Supporting Information

Automated Synthesis of a Library of Triazolated 1,2,5-Thiadiazepane 1,1-Dioxides via a Double aza-Michael Strategy

Qin Zang,^{a,b} Salim Javed,^{a,b} David Hill,^b Farman Ullah,^{b,c} Danse Bi,^a Patrick Porubsky,^b

Benjamin Neuenswander,^b Gerald H. Lushington,^b Conrad Santini,^b Michael G. Organ,^{b,c} Paul R. Hanson^{a,b,*}

^a Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582

^b The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD), 2034

Becker Drive, Del Shankel Structural Biology Center, Lawrence, KS 66047

^c Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3 Canada

Table of Contents

General Experimental Methods: *SI-2*General Procedure of Compounds 2, 3, 7: *SI-3*General Procedure A and B for Compounds 6 and 8: *SI-4*Characterization Data for Compounds 2, 3, 7: *SI-5* to *SI-8*Characterization Data for Representative Library Compounds 6: *SI-9* to *SI-13*Characterization Data for Representative Library Compounds 8: *SI-14* to *SI-19*Spectral Data for Compounds 2, 3, 7: *SI-20* to *SI-27*Spectral Data for Representative Library Compounds 6 and 8: *SI-28* to *SI-48*Table of Mass Spectroscopy Data, Final Mass and Purity for all Library Compounds: *SI-49* to *SI-51*Lipinski and ADME Data: *SI-52* to *SI-54*

General Experimental Methods

Stirring was achieved with oven-dried magnetic stir bars. Toluene, THF and CH₂Cl₂ were either purchased through Sigma-Aldrich or purified by passage through a Solv-Tek purification system employing activated Al₂O₃ (Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518–1520). Et₃N was purified by passage over basic alumina or distilled over CaH and stored over KOH. Flash column chromatography was performed with Sorbent Technologies (30930M-25, Silica Gel 60A, 40-63 um). Thin layer chromatography was performed on silica gel 60F254 plates (EM-5717, Merck). Deuterated solvents were purchased from Cambridge Isotope laboratories. ¹H, ¹³C NMR spectra were recorded on a Bruker DRX-400 spectrometer operating at 400 MHz, 100 MHz respectively as well as a Bruker DRX-500 spectrometer operating at 500 MHz, 126 MHz respectively. High-resolution mass spectrometry (HRMS) and FAB spectra were obtained either on a VG Instrument ZAB double-focusing mass spectrometer boron a LCT Premier Spectrometer (Micromass UK Ltd) operating in the ESI mode (MeOH). Library production was carried out on a Chemspeed Accelerator SLT-100. Products were purified by an automated preparative reverse-phase HPLC (Waters 2767 Mass Directed Fractionation) detected by UV (270 nm, Waters Xbridge MS C-18 column, 19x150 mm, 5 µm elution with the appropriate gradient of acetonitrile in pH 9.8 buffered aqueous ammonium formate at 18 mL/min flow rate). Purity was determined by reverse-phase HPLC (Waters Acquity system) with peak area (UV) at 214 nm. (Waters Acquity BEH C-18 column, 2.1x50mm, 1.7 µm elution with a linear gradient of 5% acetonitrile in pH 9.8 buffered aqueous ammonium formate to 100% acetonitrile at 0.6 mL/min flow rate).

Experimental Procedures

General Procedure of Scaffolds Synthesis.

To a RB flask containing racemic TBS-protected serine methyl ester (1, 1.1 equiv) was added CH_2Cl_2 (0.25 M) and Et_3N (3 equiv). This mixture was allowed to stir for several minutes until soluble, cooled to 0 °C, and 2-2-chloroethanesulfonyl chloride (1 equiv) was added drop-wise over several minutes. The solution was slowly warmed to rt, and stirred overnight. The reaction mixture was quenched with 10% HCl and extracted with CH_2Cl_2 . The combined organic layers were washed with saturated aqueous NaHCO₃, brine, and dried (Na₂SO₄). The solution was filtered, and concentrated under reduced pressure to afford crude vinyl sulfonamide **2** as a clear, viscous oil (93%). The crude product was submitted to the following reaction without further purification.

To the crude sulfonamide **2** (1 equiv) was added DMF (0.1M), K_2CO_3 (2 equiv) and NaI (2 equiv) followed by the addition of propargyl bromide (1.5 equiv). This was allowed to stir at 60 °C for 14 hrs. The reaction was cooled to rt and filtered through a pad of celite/silica and concentrated to afford crude tertiary sulfonamide **3** as a dark orange oil. The crude product was purified by flash column chromatography on silica gel (eluent: hexane-EtOAc, 5:1) to provide the product as pale yellow oil (60%).

To the crude sulfonamide **2** (1 equiv) was added CH₃CN (0.1M) and K₂CO₃ (1.2 equiv) followed by the dropwise addition of benzyl bromides (1.2 equiv). This mixture was allowed to stir at 60 °C for 12–14 hrs. The reaction was cooled to rt, filtered through a pad of celite/silica and concentrated under reduced pressure to afford crude tertiary sulfonamide $7\{1-6\}$ as a dark orange oil. The crude product was purified by flash column chromatography on silica gel (eluent: hexane-EtOAc, 5:1) to provide products (60-92%)

Experimental Procedure A for the automated sequential one-pot elimination, double aza-Michael and Huisgen cycloaddition process to synthesize 6{1-8, 1-6} (Scheme 2).

Using a Chemspeed Accelerator SLT-100 automated synthesizer with 48 individual 13 mL reactor vessels, 1 mL of a 0.3 M (0.3 mmol, 1 equiv.) solution of the sulfonamide **3** in MeOH was added in each of the appropriate reactor vessels followed by 1 mL of a 0.33 M (0.33 mmol, 1.1 equiv.) solution of amines $4\{1-8\}$ in MeOH and 1 mL of a 0.06 M (0.06 mmol. 0.2 equiv.) solution of DBU in MeOH. The reaction mixtures were vortex shaken at 40 °C for 4 hours, after which the reaction mixtures were concentrated within the reactor vessels (6 mm Hg). To the crude products of **9** in the same reactor vessels, 2 mL of CH₂Cl₂ was added, followed by 1 mL of a 0.6 M (0.6 mmol, 2 equiv.) solution of azides **5**{*1-6*} in CH₂Cl₂. Solid CuI (0.06 mmol, 0.2 equiv.) was dispensed into each reactor vessels, and the reaction mixtures were vortex shaken at rt for 14 hrs. The mixtures were gravity filtered through a silica 500 mg SPE-Si cartridge followed by washing the SPE with ethyl acetate (2 mL). The solutions were concentrated using a Genevac EZ-series evaporator and the resulting residues were further purified using preparative HPLC.

Experimental Procedure B for the automated sequential one-pot elimination, double aza-Michael and Huisgen cycloaddition process to synthesize 8{1-6, 1-8} (Scheme 2).

Using a Chemspeed Accelerator SLT-100 automated synthesizer with 48 individual 13 mL reactor vessels, 1 mL of a 0.3 M (0.3 mmol, 1 equiv.) solution of each of 6 sulfonamides 7{*1-6*} in MeOH was added in 8 appropriate reactor vessels followed by 1 mL of a 0.33 M (0.33 mmol, 1.1 equiv.) solution of propargyl amine in MeOH and 1 mL of a 0.06 M (0.06 mmol. 0.2 equiv.) solution of DBU in MeOH. The reaction mixtures were vortex shaken at 40 °C for 4 hours, after which the reaction mixtures were concentrated within the reactor vessels (6 mm Hg). To the crude products of **9** in the same reactor vessels, 2 mL of CH₂Cl₂ was added, followed by 1 mL of a 0.6 M (0.6 mmol, 2 equiv.) solution of azides **5**{*1-8*} in CH₂Cl₂. Solid CuI (0.06 mmol, 0.2 equiv.) was dispensed into each reactor vessels, and the reaction mixtures were vortex shaken at rt for 14 hrs. The mixtures were gravity filtered through a silica 500 mg SPE-Si cartridge followed by washing the SPE with ethyl acetate (2 mL). The solutions were concentrated using a Genevac EZ-series evaporator and the resulting residues were further purified using preparative HPLC.

