Supporting Information

Unsymmetrical Dicarbenes Based on *N*-Heterocyclic/Mesoionic Carbene Frameworks: A Stepwise Metallation Strategy for the Generation of a Dicarbene-Bridged Mixed-Metal Pd/Rh Complex

Matthew T. Zamora[†], Michael J. Ferguson^{†,‡}, Robert McDonald^{†,‡}, Martin Cowie^{*,†}

[†]Department of Chemistry and [‡]X-ray Crystallography Laboratory, University of Alberta, Edmonton,

Alberta, Canada T6G 2G2.

E-mail: martin.cowie@ualberta.ca.

Table of Contents

Selected NMR Spectra	. 2
Crystallographic Section	15

Selected NMR Spectra

Figure S1 ¹H NMR spectrum (299.97 MHz, acetonitrile- d_3 , 27.5 °C) of compound **2c**.

Figure S2 ¹³C{¹H} NMR spectrum (100.58 MHz, acetonitrile- d_3 , -0.1 °C) of compound **2c**.

Figure S3 ¹H NMR spectrum (299.97 MHz, chloroform-*d*, 27.5 °C) of compound **3a**.

Figure S4 ${}^{13}C{}^{1}H$ NMR spectrum (125.69 MHz, chloroform-*d*, 27.7 °C) of compound **3a**.

Figure S5 ¹H NMR spectrum (498.12 MHz, chloroform-d, 27.5 °C) of compound **3c**.

Figure S6 ${}^{13}C{}^{1}H$ NMR spectrum (125.69 MHz, chloroform-*d*, 27.5 °C) of compound **3c**.

Figure S7. ¹H NMR spectrum (498.12 MHz, acetonitrile- d_3 , 26.1 °C) of complex **4b** with expanded olefinic/aromatic and ⁱPr regions.

Figure S8. ¹H NMR spectrum (499.82 MHz, acetonitrile- d_3 , 27.7 °C) of complex **6b** with expanded aromatic and Pr regions.

Figure S9 ¹H NMR spectrum (498.12 MHz, acetonitrile- d_3 , 26.1 °C) of compound **7c**.

Figure S10 ¹³C{¹H} NMR spectrum (125.69 MHz, acetonitrile- d_3 , 27.7 °C) of compound **7c**.

Figure S11 ¹H NMR spectrum (499.82 MHz, acetonitrile- d_3 , 27.7 °C) of complex **10b**_{*cis*} with expanded olefinic/aromatic and ^{*i*}Pr regions.

Figure S12 ¹H NMR spectrum (125.69 MHz, acetonitrile- d_3 , 27.7 °C) of compound **10b**_{*cis*}.

Figure S13 ¹H NMR spectrum (399.80 MHz, acetonitrile- d_3 , 26.5 °C) of complex 11 with expanded olefinic/aromatic region.

