High Charge Mobility in a Tetrathiafulvalene-Based Microporous Metal-Organic Framework

Tarun C. Narayan,[†] Tomoyo Miyakai,[‡] Shu Seki,[‡] and Mircea Dincă[†]*

e-mail: mdinca@mit.edu

Materials. Tetraethyl tetrathiafulvalene tetrabenzoate (Et₄TTFTB) was prepared according to a literature procedure. ⁱ Zinc nitrate hexahydrate (99%, Alfa Aesar), tetrabutylammonium hexafluorophosphate (\geq 99%, Fluka), ethanol (Macron Chemical), and *N,N*-dimethylformamide (DMF, Macron Chemical) were obtained from commercial sources and used as received unless otherwise indicated. Dry, deaereated DMF was obtained by degassing with a vigorous flow of argon for 30 min and then passing the solvent through two alumina columns in a Glass Contour Solvent System. CDCl₃ and DMSO- d_6 were purchased from Cambridge Isotope Laboratories and used as received.

Physical characterization. NMR spectra were recorded on a Varian 300 Mercury NMR spectrometer and a Bruker Avance-400 NMR spectrometer. ¹H NMR data are reported as follows: chemical shift (multiplicity (br s = broad singlet, dt = doublet of triplets), integration, coupling constants, and peak assignments). ¹H and ¹³C chemical shifts are reported in ppm from TMS with the residual solvent resonances as internal standards. Elemental analyses were performed by Midwest Microlab. Thermogravimetric analysis (TGA) was performed on a TA Instruments Q500 Thermogravimetric Analyzer at a heating rate of 0.5°C/min under a nitrogen gas flow of 90 mL/min on a platinum pan.

X-ray diffraction studies. A diffraction-quality single crystal was mounted on a Kapton loop using motor oil. Low temperature (100 K) diffraction data (φ - and φ -scans) were collected on a Bruker-AXS X8 Kappa Duo diffractometer coupled to a Smart APEX II CCD detector with MoKa radiation ($\lambda = 0.71073$ Å) from a *IµS*-micro source. Absorption and other corrections were applied using SADABS. The structure was solved by direct methods using SHELXS and refined against F^2 on all data by full-matrix least squares as implemented in SHELXL-97. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions using a riding model.

Powder X-ray diffraction (PXRD) patterns were recorded with a Bruker D8 Advance diffractometer equipped with a $\theta/2\theta$ Bragg-Brentano geometry and nickel-filtered Cu K α radiation (K α_1 = 1.5406 Å, K α_2 = 1.5444 Å, K α_1 /K α_2 = 0.5). The tube voltage and current were 40 kV and 40 mA, respectively. Samples for PXRD were prepared by placing a thin layer of **1** on a zero-background silicon (510) crystal plate.

[†]Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA

[‡]Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Gas sorption studies. A Micromeritics ASAP 2020 Surface Area and Porosity Analyzer was used to measure the nitrogen adsorption isotherm. An oven-dried sample tube equipped with a TranSealTM (Micromeritics) was evacuated and tared. The sample was transferred to the sample tube, which was then capped by a TranSealTM. The sample was heated to 200°C under a vacuum of 2 mtorr for 12 hours, at which point the outgas rate was less than 2 mtorr/minute. The evacuated sample tube was weighed again and the sample mass was determined by subtracting the mass of the previously tared tube. The N₂ isotherm was measured using a liquid nitrogen bath (77 K). Ultra high purity grade (99.999% purity) N₂ and He, oil-free valves and gas regulators were used for the free space correction and measurement.

Flash photolysis-time-resolved microwave conductivity (FP-TRMC) measurements.

FP-TRMC measurements were conducted at 25 °C under ambient conditions, using MOF/poly(methylmethacrylate) films (40/ 60 in wt%). The microwave power and frequency were set at 3mW and ~ 9.1 GHz, respectively. The charge carriers were generated in the films by direct excitation of MOFs using a third harmonic generation (λ = 355 nm) light pulses from a Nd: YAG laser (spectra Physics, INDY-HG). The excitation density was tuned at 6.4 × 10¹⁵ cm⁻² photons per pulse. The TRMC signal from a diode was recorded on a digital oscilloscope (Tektronix, TDS 3032B). Details of the experimental setup are described elsewhere.ⁱⁱ

