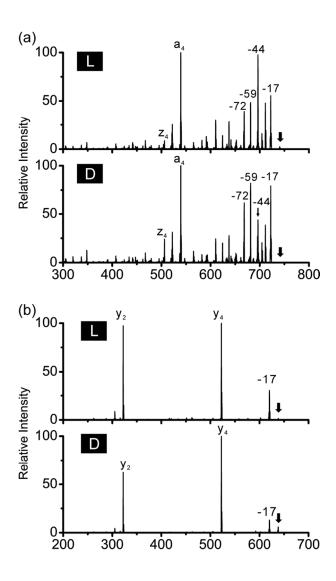
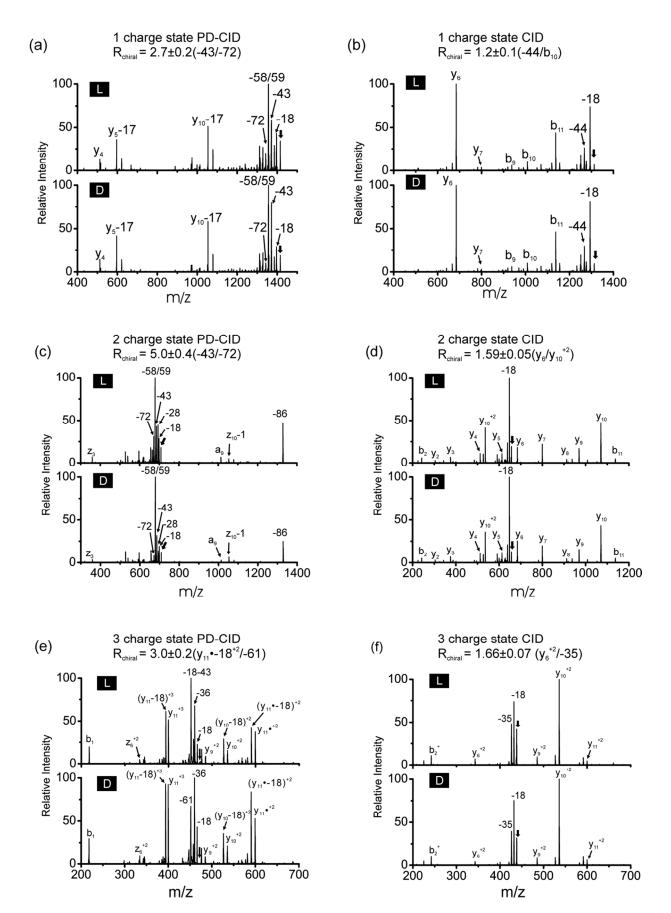



Figure S-7. (a) PD-CID of [¹IQTGL<u>D</u>ATHAER+H]⁺ epimers. (b) CID of [IQTGL<u>D</u>ATHAER+H]⁺ epimers. (c) PD-CID of [¹IQTGL<u>D</u>ATHAER+2H]²⁺ epimers. (d) CID of [IQTGL<u>D</u>ATHAER+2H]²⁺ epimers. (e) PD-CID of [¹IQTGL<u>D</u>ATHAER+3H]³⁺ epimers. (f) CID of [IQTGL<u>D</u>ATHAER+3H]³⁺ epimers. This demonstrated that RDD provides better chiral discrimination than CID in different charge states.

Page S-8

Synthesis of IBA-18C6. 0.50 mmol DCC in 5.0 mL dioxane was added to a 50 mL round bottom flask containing 0.50 mmol of 4-iodobenzoic acid and 0.50 mmol 2-hydroxymethyl-18-crown-6 ether. A catalytic amount of DMAP (~10 mg) was added. After a 12 h reaction period, a crystalline hair-like precipitate was observed. The precipitate was removed by filtration. The filtrate was then evaporated over nitrogen.