Characterization Data for Compounds 2, 3, 7

Methyl 3-((tert-butyldimethylsilyl)oxy)-2-(vinylsulfonamido)propanoate (2)

FTIR (neat): 3290, 2955, 2930, 2858, 1749, 1342, 1256, 1138, 1113, 837 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃): δ 6.57 (dd, *J* = 16.5, 9.9 Hz, 1H), 6.25 (d, *J* = 16.5 Hz, 1H), 5.91 (d, *J* = 9.9 Hz, 1H), 5.21 (d, *J* = 8.7 Hz, 1H), 4.09–4.04 (m, 2H), 3.88 (dd, *J* = 10.9, 4.0 Hz, 1H), 3.77 (s, 3H), 0.86 (s, 9H), 0.06 (s, 3H), 0.06 (s, 3H);

¹³C NMR (126 MHz, CDCl₃): δ 170.5, 136.5, 126.3, 64.8, 57.6, 52.6, 25.6, -5.5, -5.7;

HRMS: calculated for $C_{12}H_{26}NO_5SSi(M+H)^+ = 324.1301$; found 324.1288 (TOF MS ES+).

Methyl 3-((tert-butyldimethylsilyl)oxy)-2-(N-(prop-2-yn-1-yl)vinylsulfonamido)propanoate (3)

FTIR (neat): 3275, 2959, 1745, 1339, 1146, 972, 737, 565 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃): δ 6.61 (dd, *J* = 16.5, 9.9 Hz, 1H), 6.28 (d, *J* = 16.5 Hz, 1H), 5.95 (d, *J* = 9.9 Hz, 1H), 4.59 (m, 1H), 4.27 (dd, *J* = 18.5, 2.4 Hz, 1H), 4.22 (dd, *J* = 18.5, 2.4 Hz, 1H), 4.18 (dd, *J* = 9.1, 3.6 Hz, 1H), 4.15 (dd, *J* = 9.1, 2.4 Hz, 1H), 3.75 (s, 3H), 2.26 (t, *J* = 2.4 Hz, 1H), 0.89 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H);

¹³C NMR (126 MHz, CDCl₃): δ 169.7, 135.6, 126.8, 80.0, 71.8, 62.8, 60.9, 52.3, 35.4, 25.7, 18.1, -5.7, -5.9;

HRMS: calculated for $C_{15}H_{27}NO_5SSiNa (M+Na)^+ = 384.1277$; found 384.1256 (TOF MS ES+).

Methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-(N-(4-methoxybenzyl)vinylsulfonamido)propanoate (7{1})

FTIR (neat): 2953, 2932, 2856, 1747, 1512, 1342, 1250, 1151, 837, 777 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.33 (d, *J* = 8.7 Hz, 2H), 6.89 – 6.82 (m, 2H), 6.51 (dd, *J* = 16.6, 9.9 Hz, 1H), 6.20 (d, *J* = 16.6 Hz, 1H), 5.88 (d, *J* = 9.9 Hz, 1H), 4.54 (dd, *J* = 7.0, 4.8 Hz, 1H), 4.46 (d, *J* = 15.9 Hz, 1H), 4.42 (d, *J* = 15.9 Hz, 1H), 4.00 (dd, *J* = 10.9, 7.1 Hz, 1H), 3.97 (dd, *J* = 10.9, 4.8 Hz, 1H), 3.80 (s, 3H), 3.66 (s, 3H), 0.85 (s, 9H), 0.01 (s, 3H), -0.03 (s, 3H);

¹³C NMR (126 MHz, CDCl₃): δ 170.0, 159.1, 135.7, 129.5, 129.0, 126.3, 113.6, 62.2, 61.3, 55.3, 52.1, 49.6, 25.7, 18.1, -5.7, -5.8;

HRMS: calculated for $C_{20}H_{33}NO_6SSiK (M+K)^+ = 482.1435$; found 482.1429 (TOF MS ES+).

Methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-(*N*-(4-methylbenzyl)vinylsulfonamido)propanoate (7{2})

FTIR (neat): 2953, 2930, 2856, 1747, 1342, 1258, 1150, 1119, 837, 777 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃): δ 7.29 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 7.8 Hz, 2H), 6.53 (dd, *J* = 16.6, 9.9 Hz, 1H), 6.21 (d, *J* = 16.6 Hz, 1H), 5.89 (d, *J* = 9.9 Hz, 1H), 4.54 (dd, *J* = 7.0, 4.6 Hz, 1H), 4.49 (d, *J* = 16.1 Hz, 1H), 4.45 (d, *J* = 16.1 Hz, 1H), 4.01 (dd, *J* = 10.8, 7.0 Hz, 1H), 3.96 (dd, *J* = 10.8, 4.6 Hz, 1H), 3.66 (s, 3H), 2.33 (s, 3H), 0.84 (s, 9H), -0.01 (s, 3H), -0.06 (s, 3H);

¹³C NMR (126 MHz, CDCl₃): δ 170.0, 137.1, 135.6, 134.0, 128.9, 128.0, 126.4, 62.3, 61.4, 52.1, 49.9, 25.7, 21.1, 18.1, -5.7, -5.8;

HRMS: calculated for $C_{20}H_{37}N_2O_5SSi (M+NH_4)^+ = 445.2192$; found 445.2184 (TOF MS ES+).

Methyl 2-(N-benzylvinylsulfonamido)-3-((tert-butyldimethylsilyl)oxy)propanoate (7{3})

FTIR (neat): 2953, 2930, 2856, 1745, 1342, 1254, 1150, 1119, 837, 777 cm⁻¹;

¹**H** NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 7.4 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.25 (m, 1H), 6.54 (dd, J = 16.6, 9.9 Hz, 1H), 6.22 (d, J = 16.6 Hz, 1H), 5.91 (d, J = 9.9 Hz, 1H), 4.59 (dd, J = 6.9, 4.2 Hz, 1H), 4.54 (d, J =

16.5 Hz, 1H), 4.51 (d, *J* = 16.4 Hz, 1H), 4.03 (dd, *J* = 10.8, 6.9 Hz, 1H), 3.96 (dd, *J* = 10.8, 4.2 Hz, 1H), 3.67 (s, 3H), 0.83 (s, 9H), -0.03 (s, 3H), -0.09 (s, 3H);

¹³C NMR (126 MHz, CDCl₃): δ 170.0, 137.3, 135.4, 128.2, 127.8, 127.4, 126.6, 62.4, 61.5, 52.1, 50.1, 25.7, 18.1, -5.8, -5.9;

HRMS: calculated for $C_{19}H_{35}N_2O_5SSi (M+NH_4)^+ = 431.2036$; found 431.2051 (TOF MS ES+).

Methyl 3-((tert-butyldimethylsilyl)oxy)-2-(N-(4-chlorobenzyl)vinylsulfonamido)propanoate (7{4})

FTIR (nrat): 2953, 2930, 2856, 1745, 1493, 1342, 1254, 1151, 837, 770 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.36 (d, *J* = 8.5 Hz, 2H), 7.31–7.27 (m, 2H), 6.51 (dd, *J* = 16.5, 9.9 Hz, 1H), 6.21 (d, *J* = 16.5 Hz, 1H), 5.93 (d, *J* = 9.9 Hz, 1H), 4.61 (dd, *J* = 6.6, 3.7 Hz, 1H), 4.52 (d, *J* = 16.9 Hz, 1H), 4.49 (d, *J* = 16.9 Hz, 1H), 4.05 (dd, *J* = 10.9, 6.7 Hz, 1H), 3.95 (dd, *J* = 10.9, 3.8 Hz, 1H), 3.69 (s, 3H), 0.82 (s, 9H), -0.02 (s, 3H), -0.09 (s, 3H);

¹³C NMR (126 MHz, CDCl₃): δ 169.9, 136.2, 135.1, 133.1, 129.1, 128.3, 126.9, 62.6, 61.6, 52.2, 49.5, 25.7, 18.1, -5.8, -5.9;

HRMS: calculated for $C_{19}H_{34}CIN_2O_5SSi(M+NH_4)^+ = 465.1646$; found 465.1630 (TOF MS ES+).

Methyl 3-((tert-butyldimethylsilyl)oxy)-2-(N-(4-fluorobenzyl)vinylsulfonamido)propanoate (7{5})

FTIR (neat): 2953, 2930, 2856, 1747, 1510, 1342, 1256, 1151, 837, 775 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 (dd, J = 8.6, 5.4 Hz, 2H), 7.01 (t, J = 8.7 Hz, 2H), 6.51 (dd, J = 16.5, 9.9 Hz, 1H), 6.21 (d, J = 16.5 Hz, 1H), 5.91 (d, J = 9.9 Hz, 1H), 4.60 (dd, J = 6.8, 4.0 Hz, 1H), 4.51 (d, J = 16.5 Hz, 1H), 4.48 (d, J = 16.4 Hz, 1H), 4.03 (dd, J = 10.9, 6.8 Hz, 1H), 3.95 (dd, J = 10.9, 4.0 Hz, 1H), 3.68 (s, 3H), 0.83 (s, 9H), -0.01 (s, 3H), -0.08 (s, 3H);

¹³C NMR (126 MHz, CDCl₃): δ 170.0, 162.2 (d, ¹*J*_{CF} = 245.5 Hz), 135.3, 133.2 (d, ⁴*J*_{CF} = 3.1 Hz), 129.5 (d, ³*J*_{CF} = 8.1 Hz), 126.7, 115.0 (d, ²*J*_{CF} = 21.5 Hz), 62.4, 61.5, 52.2, 49.4, 25.7, 18.1, -5.8, -5.9;

HRMS: calculated for $C_{19}H_{31}FNO_5SSi(M+H)^+ = 432.1676$; found 432.1667 (TOF MS ES+).