Crystallographic Section

Crystallographic experimental details for compounds 4b, 5b, 7b, and $10b_{cis}$

Table S1.Crystallographic Data

Compound	4b	5b	76 • 4CH ₃ CN	10b _{cis} • 2CH ₃ CN
Formula	$C_{22}H_{29}F_6N_5O_6S_2$	$C_{22}H_{30}I_2N_5O_2Rh$	$C_{28}H_{40}I_3N_9Pd$	$C_{42}H_{49}I_3N_7PPd$
Formula weight	637.62	753.22	989.79	1169.95
Crystal dimensions (mm)	$0.47 \times 0.44 \times 0.04$	$0.27 \times 0.25 \times 0.05$	$0.60 \times 0.11 \times 0.09$	$0.48 \times 0.28 \times 0.06$
Crystal system	monoclinic	triclinic	monoclinic	triclinic
Space group	$P2_1/c$ (No. 14)	<i>P</i> 1 (No. 2)	<i>C</i> 2/ <i>c</i> (No. 15)	<i>P</i> 1 (No. 2)
Unit cell parameters ^a				
<i>a</i> (Å)	15.5497 (7)	10.1647 (5)	30.70 (2)	13.782 (3)
<i>b</i> (Å)	14.4945 (7)	10.4449 (5)	17.50 (1)	15.694 (3)
<i>c</i> (Å)	12.9298 (6)	13.1034 (6)	15.149 (9)	22.394 (5)
α (°)		76.4620 (5)		79.906 (3)
β (°)	102.3006 (6)	72.6898 (5)	119.530 (7)	88.010 (3)
γ (°)		78.6303 (5)		86.666 (3)
$V(\text{\AA}^3)$	2847.3 (2)	1279.0 (1)	7079 (7)	4759 (2)
Z	4	2	8	4
$ ho_{ m calcd}$ (g cm ⁻³)	1.487	1.956	1.857	1.633
$\mu (\mathrm{mm}^{-1})$	0.272	3.109	3.173	2.405
Diffractometer		Bruker D8/AP	EX II CCD ^b	
Radiation (λ [Å])		graphite-monochromat	ed Mo Kα (0.71073)	
Temperature (°C)	-100			
Scan type	ω scans (0.3°) (15 s exp) ω scans (0.3°) (20 s exp)			
2 <i>θ</i> max (°)	52.80	54.96	52.80	55.28
	22483 (-19 $\leq h \leq 19$,	$11340 \; (-13 \le h \le 13,$	$26866 \; (-38 \le h \le 38,$	$42692\;(-17 \le h \le 17,$
Total data collected	$-18 \le k \le 18, -16 \le l \le$	$-13 \leq k \leq 13, -17 \leq l \leq$	$-21 \leq k \leq 21, -18 \leq l \leq$	$-20 \leq k \leq 20, -29 \leq l \leq$
	16)	16)	18)	29)
Independ reflns (R_{int})	5831 (0.0287)	5814 (0.0127)	7143 (0.0871)	21838 (0.0299)
Obsd reflns $[F_0^2 \ge 2\sigma(F_0^2)]$	4762	5305	4484	16825
Restraints/params	0 / 372	0 / 292	6° / 288	0 / 951
Goodness-of-fit $(S)^d$ [all data]	1.021	1.036	1.080	1.031
Final R indices ^e				
$\overline{R_1 \left[F_o^2 \ge 2\sigma(F_o^2)\right]}$	0.0361	0.0172	0.0734	0.0351
wR_2 [all data]	0.0968	0.0436	0.2186	0.0924
Largest diff peak, hole (e $Å^{-3}$)	0.322, -0.332	0.533, -0.401	2.100, -1.451	1.063, -0.870

- ^a Obtained from least-squares refinement of 7376 reflections with $4.66^{\circ} < 2\theta < 43.22^{\circ}$ for **4b**; 9930 reflections with $4.64^{\circ} < 2\theta < 54.96^{\circ}$ for **5b**; 2599 reflections with $4.68^{\circ} < 2\theta < 37.90^{\circ}$ for **7b**; 6916 reflections with $4.50^{\circ} < 2\theta < 41.80^{\circ}$ for **10b**_{cis}.
- ^b Programs for diffractometer operation, data collection, data reduction, and absorption correction were those supplied by Bruker.
- ^c The C–C distances within the disordered isopropyl group were restrained to be the same by use of the *SHELXL* **SAME** instruction.
- ^d $S = [w(F_o^2 F_c^2)^2/(n-p)]^{1/2}$ (*n* = number of data; *p* = number of parameters varied; $w = [\sigma^2(F_o^2) + (a_0P)^2 + a_1P]^{-1}$ where $P = [Max(F_o^2, 0) + 2F_c^2]/3$; for **4b**, $a_0 = 0.0435$, $a_1 = 1.7352$; for **5b**, $a_0 = 0.0211$, $a_1 = 0.5336$; for **7b**, $a_0 = 0.1220$, $a_1 = 0$; for **10b**_{cis}, $a_0 = 0.0419$, $a_1 = 2.5075$.

^e
$$R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$$

Least squares planes analysis

Table S2.Dihedral Angle Results for 7b

Planes	Dihedral description	Angle (°)
1 – 2	Pd sq. plane – NHC plane	86.1(3)
2-3	NHC plane – MIC(H) ⁺ plane	78.8(4)
3-4	MIC(H) ⁺ plane – Ph _{Dipp} plane	82.1(4)

Table S3.Dihedral Angle Results for $10b_{cis}$

Planes	Dihedral description	Angle (°)
1 – 2	Pd sq. plane – NHC plane	86.25(9)
2-3	NHC plane – MIC(H) ⁺ plane	82.1(2)
3 - 4	MIC(H) ⁺ plane – Ph _{Dipp} plane	82.1(1)