To determine the values of charge carrier generation quantum yield ϕ , we integrated the time-of-flight (TOF) transient at fixed bias voltage. The values of charge carrier generation quantum yield ϕ were estimated by time-of-flight (TOF) transient current integration with 10 k Ω terminate resistance to be 1.6 \times 10⁻⁴ and 4.3×10⁻³ for 1 and H₄TTFTB, respectively, upon irradiation with a 355 nm pulse laser at a power of 8.3 \times 10¹⁵ photons cm⁻². TOF transient current integration measurements performed on 5-7 μ m thick (1) and 9-12 μ m thick (H₄TTFTB) /poly(methyl methacrylate) blend films (40/60 in wt%) between Al (70 nm) and Au (30 nm) electrodes on silicon wafer substrates.

Flash photolysis transient absorption measurements.

Transient spectroscopy were conducted at 25 °C under ambient conditions, using H₄TTFTB /poly(methylmethacrylate) films (40/ 60 in wt%) deposited onto quartz substrate at ~ 500 nm thick. Transimittance of excitation light pulses at 355 nm for the dispersed film was measured by PE25 power meter of Ophir Optoronics Ltd. Time-dependent absorption spectral changes were monitored by Hamamatsu C7700 streak camera via a Hamamatsu C5094 spectrometer upon direct excitation of H₄TTFTB using a third harmonic generation (λ = 355 nm) light pulses from a Nd: YAG laser (spectra Physics, INDY-HG). The excitation density was tuned at 6.1 × 10¹⁵ cm⁻² photons per pulse. To correct a 2-dimensional time-wavelength correlation data of the transient absorption, the streak scope images were averaged over 1600 images.

Tetrathiafulvalene tetrabenzoic acid • **1.5 CH**₃**OH** (**H**₄**TTFTB**). This procedure was adapted from a literature procedure. Methanol, THF, and distilled water were degassed under a vigorous flow of nitrogen for 30 minutes. A 50 mL flask was charged with Et_4 TTFTB (734 mg, 0.921 mmol) and subjected to three cycles of evacuation and refilling with N_2 . Degassed methanol (7 mL) and THF (7 mL) were added to generate a suspension. In a separate flask, sodium hydroxide (466 mg, 11.6 mmol) was dissolved in degassed water (5 mL). The sodium hydroxide solution was added to Et_4 TTFTB under N_2 and the reaction was heated to reflux for 12 hours. The

reaction was then cooled to room temperature and the volatiles were removed *in vacuo*. A 1M solution of HCl (30 mL) was added to afford a maroon precipitate, which was collected by filtration and washed with water (50 mL). The product was collected and dried under high vacuum for 12 hours to afford **H₄TTFTB** as a maroon solid (556.5 mg, 0.813 mmol, 88% yield). ¹H NMR (DMSO- d_6): $\delta = 13.14$ (br s, 4H, CO₂H), 7.87 (dt, 8H, J = 8.3 Hz, 1.8 Hz, CHCCO₂H), 7.35 (dt, 8H, J = 8.4 Hz, 1.8 Hz, SCCCH). ¹³C NMR (DMSO- d_6): $\delta = 166.5$, 135.5, 131.2, 129.9, 129.2, 129.1, 107.7. Anal. Calcd. for C_{35.5}H₂₆O_{9.5}S₄: C, 58.18; H, 3.57. Found: C, 57.99; H, 3.60.

Zn₂TTFTB(H_2O)₃(**DMF**)₂ (1). *X-ray quality single crystals:* A solution of zinc nitrate hexahydrate in 1:1 water/ethanol (66.5 mM, 0.7 mL) was added to a solution of H_4TTFTB in 3:1 DMF/ethanol (17.9 mM, 0.7 mL). The reaction was heated to 65°C for 72 hours to afford dark red needles. Anal. Calcd. for $C_{40}H_{36}N_2O_{13}S_4Zn_2$: C, 47.48; H, 3.59; N, 2.77. Found: C, 47.51; H, 3.60; N, 2.70.