Methyl 2-(N-allylvinylsulfonamido)-3-((tert-butyldimethylsilyl)oxy)propanoate (7{6})

FTIR (neat): 3028, 2952, 2856, 1747, 1346, 1255, 1157, 837, 777 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 6.46 (dd, J = 16.6, 9.9 Hz, 1H), 6.24–6.11 (m, 1H), 5.95–5.77 (m, 2H), 5.27–5.15 (m, 1H), 5.15–5.03 (m, 1H), 4.50 (dd, J = 6.6, 4.2 Hz, 1H), 4.10–3.96 (m, 2H), 3.96–3.82 (m, 2H), 3.67 (s, 3H), 1.48 (s, 1H), 0.88–0.76 (m, 9H), 0.00 (d, J = 2.8 Hz, 6H);

¹³C NMR (126 MHz, CDCl₃): δ 170.1, 135.6, 135.1, 126.3, 117.2, 62.5, 61.4, 52.2, 49.0, 25.7, 18.2, -5.6, -5.8; HRMS: calculated for $C_{15}H_{29}NNaO_5SSi (M+Na)^+ = 386.1433$; found 386.1441 (TOF MS ES+).

Characterization Data for Representative Library Compounds 6

Methyl 2-((1-(2-ethoxy-2-oxoethyl)-1*H*-1,2,3-triazol-4-yl)methyl)-5-propyl-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*1*,*6*})

FTIR (neat): 2959, 2935, 2874, 1745, 1732, 1327, 1217, 1144, 1084, 1049, 1020, 754 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (s, 1H), 5.16 (q, *J* = 17.5 Hz, 2H), 4.85 (d, *J* = 16.0 Hz, 1H), 4.51 (d, *J* = 16.0 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 4.17 (t, *J* = 8.5 Hz, 1H), 3.68 (s, 3H), 3.47 (d, *J* = 8.5 Hz, 2H), 3.31–3.16 (m, 2H), 3.09–3.01 (m, 2H), 2.52–2.36 (m, 2H), 1.44 (dt, *J* = 14.7, 7.3 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H), 0.84 (t, *J* = 7.4 Hz, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ 170.3, 170.3, 166.1, 124.9, 62.5, 58.3, 55.6, 54.5, 52.5, 50.9, 49.6, 45.5, 20.7, 14.1, 11.5, 11.4;

HRMS calculated for $C_{16}H_{28}N_5O_6S (M+H)^+ = 418.1760$; found 418.1708 (TOF MS ES+).

Methyl 2-((1-(4-chlorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-5-cyclopropyl-1,2,5-thiadiazepane-3carboxylate 1,1-dioxide (6{2,4})

FTIR (neat) cm⁻¹ 2951, 2930, 1745, 1327, 1138, 1097, 1049, 733, 492;

¹**H NMR** (500 MHz, CDCl₃) δ 7.64 (s, 1H), 7.38–7.33 (m, 2H), 7.23–7.20 (m, 2H), 5.54–5.43 (dd, J = 17.7, 15 Hz, 2H), 4.72 (d, J = 16.0 Hz, 1H), 4.49 (d, J = 16.0 Hz, 1H), 4.13 (dd, J = 10.3, 6.8 Hz, 1H), 3.59 (s, 3H), 3.58–3.46 (m, 2H), 3.30–3.23 (m, 1H), 3.19 (dt, J = 13.9, 3.4 Hz, 1H), 3.16–3.06 (m, 2H), 2.02–1.95 (m, 1H), 0.50–0.42 (m, 2H), 0.37–0.33 (m, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 170.3, 144.4, 134.9, 133.0, 129.3, 129.3, 123.3, 58.6, 55.8, 54.6, 53.5, 52.3, 49.7, 45.7, 34.5, 30.9, 7.7, 7.5;

HRMS calculated for $C_{19}H_{25}CIN_5O_4S(M+H)^+ = 454.1316$; found 454.1295 (TOF MS ES+).

Methyl 2-((1-(4-chlorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-5-(4-methylbenzyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*5*,*4*})

FTIR (neat) cm⁻¹ 2949, 2922, 2841, 1745, 1327, 1142, 1084, 1047, 1014, 781, 746, 488;

¹**H NMR** (500 MHz, CDCl₃) δ 7.68 (s, 1H), 7.34–7.30 (m, 2H), 7.23–7.20 (m, 2H), 7.15–7.10 (m, 4H), 5.57– 5.46 (dd, J = 17.8, 15 Hz, 2H), 4.84 (d, J = 16.0 Hz, 1H), 4.53 (d, J = 16.0 Hz, 1H), 4.09 (dd, J = 10.1, 6.9 Hz, 1H), 3.62 (dd, J = 39.5, 13.2 Hz, 2H), 3.54 (s, 3H), 3.45 (qd, J = 14.6, 8.5 Hz, 2H), 3.22–3.11 (m, 2H), 3.02– 2.94 (m, 2H), 2.35 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 170.1, 144.6, 137.3, 134.9, 133.1, 129.3, 129.3, 129.3, 128.5, 128.4, 123.4, 59.4, 58.5, 56.0, 54.4, 53.5, 52.3, 49.0, 45.6, 21.1;

HRMS calculated for $C_{24}H_{29}CIN_5O_4S(M+H)^+ = 518.1629$; found 518.1611 (TOF MS ES+).

Methyl 5-benzyl-2-((1-(4-methoxybenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*6*,*1*})

FTIR (neat) cm⁻¹ 2951, 2934, 2837, 1745, 1514, 1327, 1250, 1142, 1049, 1047, 1028, 783, 737, 700;

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.35–7.31 (m, 2H), 7.30–7.27 (m, 1H), 7.24–7.21 (m, 4H), 6.88– 6.84 (m, 2H), 5.47 (s, 2H), 4.89 (d, J = 15.9 Hz, 1H), 4.49 (d, J = 15.9 Hz, 1H), 4.08 (dd, J = 10.2, 6.8 Hz, 1H), 3.79 (s, 3H), 3.62 (dd, J = 38.8, 13.4 Hz, 2H), 3.54 (s, 3H), 3.48 (ddd, J = 21.5, 14.8, 8.6 Hz, 2H), 3.21–3.09 (m, 2H), 2.97 (qd, J = 14.7, 10.6 Hz, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 170.2, 159.9, 144.1, 138.0, 129.6, 128.6, 128.5, 127.6, 126.5, 123.1, 114.5, 59.2, 58.2, 55.9, 55.3, 54.5, 53.8, 52.3, 49.1, 45.5;

HRMS calculated for $C_{24}H_{30}N_5O_5S (M+H)^+ = 500.1968$; found 500.1927 (TOF MS ES+).

Methyl 2-((1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-5-(4-chlorobenzyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*7*,*3*})

FTIR (neat) cm⁻¹ 2951, 2928, 2841, 1745, 1732, 1327, 1142, 1084, 1049, 1013, 754, 725, 511, 492;

¹**H NMR** (500 MHz, CDCl₃) δ 7.64 (s, 1H), 7.36–7.34 (m, 3H), 7.31–7.28 (m, 4H), 7.19–7.16 (m, 2H), 5.55 (s, 2H), 4.91 (d, *J* = 15.9 Hz, 1H), 4.47 (d, *J* = 15.9 Hz, 1H), 4.05 (dd, *J* = 10.4, 6.7 Hz, 1H), 3.62 (d, *J* = 13.6 Hz, 1H), 3.55 (d, *J* = 13.4 Hz, 1H), 3.55 (s, 3H), 3.50 (dd, *J* = 14.8, 10.4 Hz, 1H), 3.41 (dd, *J* = 14.8, 6.7 Hz, 1H), 3.17–3.10 (m, 2H), 3.00 (ddd, *J* = 13.4, 9.4, 3.9 Hz, 1H), 2.93 (dt, *J* = 14.5, 4.1 Hz, 1H);

¹³C NMR (126 MHz, CDCl₃) δ 170.1, 144.1, 136.5, 134.5, 133.3, 129.7, 129.2, 128.9, 128.8, 128.1, 123.3, 58.2, 58.1, 55.7, 54.6, 54.3, 52.4, 49.3, 45.4;

HRMS calculated for $C_{23}H_{27}CIN_5O_4S(M+H)^+ = 504.1472$; found 504.1463 (TOF MS ES+).

Methyl 5-benzyl-2-((1-(2-ethoxy-2-oxoethyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*6*,*6*})

FTIR (neat) cm⁻¹ 2986, 2951, 1745, 1327, 1217, 1142, 1086, 1049, 1020, 739, 700;

¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (s, 1H), 7.34–7.30 (m, 2H), 7.28–7.24 (m, 3H), 5.19 (q, J = 17.5 Hz, 2H), 4.99 (d, J = 16.0 Hz, 1H), 4.51 (d, J = 16.0 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 4.17 (dd, J = 10.2, 6.8 Hz, 1H), 3.71–3.61 (m, 5H), 3.60–3.45 (m, 2H), 3.27–3.13 (m, 2H), 3.07–2.94 (m, 2H), 1.30 (t, J = 7.2 Hz, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 170.3, 166.1, 144.3, 138.0, 128.5, 128.5, 127.5, 125.0, 62.5, 58.8, 58.4, 55.8, 54.7, 52.5, 50.9, 49.0, 45.3, 14.1;

HRMS calculated for $C_{20}H_{28}N_5O_6S(M+H)^+ = 466.1760$; found 466.1718 (TOF MS ES+).

Methyl 2-((1-(4-methylbenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-5-propyl-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*1*,*2*})

FTIR (neat) cm⁻¹ 2957, 2932, 2872, 1745, 1329, 1144, 1084, 1047, 1007, 779, 758, 523, 505, 476;

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.18 (s, 4H), 5.47 (s, 2H), 4.78–4.70 (m, 1H), 4.49 (dd, *J* = 16.5, 8.1 Hz, 1H), 4.11–4.04 (m, 1H), 3.57–3.51 (m, 3H), 3.42 (t, *J* = 7.7 Hz, 2H), 3.23–3.13 (m, 2H), 3.05–2.93 (m, 2H), 2.42 (dd, *J* = 13.9, 7.1 Hz, 2H), 2.35 (s, 3H), 1.47–1.36 (m, 2H), 0.90–0.81 (m, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 170.3, 144.2, 138.8, 131.5, 129.8, 128.1, 123.2, 58.2, 56.9, 55.8, 54.4, 54.1, 52.3, 49.8, 45.6, 21.1, 20.8, 11.5;

HRMS calculated for $C_{20}H_{30}N_5O_4S (M+H)^+ = 436.2019$; found 436.2020 (TOF MS ES+).

Methyl 5-cyclopentyl-2-((1-(4-fluorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*3*,*5*})

FTIR (neat) cm⁻¹ 2951, 2868, 1744, 1512, 1327, 1223, 1140, 1086, 1047, 1014, 783, 530, 500;

¹**H NMR** (500 MHz, CDCl₃) δ 7.68 (s, 1H), 7.30–7.26 (m, 2H), 7.09–7.04 (m, 2H), 5.49 (s, 2H), 4.70 (d, *J* = 15.9 Hz, 1H), 4.55 (d, *J* = 15.9 Hz, 1H), 4.08 (dd, *J* = 10.6, 6.7 Hz, 1H), 3.54 (s, 3H), 3.48 (dd, *J* = 14.8, 6.6 Hz, 1H), 3.36 (dd, *J* = 14.8, 10.7 Hz, 1H), 3.20–3.13 (m, 2H), 3.09–3.04(m, 1H), 2.99–2.92 (m, 2H), 1.90–1.60 (m, 4H), 1.57–1.47 (m, 2H), 1.37–1.25 (m, 2H);

¹³**C NMR** (126 MHz, CDCl₃) δ 170.2, 162.8 (¹J_{CF} = 248.3 Hz), 144.6, 130.5 (⁴J_{CF} = 3.4 Hz), 129.9 (³J_{CF} = 8.3 Hz), 123.3, 116.1 (²J_{CF} = 21.8 Hz), 64.3, 58.8, 54.7, 54.4, 53.5, 52.3, 48.5, 45.9, 30.7, 30.0, 23.8, 23.7;

HRMS calculated for $C_{21}H_{29}FN_5O_4S (M+H)^+ = 466.1924$; found 466.1888 (TOF MS ES+).

Methyl 5-(4-fluorobenzyl)-2-((1-(4-methylbenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*8*,*2*})

FTIR (neat) cm⁻¹ 2951, 2926, 1745, 1728, 1508, 1327, 1219, 1142, 1082, 1049, 1013, 777, 758;

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.21–7.14 (m, 6H), 7.03–6.98 (m, 2H), 5.50 (d, J = 1.1 Hz, 2H), 4.91 (d, J = 15.9 Hz, 1H), 4.46 (d, J = 15.9 Hz, 1H), 4.05 (dd, J = 10.3, 6.7 Hz, 1H), 3.61 (d, J = 13.4 Hz, 1H), 3.56 (s, 3H), 3.54 (d, J = 13.7 Hz, 1H), 3.46 (ddd, J = 21.5, 14.9, 8.6 Hz, 2H), 3.19–3.09 (m, 2H), 3.04–2.97 (m, 1H), 2.93 (dt, J = 14.5, 4.1 Hz, 1H), 2.34 (s, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ 170.2, 162.2 (¹J_{CF} = 245.7 Hz), 144.0, 138.9, 133.7 (⁴J_{CF} = 3.1 Hz), 131.4, 130.0 (³J_{CF} = 8.0 Hz), 129.8, 128.1, 123.2, 115.4 (²J_{CF} = 21.3 Hz), 58.0, 58.0, 55.6, 54.6, 54.1, 52.4, 49.2, 45.4, 21.1;

HRMS calculated for $C_{24}H_{29}FN_5O_4S(M+H)^+ = 502.1924$; found 502.1902 (TOF MS ES+).

Methyl 5-(4-methoxybenzyl)-2-((1-(4-methoxybenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*4*,*1*})

FTIR (neat) cm⁻¹ 2951, 2837, 1744, 1612, 1514, 1327, 1248, 1142, 1030, 824, 783, 758, 515;

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.25–7.21 (m, 2H), 7.14 (d, J = 8.5 Hz, 2H), 6.87–6.85 (m, 4H), 5.47 (s, 2H), 4.87 (d, J = 15.9 Hz, 1H), 4.48 (d, J = 15.9 Hz, 1H), 4.06 (dd, J = 10.1, 6.9 Hz, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 3.59 (d, J = 13.1 Hz, 1H), 3.54 (s, 3H), 3.51 (d, J = 11.8 Hz, 1H), 3.44 (ddd, J = 28.4, 13.8, 7.7 Hz, 2H), 3.20–3.14 (m, 1H), 3.12 (dd, J = 10.9, 7.2 Hz, 1H), 3.01–2.90 (m, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 170.2, 159.9, 159.0, 144.1, 129.9, 129.7, 129.6, 126.5, 123.1, 114.5, 113.9, 58.2, 55.7, 55.3, 55.3, 54.5, 53.8, 52.3, 48.9, 45.5, 30.9;

HRMS calculated for $C_{25}H_{32}N_5O_6S(M+H)^+ = 530.2073$; found 530.2090 (TOF MS ES+).

Characterization Data for Representative Library Compounds 8

Methyl 5-((1-(4-fluorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-2-(4-methylbenzyl)-1,2,5-thiadiazepane-3carboxylate 1,1-dioxide (8{2,5})

FTIR (neat): 2935, 2845, 1734, 1512, 1330, 1223, 1142 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.28 (s, 1H), 7.26 (d, *J* = 2.9 Hz, 2H), 7.26–7.22 (m, 2H), 7.12 (d, *J* = 7.7 Hz, 2H), 7.10–7.05 (m, 2H), 5.49 (s, 2H), 4.73 (d, *J* = 15.0 Hz, 1H), 4.36 (d, *J* = 15.0 Hz, 1H), 3.88 (dd, *J* = 10.8, 6.4 Hz, 1H), 3.83–3.75 (m, 2H), 3.51 (s, 3H), 3.47 (dd, *J* = 14.6, 10.5 Hz, 1H), 3.34 (dd, *J* = 14.5, 6.4 Hz, 1H), 3.28 (dd, *J* = 14.1, 7.2 Hz, 1H), 3.23 (dt, *J* = 14.0, 3.9 Hz, 1H), 3.07 (dd, *J* = 7.0, 3.9 Hz, 2H), 2.62 (s, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ 170.2, 162.9 (¹*J*_{CF} = 248.4 Hz), 145.1, 137.7, 132.7, 129.8 (³*J*_{CF} = 8.2 Hz), 129.2, 129.1 (³*J*_{CF} = 4.9 Hz), 128.7, 122.0, 116.2 (⁴*J*_{CF} = 21.8 Hz), 57.3, 55.5, 54.5, 53.5, 53.4, 52.2, 50.9, 49.8, 21.1;

HRMS calculated for $C_{24}H_{29}FN_5O_4S(M+H)^+ = 502.1924$; found 502.1909 (TOF MS ES+).