Bulk synthesis: Zinc nitrate hexahydrate (319 mg, 1.07 mmol) was dissolved in 1:1 water/ethanol (32 mL). **H₄TTFTB** (200 mg, 0.292 mmol) was dissolved in DMF (24 mL). To this was added ethanol (8 mL). The zinc nitrate solution was slowly added to **H₄TTFTB**, making sure that no precipitate formed upon addition. The reaction was heated at 75°C for 72 hours to afford a precipitate. The product was collected by filtration and washed with DMF (40 mL) and ethanol (40 mL) to afford a dark maroon powder (221 mg, 0.218 mmol, 75%). PXRD of the bulk material confirmed phase purity. The powder was evacuated at 200°C for 12 hours at 4 mtorr. Anal. Calcd. for $C_{34}H_{16}O_{8}S_{4}Zn_{2}$: C, 50.32; H, 1.99. Found: C, 49.80; H, 1.64.

Table S1. Crystal data and structure refinement parameters for 1.

parameters for 1.
$C_{41.59}H_{38.99}N_{1.90}O_{12.85}S_4Zn_2$
1029.96
100(2)
0.71073
0.20 x 0.05 x 0.05
Hexagonal
P6 ₅
19.293(3)
19.293(3)
20.838(3)
90
90
120
6717.4(17)
6
1.528
1.322
3172
2.33 to 24.34°
$-22 \le h \le 22$
$-22 \le k \le 22$
-24 ≤ 1 ≤ 24
99.8%
105711/7532
0.9368 and 0.7779
7352/5/589
0.0665
1.062
$R_1 = 0.0216$
$wR_2 = 0.0498$
$R_1 = 0.0227$
$WR_2 = 0.0504$
$0.430 \text{ and } -0.193 \text{ e}^{-1}/\text{Å}^{3}$

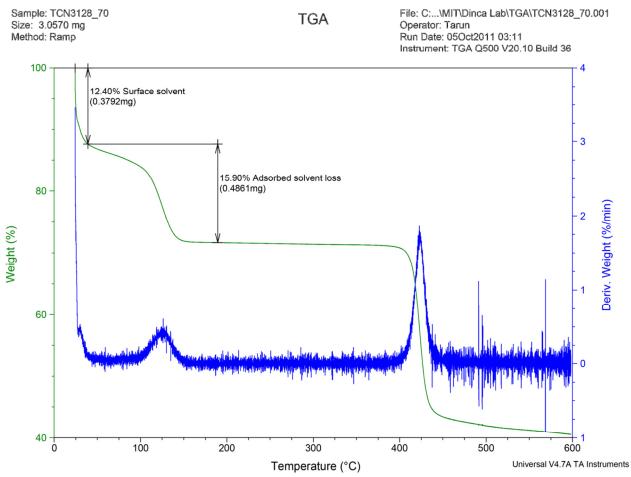
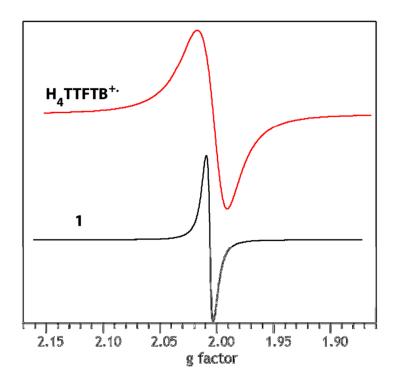
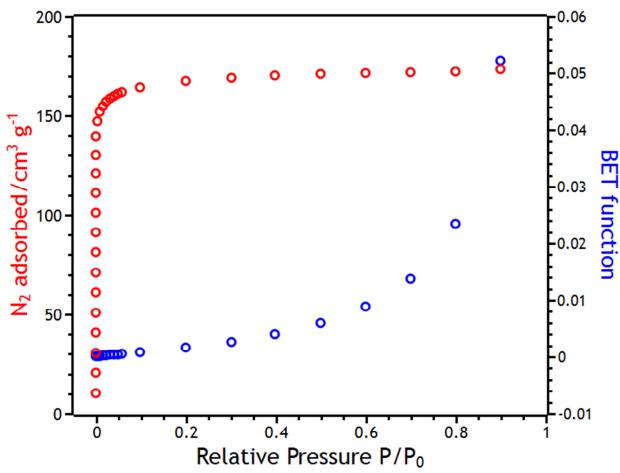
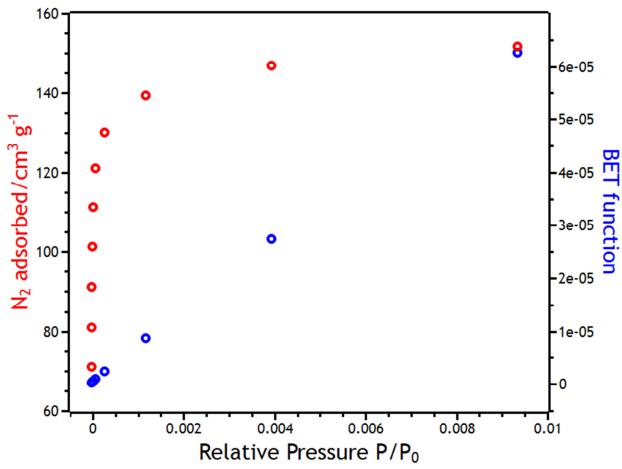