Methyl 5-((1-(4-methoxybenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-2-(4-methylbenzyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{2,1})

FTIR (neat): 2949, 2838, 1744, 1515, 1330, 1250, 1142 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.28 (d, *J* = 2.5 Hz, 1H), 7.26 (s, 1H), 7.23–7.19 (m, 3H), 7.12 (d, *J* = 7.8 Hz, 2H), 6.92–6.88 (m, 2H), 5.45 (s, 2H), 4.71 (d, *J* = 15.0 Hz, 1H), 4.36 (d, *J* = 15.0 Hz, 1H), 3.88 (dt, *J* = 6.4, 4.6

Hz, 1H), 3.81 (s, 3H), 3.77 (d, *J* = 3.5 Hz, 2H), 3.51 (s, 3H), 3.46 (dd, *J* = 14.6, 10.5 Hz, 1H), 3.34 (dd, *J* = 14.4, 6.4 Hz, 1H), 3.28 (dd, *J* = 14.1, 6.8 Hz, 1H), 3.24 (dd, *J* = 7.4, 3.3 Hz, 1H), 3.06 (dd, *J* = 6.9, 3.9 Hz, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 170.2, 160.0, 144.8, 137.7, 132.8, 129.6, 129.2, 129.1, 126.5, 121.8, 114.5, 57.3, 55.5, 55.3, 54.5, 53.7, 53.5, 52.2, 50.9, 49.7, 21.1;

HRMS calculated for $C_{25}H_{32}N_5O_5S(M+H)^+ = 514.2124$; found 514.2106 (TOF MS ES+).

Methyl 5-((1-(2-(1,3-dioxolan-2-yl)ethyl)-1*H*-1,2,3-triazol-4-yl)methyl)-2-benzyl-1,2,5-thiadiazepane-3carboxylate 1,1-dioxide (8{*3*,*8*})

FTIR (neat): 2953, 2885, 2843, 1744, 1328, 1142 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.46–7.42 (m, 2H), 7.39–7.29 (m, 4H), 4.92 (t, J = 4.2 Hz, 1H), 4.79 (d, J = 15.1 Hz, 1H), 4.50 (t, J = 7.2 Hz, 2H), 4.43 (d, J = 15.1 Hz, 1H), 4.01–3.97 (m, 2H), 3.95 (dd, J = 10.1, 6.9 Hz, 1H), 3.89–3.86 (m, 2H), 3.83 (d, J = 2.3 Hz, 2H), 3.51 (s, 3H), 3.50–3.46 (m, 1H), 3.37 (dd, J = 14.6, 6.6 Hz, 1H), 3.34–3.28 (m, 1H), 3.26 (dd, J = 11.2, 7.2 Hz, 1H), 3.08 (dd, J = 6.6, 4.2 Hz, 2H), 2.29 (td, J = 7.2, 4.3 Hz, 2H); ¹³**C NMR** (126 MHz, CDCl₃) δ 170.1, 144.4, 135.9, 129.2, 128.5, 128.0, 122.4, 101.5, 65.1, 57.5, 55.7, 54.6, 53.7, 52.2, 51.3, 49.7, 45.3, 34.0;

HRMS calculated for $C_{21}H_{30}N_5O_6S(M+H)^+ = 480.1917$; found 480.1909 (TOF MS ES+).

Methyl 2-(4-chlorobenzyl)-5-((1-(2-ethoxy-2-oxoethyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{4,6})

FTIR (neat): 2984, 2953, 2940, 1750, 1730, 1330, 1215, 1142 cm⁻¹;

¹**H** NMR (500 MHz, CDCl₃) δ 7.53 (s, 1H), 7.41–7.38 (m, 2H), 7.33–7.30 (m, 2H), 5.17 (s, 2H), 4.69 (d, J = 15.3 Hz, 1H), 4.43 (d, J = 15.3 Hz, 1H), 4.29 (q, J = 7.2 Hz, 2H), 3.96 (dd, J = 10.2, 7.0 Hz, 1H), 3.93 (d, J = 4.3 Hz, 2H), 3.51 (s, 3H), 3.49 (dd, J = 14.6, 10.4 Hz, 1H), 3.38 (dd, J = 14.6, 6.7 Hz, 1H), 3.26 (dd, J = 8.1, 3.2 Hz, 2H), 3.09 (dd, J = 10.0, 5.0 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 169.9, 166.2, 145.0, 134.6, 133.7, 130.4, 128.6, 123.7, 62.5, 57.9, 55.9, 54.4, 53.1, 52.3, 51.9, 50.8, 49.9, 14.1;

HRMS calculated for $C_{20}H_{27}CIN_5O_6S(M+H)^+ = 500.1371$; found 500.1376 (TOF MS ES+).

Methyl 5-((1-(2-acetoxyethyl)-1*H*-1,2,3-triazol-4-yl)methyl)-2-(4-methoxybenzyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{*1*,*7*})

FTIR (neat): 2953, 2838, 1743, 1513, 1327, 1242, 1141, 1045, 1030 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.38 (s, 1H), 7.37–7.33 (m, 2H), 6.91–6.86 (m, 2H), 4.72 (d, *J* = 15.0 Hz, 1H), 4.63–4.59 (m, 2H), 4.50–4.45 (m, 2H), 4.38 (d, *J* = 14.8 Hz, 1H), 3.94 (dd, *J* = 10.5, 6.5 Hz, 1H), 3.83 (dd, *J* = 18.8, 14.2 Hz, 2H), 3.81 (s, 3H), 3.53 (s, 3H), 3.49 (dd, *J* = 14.6, 10.5 Hz, 1H), 3.41–3.33 (m, 1H), 3.32–3.20 (m, 2H), 3.08 (dd, *J* = 6.9, 4.0 Hz, 2H), 2.05 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 170.3, 170.3, 159.4, 144.8, 130.6, 127.9, 122.7, 113.9, 62.2, 57.2, 55.7, 55.3, 54.5, 53.3, 52.3, 50.9, 49.8, 49.1, 20.6;

HRMS calculated for $C_{21}H_{30}N_5O_7S(M+H)^+ = 496.1866$; found 496.1844 (TOF MS ES+).

Methyl 2-(4-fluorobenzyl)-5-((1-(4-methylbenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{5,2})

FTIR (neat): 2949, 2922, 2843, 1744, 1510, 1330, 1220, 1142, 1048, 756 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.41–7.36 (m, 2H), 7.27 (s, 1H), 7.18 (q, *J* = 8.2 Hz, 4H), 7.02–6.97 (m, 2H), 5.48 (s, 2H), 4.66 (d, *J* = 15.3 Hz, 1H), 4.42 (d, *J* = 15.1 Hz, 1H), 3.93 (dd, *J* = 10.4, 6.6 Hz, 1H), 3.84 (q, *J* = 14.1 Hz, 2H), 3.49 (s, 3H), 3.46 (dd, *J* = 9.2, 5.3 Hz, 1H), 3.33 (dd, *J* = 14.6, 6.6 Hz, 1H), 3.24 (dd, *J* = 8.7, 4.4 Hz, 2H), 3.06 (dd, *J* = 6.3, 4.5 Hz, 2H), 2.36 (s, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ 170.0, 162.4 (¹*J*_{CF} = 246.6 Hz), 144.8, 138.9, 131.8 (⁴*J*_{CF} = 3.2 Hz), 131.4, 130.8 (³*J*_{CF} = 8.2 Hz), 129.8, 128.1, 122.0, 115.3 (²*J*_{CF} = 21.8 Hz), 57.7, 55.6, 54.3, 54.0, 53.1, 52.2, 51.4, 49.8, 21.2;

HRMS calculated for $C_{24}H_{29}FN_5O_4S(M+H)^+ = 502.1924$; found 502.1895 (TOF MS ES+).

Methyl 2-(4-methoxybenzyl)-5-((1-(4-methylbenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{*1*,*2*})

FTIR (neat): 2949, 2837, 1751, 1740, 1520, 1328, 1246, 1142, 1048, 1032 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.33–7.29 (m, 2H), 7.22 (s, 1H), 7.16 (t, *J* = 8.3 Hz, 4H), 6.87–6.82 (m, 2H), 5.47 (s, 2H), 4.68 (d, *J* = 14.8 Hz, 1H), 4.35 (d, *J* = 15.0 Hz, 1H), 3.90 (dd, *J* = 10.5, 6.6 Hz, 1H), 3.79 (s, 3H), 3.78 (dd, *J* = 18.8, 11.7 Hz, 2H), 3.52 (s, 3H), 3.46 (dd, *J* = 14.6, 10.5 Hz, 1H), 3.34 (dd, *J* = 14.6, 6.5 Hz, 1H), 3.29–3.18 (m, 2H), 3.05 (dd, *J* = 7.1, 3.9 Hz, 2H), 2.36 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 170.2, 159.3, 144.9, 138.8, 131.5, 130.5, 129.8, 128.0, 127.8, 122.0, 113.8, 57.2, 55.6, 55.3, 54.5, 54.0, 53.3, 52.2, 50.9, 49.7, 21.2;

HRMS calculated for $C_{25}H_{32}N_5O_5S(M+H)^+ = 514.2124$; found 514.2114 (TOF MS ES+).

Methyl 2-(4-chlorobenzyl)-5-((1-(4-methylbenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{4,2})

FTIR (neat): 2923, 2849, 1747, 1734, 1330, 1142, 1080, 1048, 1014, 759 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.37–7.34 (m, 2H), 7.30–7.27 (m, 3H), 7.17 (dt, *J* = 6.1, 5.0 Hz, 4H), 5.49 (s, 2H), 4.66 (d, *J* = 15.3 Hz, 1H), 4.41 (d, *J* = 15.3 Hz, 1H), 3.92 (dd, *J* = 10.4, 6.6 Hz, 1H), 3.85 (dd, *J* = 20.2, 14.1 Hz, 2H), 3.49 (s, 3H), 3.45 (dd, *J* = 14.5, 10.4 Hz, 1H), 3.33 (dd, *J* = 14.5, 6.6 Hz, 1H), 3.26–3.22 (m, 2H), 3.06 (dd, *J* = 7.8, 4.5 Hz, 2H), 2.36 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 169.9, 144.7, 138.9, 134.6, 133.7, 131.4, 130.4, 129.9, 128.6, 128.1, 122.0, 57.8, 55.7, 54.3, 54.0, 53.1, 52.3, 51.6, 49.8, 21.2;

HRMS calculated for $C_{24}H_{29}CIN_5O_4S(M+H)^+ = 518.1629$; found 518.1636 (TOF MS ES+).

Methyl 2-allyl-5-((1-(4-chlorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{6,4})

FTIR (neat): 2950, 2847, 1746, 1327, 1142 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 (s, 1H), 7.38–7.35 (m, 2H), 7.23–7.19 (m, 2H), 5.91 (ddt, *J* = 16.8, 10.1, 6.6 Hz, 1H), 5.51 (s, 2H), 5.23 (ddd, *J* = 13.6, 11.3, 1.3 Hz, 2H), 4.18–4.11 (m, 1H), 3.98–3.87 (m, 4H), 3.70 (s, 3H), 3.43 (dd, *J* = 8.6, 2.1 Hz, 2H), 3.28–3.15 (m, 2H), 3.11–2.99 (m, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 170.4, 145.1, 134.9, 133.3, 133.0, 129.4, 129.4, 122.1, 119.2, 57.4, 55.7, 54.3, 53.5, 53.2, 52.4, 51.2, 49.9;

HRMS calculated for $C_{19}H_{25}ClN_5O_4S(M+H)^+ = 454.1316$; found 454.1297 (TOF MS ES+).

Methyl 2-allyl-5-((1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{6,3})

FTIR (neat): 2951, 2925, 2848, 1747, 1733, 1328, 1243, 1049, 759, 720 cm⁻¹;

¹**H NMR** (500 MHz, CDCl₃) δ 7.44–7.35 (m, 4H), 7.28 (d, J = 2.5 Hz, 1H), 7.26 (s, 1H), 5.90 (ddt, J = 16.8, 10.1, 6.6 Hz, 1H), 5.54 (s, 2H), 5.21 (ddd, J = 13.6, 11.3, 1.3 Hz, 2H), 4.14 (ddd, J = 14.3, 6.1, 3.3 Hz, 1H), 3.99–3.86 (m, 4H), 3.70 (s, 3H), 3.46–3.41 (m, 2H), 3.27–3.14 (m, 2H), 3.11–2.98 (m, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 170.4, 145.0, 134.5, 133.3, 129.2, 128.9, 128.0, 122.1, 119.2, 57.4, 55.8, 54.3, 54.2, 53.2, 52.4, 51.3, 49.8;

HRMS calculated for $C_{19}H_{26}N_5O_4S(M+H)^+ = 420.1706$; found 420.1684 (TOF MS ES+).

Spectral Data for Compounds 2, 3, 7

23000

Methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-(*N*-(prop-2-yn-1-yl)vinylsulfonamido)propanoate (3)

Methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-(N-(4-methoxybenzyl)vinylsulfonamido)propanoate (7{1})

Methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-(N-(4-methylbenzyl)vinylsulfonamido)propanoate (7{2})

Methyl 2-(*N*-benzylvinylsulfonamido)-3-((*tert*-butyldimethylsilyl)oxy)propanoate (7{3})

Methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-(N-(4-chlorobenzyl)vinylsulfonamido)propanoate (7{4})

Methyl 3-((*tert*-butyldimethylsilyl)oxy)-2-(N-(4-fluorobenzyl)vinylsulfonamido)propanoate (7{5})

Methyl 2-(*N*-allylvinylsulfonamido)-3-((*tert*-butyldimethylsilyl)oxy)propanoate (7{6})

Spectral Data for Representative Library Compounds 6 and 8

Methyl2-((1-(2-ethoxy-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-5-propyl-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{1,6})

Methyl 2-((1-(4-chlorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-5-cyclopropyl-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*2*,*4*})

Methyl 2-((1-(4-chlorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-5-(4-methylbenzyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*5*,*4*})

Methyl 5-benzyl-2-((1-(4-methoxybenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*6*,*1*})

Methyl 2-((1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-5-(4-chlorobenzyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{7,3})

Methyl 5-benzyl-2-((1-(2-ethoxy-2-oxoethyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*6*,*6*})

Methyl 2-((1-(4-methylbenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-5-propyl-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*1*,*2*})

Methyl 5-cyclopentyl-2-((1-(4-fluorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*3*,*5*})

Methyl 5-(4-fluorobenzyl)-2-((1-(4-methylbenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*8*,*2*})

Methyl 5-(4-methoxybenzyl)-2-((1-(4-methoxybenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (6{*4*,*1*})

Methyl 5-((1-(4-fluorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-2-(4-methylbenzyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{2,5})

Methyl 5-((1-(4-methoxybenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-2-(4-methylbenzyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{*2*,*1*})

Methyl 5-((1-(2-(1,3-dioxolan-2-yl)ethyl)-1*H*-1,2,3-triazol-4-yl)methyl)-2-benzyl-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{*3*,*8*})

Methyl 2-(4-chlorobenzyl)-5-((1-(2-ethoxy-2-oxoethyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{4,6})

Methyl 5-((1-(2-acetoxyethyl)-1*H*-1,2,3-triazol-4-yl)methyl)-2-(4-methoxybenzyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{*1*,*7*})

Methyl 2-(4-fluorobenzyl)-5-((1-(4-methylbenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{*5*,*2*})

Methyl 2-(4-methoxybenzyl)-5-((1-(4-methylbenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{*1*,*2*})

Methyl 2-(4-chlorobenzyl)-5-((1-(4-methylbenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{4,2})

Methyl 2-allyl-5-((1-(4-chlorobenzyl)-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{*6*,*4*})

Methyl 2-allyl-5-((1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl)-1,2,5-thiadiazepane-3-carboxylate 1,1-dioxide (8{6,3})