Figure S1. TGA profile of 1 obtained at a heating rate of 1°C/min under a constant stream of N₂.

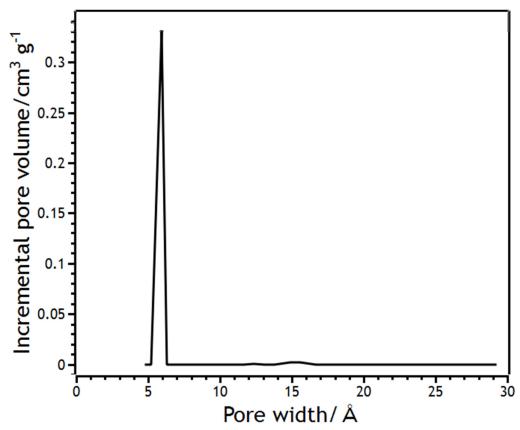

Figure S2. EPR spectra of 1 and H₄TTFTB.

Figure S3. N_2 adsorption isotherm (red) and BET function (blue) for **1** at 77K. The MOF was activated at 200°C and 4 mtorr.

Figure S4. The portion of the N_2 adsorption isotherm (red) giving a linear BET function (blue) that was used to find the BET surface area of 1. The resulting fit gave C = -8189 and a surface area of 662(2) m²/g with a correlation coefficient of 0.9999730.

Figure S5. The pore size distribution of 1 calculated from the N_2 adsorption isotherm using the Tarazona non-local density functional theory method implemented in the ASAP 2020 software provided by Micromerities.

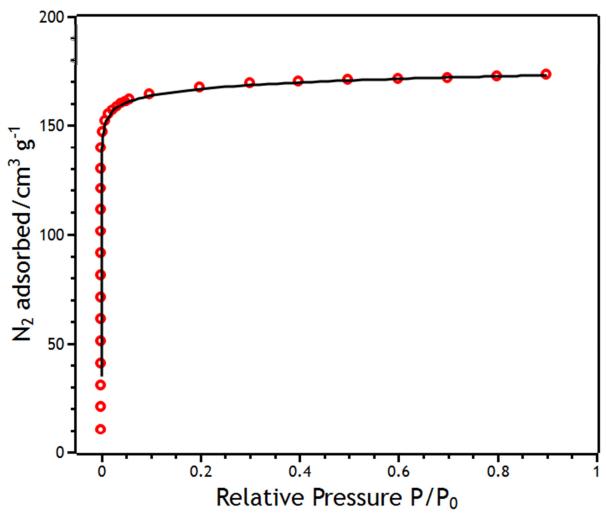


Figure S6. Fit calculated from the Tarazona non-local density functional theory pore size fit of the N_2 adsorption isotherm of 1.

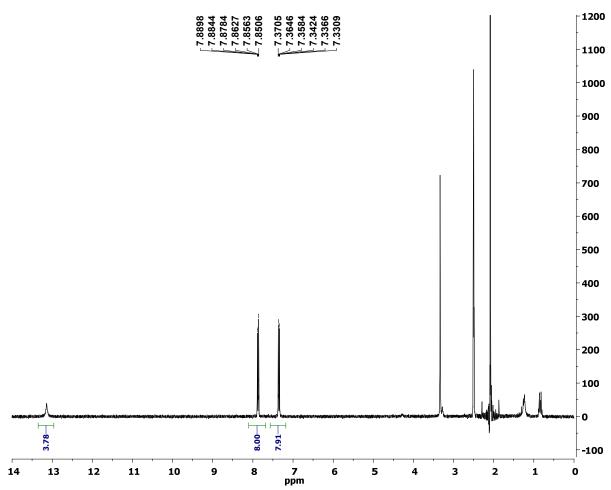


Figure S7. ¹H NMR spectrum of H₄TTFTB.