Table of Mass Spectroscopy Data, Final Mass and Purity for all Library Compounds

Compounds	Cal. Mass	Found Mass	Recovered Weight (mg)	Purity %	Yield %
6 { <i>1</i> , <i>1</i> }	451.1889	452.1911	64.8	99.9	47.9
6 { <i>1,2</i> }	449.1733	450.1771	56.4	97.2	41.9
6 { <i>1,3</i> }	477.2046	478.2109	53.7	96.7	37.5
6 { <i>1,4</i> }	529.1995	530.2084	91.6	83.0	57.7
6 { <i>1</i> ,5}	513.2046	514.2112	88.6	98.0	57.5
6 { <i>1,6</i> }	499.1889	500.1972	83.3	82.7	55.6
6 { <i>1</i> , <i>7</i> }	533.1500	534.1520	84.0	97.9	52.5
6 { <i>1,8</i> }	517.1795	518.1853	95.1	81.3	61.3
6 {2,1}	435.1940	436.2020	35.0	99.3	26.8
6 {2,2}	433.1784	434.1842	51.4	99.5	39.6
6 { <i>2</i> , <i>3</i> }	461.2097	462.2193	71.7	98.0	51.8
6 { <i>2</i> , <i>4</i> }	513.2046	514.2121	88.2	96.2	57.3
6 {2,5}	497.2097	498.2094	87.9	86.0	58.9
6 {2,6}	483.1940	484.2019	62.0	99.9	42.8
6 { <i>2</i> , <i>7</i> }	517.1550	518.1631	77.3	92.0	49.8
6 { <i>2</i> , <i>8</i> }	501.1846	502.1934	47.3	87.1	31.5
6 { <i>3</i> , <i>1</i> }	421.1784	422.1827	66.0	99.3	52.2
6 { <i>3</i> , <i>2</i> }	419.1627	420.1678	53.2	98.2	42.3
6 { <i>3</i> , <i>3</i> }	447.1940	448.2002	72.4	97.5	54.0
6 { <i>3</i> , <i>4</i> }	499.1889	500.1092	89.5	87.9	59.8
6 { <i>3</i> , <i>5</i> }	483.1940	484.2006	82.0	99.6	56.6
6 { <i>3</i> , <i>6</i> }	469.1784	470.1859	74.9	87.4	53.2
6 { <i>3</i> , <i>7</i> }	503.1394	504.1463	68.9	99.4	45.6
6 { <i>3</i> , <i>8</i> }	487.1690	488.1750	74.6	87.5	51.0
6 { <i>4</i> , <i>1</i> }	455.1394	456.1481	66.8	99.9	48.9
6 { <i>4</i> , <i>2</i> }	453.1238	454.1295	55.5	99.6	40.8
6 { <i>4</i> , <i>3</i> }	481.1551	482.1615	76.6	98.8	53.1
6{4,4}	533.1500	534.1574	91.9	94.4	57.5
6 { <i>4</i> , <i>5</i> }	517.1550	518.1614	84.2	80.3	54.3
6 { <i>4</i> , <i>6</i> }	503.1394	504.1420	61.4	94.3	40.7
6 { <i>4</i> , <i>7</i> }	537.1004	538.1042	68.8	92.7	42.7
6 { <i>4</i> , <i>8</i> }	521.1300	522.1349	77.5	81.9	49.6
6 { <i>5</i> , <i>1</i> }	439.1690	440.1778	46.9	99.7	35.6
6 { <i>5</i> , <i>2</i> }	437.1533	438.1608	42.3	99.7	32.3
6 { <i>5</i> , <i>3</i> }	465.1846	466.1888	42.0	99.6	30.1
6{5,4}	517.1795	518.1862	64.8	90.1	41.8
6{5,5}	501.1846	502.1889	81.6	99.7	54.3
6{5,6}	487.1690	488.1776	77.0	93.8	52.7
6 { <i>5</i> , <i>7</i> }	521.1300	522.1369	75.0	98.3	48.0
6{5,8}	505.1595	506.1688	80.2	88.3	52.9
6 { <i>6</i> , <i>1</i> }	417.1682	418.1708	56.4	95.3	45.1
6 { <i>6</i> , <i>2</i> }	415.1526	416.1601	39.5	70.4	31.7
6 { <i>6</i> , <i>3</i> }	443.1839	444.1917	51.4	96.1	38.7
6 { <i>6</i> , <i>4</i> }	495.1788	496.1880	65.2	97.9	43.9

6 { <i>6</i> ,5}	479.1839	480.1914	51.2	98.4	35.6
6{6,6}	465.1682	466.1718	44.1	98.3	31.6
6 { <i>6</i> ,7}	499.1292	500.1376	47.7	98.1	31.9
6{6,8}	483.1588	484.1606	50.3	98.6	34.7
8 { <i>1</i> , <i>1</i> }	529.1995	530.2064	67.1	90.4	42.3
8 { <i>1,2</i> }	513.2046	514.2114	59.4	99.8	38.6
8 { <i>1,3</i> }	499.1889	500.1964	65.2	98.5	43.5
8 { <i>1,4</i> }	533.1500	534.1567	62.6	98.3	39.1
8 { <i>1</i> ,5}	517.1795	518.1859	41.7	98.4	26.9
8 {1,6}	495.1788	496.1827	36.5	97.6	24.6
8 { <i>1</i> ,7}	495.1788	496.1844	37.8	93.1	25.4
8 { <i>1</i> , <i>8</i> }	509.1944	510.2009	40.2	99.8	26.3
8 {2,1}	513.2046	514.2106	76.8	76.6	49.9
8 {2,2}	497.2098	498.2142	53.8	99.5	36.1
8 {2,3}	483.1940	484.2000	67.0	78.2	46.2
8 {2,4}	517.1551	518.1636	60.6	99.7	39.1
8 {2,5}	501.1846	502.1909	60.9	79.2	40.5
8 {2,6}	479.1839	480.1899	39.2	99.1	27.3
8 {2,7}	479.1839	480.1890	45.1	86.2	31.4
8 {2,8}	493.1995	494.2083	55.4	98.6	37.4
8 { <i>3</i> , <i>1</i> }	499.1889	500.1963	51.9	97.3	34.7
8 { <i>3</i> , <i>2</i> }	483.1940	484.2020	56.2	99.9	38.8
8 { <i>3</i> , <i>3</i> }	469.1784	470.1843	43.8	99.6	31.1
8 { <i>3</i> , <i>4</i> }	503.1394	504.1467	56.6	98.8	37.5
8 { <i>3</i> , <i>5</i> }	487.1690	488.1747	47.0	96.3	32.2
8 {3,6}	465.1682	466.1761	43.3	98.8	31.0
8 { <i>3</i> , <i>7</i> }	465.1682	466.1745	41.5	95.0	29.7
8 {3,8}	479.1839	480.1909	42.0	99.9	29.2
8 { <i>4</i> , <i>1</i> }	533.1500	534.1566	32.4	75.4	20.3
8 { <i>4</i> , <i>2</i> }	517.1551	518.1636	56.0	98.7	36.1
8{4,3}	503.1394	504.1476	62.9	80.3	41.7
8 {4,4}	537.1004	538.1065	60.3	96.9	37.4
8 {4,3}	521.1300	522.1370	49.2	/8.4	31.5
δ {4,0}	499.1292	500.1376	46.9	99.2	31.3
$\delta(4, /)$	499.1292	500.1361	37.9	94.9	25.5
$\mathbf{O}\{4,0\}$ $\mathbf{O}(5,1)$	515.1449	514.1505	40.9	98.8 72.2	20.0
$0\{J,I\}$ 0(5,2)	501 1946	502 1905	30.9 40.9	/3.3	20.7 22.1
$0{J,2}$ $9{5,2}$	301.1640 487 1600	302.1893 488 1750	49.0	99.2	22.1 24.2
$0{J,J}$ $Q{5, 1}$	487.1090	400.1730 522 1268	51.5	90.5	24.2
0 (J,7) 8 (5 5)	505 1595	506 1637	51.5 40.4	99.1	52.9 26.7
815 61	<i>4</i> 83 1588	<i>484 1647</i>	40.4	97.1	20.7
8 5 7	483 1588	484 1626	41.3	95.9	28.8
8 {5 <i>8</i> }	497 1744	498 1830	38.2	99.7	25.5
8 {61}	449 1733	450 1781	48 7	99.1	36.1
8 {6 2}	433 1784	434 1850	48.2	99 7	37.1
8 {6.3}	419.1627	420.1684	47.9	98.0	38.1
· (· · - ·					

8 { <i>6</i> , <i>4</i> }	453.1238	454.1297	52.5	99.8	38.6
8 { <i>6</i> , <i>5</i> }	437.1533	438.1584	42.4	99.6	32.3
8 { <i>6</i> , <i>6</i> }	415.1526	416.1583	38.0	44.3	30.5
8 { <i>6</i> ,7}	415.1526	416.1563	38.7	75.4	31.1
8 { <i>6</i> , <i>8</i> }	429.1682	430.1740	35.7	100.0	27.7