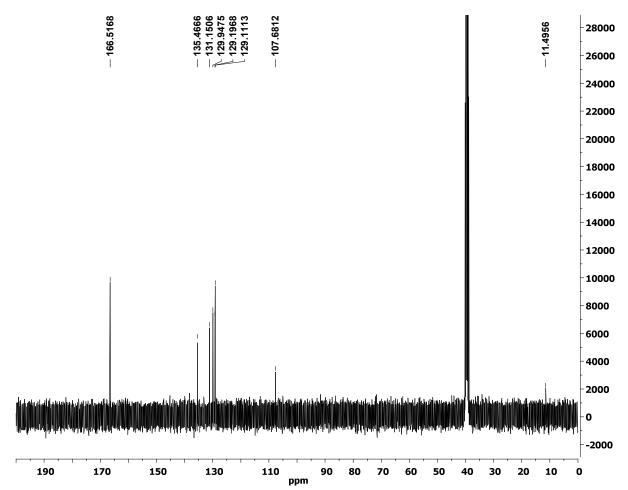
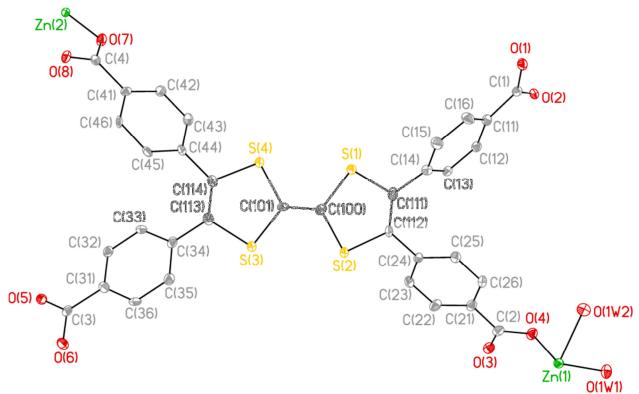
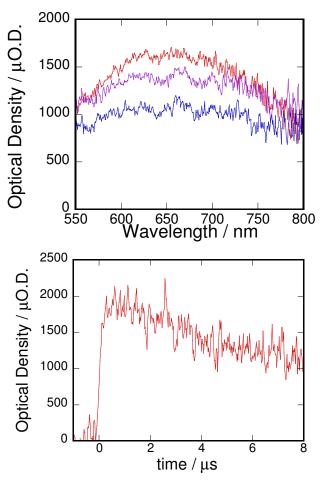




Figure S8. ¹³C NMR spectrum of H₄TTFTB.

Figure S9. An ORTEP representation of the asymmetric unit of **ZnTTFTB** with ellipsoids drawn at the 50% probability level. Solvent molecules and hydrogen atoms have been removed for clarity.

Figure S10. *Top*: transient absorption spectra of H_4TTFTB film dispersed into PMMA. Red, violet, and blue lines are recorded at 0.5 (averaged in the range of 0.45~0.55), 1 (0.95~1.05), and 8 (7.95~8.05) µs after pulse exposure, respectively. *Bottom*: kinetic trace of the transient absorption at 650 nm.

-

iii Li, J.-R.; Zhou, H.-C. Angew. Chem. Int. Ed. 2009, 48, 8465.

ⁱ Mitamura, Y.; Yorimitsu, H.; Oshima, K.; Osuka, A. Chem. Sci. 2011, 2, 2017.

¹¹ (a) Seki, S.; Yoshida, Y.; Tagawa, S.; Asai, K.; Ishigure, K.; Furukawa, K.; Fujiki, M.; Matsumoto, N. Philos. Mag. B 1999, 79, 1631-1645. (b) Grozema, F. C.; Siebbeles, L. D. A.; Warman, J. M.; Seki, S.; Tagawa, S.; Scherf, U. Adv. Mater. 2002, 14, 228-231. (c) Saeki, A.; Seki, S.; Sunagawa, T.; Usida, K.; Tagawa, S. Philos. Mag. B 2006, 86, 1261-1276.