Lipinski and ADME Data

Sketched electronic versions of the library compounds were imported into the Tripos Molecular Spreadsheet¹ wherein standard Lipinski Rule of 5 parameters² (molecular weight, ClogP, number of Hacceptors, and number of H-donors) plus the number of rotatable bonds and polar surface area were computed. Lipinski violations were specified according to molecular weight > 500, ClogP > 5.0, number of acceptors > 10, number of donors > 5, and number of rotatable bonds > 5. The structures were then exported into SDF format and coverted into three-dimensional protonated structures via Concord³. Absorption, distribution, metabolism and excretion (ADME) profiles of these compounds was then generated via Volsurf⁴. Descriptors were generated using three probes (water, hydrophobic and carbonyl oxygen) with a grid space distribution of 1.0 Å. Predictions were then projected onto internal ADME models at the 5-component level. Finally diversity analysis was carried out using DiverseSolutions⁵ using standard H-aware 3D BCUT descriptors. The library projected following was then onto а chemical space defined by the descriptors: gastchrg invdist2 000.550 K L, gastchrg invdist6 000.500 K H, haccept invdist2 001.000 K H, tabpolar invdist 000.250 K H, tabpolar invdist 000.500 K L and populated (for comparison) by a recent version of the MLSMR screening set (ca. 7/2010; ~330,000 unique chemical structures). Diversity scores (div(A)) for our library were then generated for each of our compounds (A) according to the expression:

$$div(A) = \frac{pop[Cell(A)]}{\sum_{i \in Occ} pop(i) / N_{occ}}$$

^[1] SYBYL 8.0, The Tripos Associates, St. Louis MO, 2008.

^[2] Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv. Drug Delivery Rev.* **1997**, *23*, 3-25.

^[3] Concord 8.0, The Tripos Associates, St. Louis MO, 2008.

^[4] Cruciani, G., Meniconi, M., Carosati, E., Zamora, I., Mannhold, R. VOLSURF: A Tool for Drug ADME-Properties Prediction. In: *Methods and Principles in Medicinal Chemistry*. Eds. van de Waterbeemd, H., Lennernäs, H., Artursson, P. (Wiley-VCH Verlag GmbH & Co., Weinheim, 2003).

^[5] Pearlman, R.S.; Smith, K.M. Metric Validation and the Receptor-Relevant Subspace Concept. J. Chem. Inf. Comput. Sci. 1999, 39, 28-35.

where N_{occ} is the number of cells occupied by PubChem compounds in an evenly distributed $10 \times 10 \times 10 \times 10 \times 10$ grid decomposition of the chemistry space, and pop(i) is the population of cell *i*.

Molecule	CLOGP	Mol.Wt	Acceptor	Donor	Rot. Bond	LIP VIOLS	PSA	DIVS	BBB	SOLY	CACO2	SP_S	SP_P	PB	VOLD	HERG	Sol.	METSTAB
6 {1,1}	2.09	451.54	8	1	9	1	9.00	0.29	-0.33	-5.81	0.36	-0.43	0.36	91.32	-0.45	0.79	0.65	-0.39
6{1,2}	2.67	435.54	7	1	8	1	8.00	0.29	-0.40	-5.23	0.48	-0.37	0.48	89.45	-0.48	0.96	1.04	-0.24
6 { <i>1,3</i> }	2.17	421.51	7	1	8	1	8.00	0.29	-0.11	-5.34	0.55	-0.30	0.42	88.02	-0.51	0.92	0.78	-0.29
6 { <i>1,4</i> }	2.88	455.96	7	1	8	1	8.00	0.08	-0.26	-5.55	0.65	-0.62	0.52	93.36	-0.77	0.00	0.77	-0.39
6 {1,5}	2.31	439.50	7	1	8	1	8.00	0.29	-0.29	-5.43	0.22	-0.21	0.24	88.45	-0.47	1.16	0.66	-0.39
$6\{1, 6\}$	1.16	429.49	9	1	11	1	11.00	0.29	-0.30	-5.06	0.03	-0.04	0.05	/1.5/	-0.28	1.13	1.03	-0.38
0{1,7} 6{1.8}	1.41	449.52 433.52	0 7	1	0 7	1	8.00 7.00	0.29	-0.21	-5.01	0.24	-0.20	0.40	00.94 00.71	-0.50	0.92	0.94	-0.44
6{2 1}	1.33	419.50	7	1	7	1	7.00	0.23	-0.00	-5.02	0.44	-0.24	0.32	86 42	-0.53	0.81	1 02	-0.33
6{2.2}	2.20	453.94	7	1	7	1	7.00	0.08	-0.09	-5.40	0.50	-0.40	0.56	95.00	-0.76	0.21	0.90	-0.57
6{2,3}	1.63	437.49	7	1	7	1	7.00	0.29	-0.19	-5.09	0.09	-0.11	0.29	84.97	-0.51	1.02	0.86	-0.55
6{2,4}	0.48	427.48	9	1	10	1	10.00	0.29	-0.74	-4.42	-0.11	0.09	0.03	62.98	-0.41	1.27	1.57	-0.33
6{2,5}	2.30	477.58	8	1	8	1	8.00	0.43	-0.15	-5.82	0.34	-0.45	0.45	97.43	-0.62	0.70	0.70	-0.73
6{2,6}	2.88	461.58	7	1	7	1	7.00	0.43	-0.09	-5.76	0.53	-0.42	0.53	96.92	-0.64	0.57	0.79	-0.76
6 {2,7}	2.38	447.55	7	1	7	1	7.00	0.43	-0.05	-5.49	0.50	-0.33	0.49	93.46	-0.62	0.63	0.90	-0.68
6 (2,8) 6 (2,1)	3.09	482.00	7	1	7	1	7.00	0.49	-0.15	-5.76	0.51	-0.54	0.50	102.01	-0.76	0.25	0.83	-0.77
6{3.2}	1.37	455.53	9	1	10	1	10.00	0.43	-0.27	-5.33	-0.02	-0.20	0.01	82.39	-0.50	0.91	1 77	-0.50
6(3,3)	2.66	529.61	9	1	10	2	10.00	0.06	-0.90	-6.28	0.16	-0.85	0.42	103.33	-0.61	0.05	0.90	-1.13
6{3,4}	3.24	513.61	8	1	9	2	9.00	0.06	-0.58	-6.23	0.36	-0.82	0.49	101.55	-0.61	-0.15	0.59	-1.23
6 {3,5}	2.74	499.58	8	1	9	1	9.00	0.06	-0.45	-6.36	0.37	-0.75	0.45	100.75	-0.60	-0.16	0.57	-1.24
6{3,6}	3.45	534.03	8	1	9	2	9.00	0.08	-0.37	-7.03	0.47	-1.06	0.52	110.51	-0.89	-0.97	0.32	-1.38
6{3,7}	2.88	517.57	8	1	9	2	9.00	0.06	-0.96	-6.16	-0.08	-0.67	0.31	103.09	-0.48	0.22	1.14	-1.11
6 {3,8}	1.73	507.56	10	1	12	2	12.00	0.06	-0.61	-6.37	0.06	-0.46	0.22	101.59	-0.54	0.55	0.85	-0.72
0 {4,1} 6 {4,2}	3.24	213.01 407.61	0 7	1	9	2	9.00	0.06	-0.60	-0.21	0.24	-0.79	0.51	103.68	-0.56	-0.03	0.97	-1.12
6{4 3}	3.32	483.58	7	1	8	1	8.00	0.00	-0.53	-5.90	0.44	-0.79	0.50	103.00	-0.62	0.00	1 10	-1.04
6 { 4, 4 }	4.03	518.03	7	1	8	2	8.00	0.08	-0.48	-6.53	0.49	-1.03	0.63	109.34	-0.84	-0.83	1.00	-1.14
6{4,5}	3.46	501.57	7	1	8	2	8.00	0.06	-0.84	-6.16	0.07	-0.62	0.43	104.47	-0.52	0.37	1.16	-1.04
6 {4,6}	2.31	491.56	9	1	11	1	11.00	0.06	-0.96	-6.22	0.10	-0.40	0.28	100.84	-0.49	0.54	1.56	-0.75
6 {4,7}	2.74	499.58	8	1	9	1	9.00	0.06	-0.74	-5.97	0.23	-0.68	0.49	102.70	-0.55	0.15	1.21	-0.96
6{4,8}	3.32	483.58	7	1	8	1	8.00	0.06	-0.63	-5.80	0.42	-0.67	0.58	101.22	-0.56	0.09	1.23	-0.87
6{5,1}	2.82	469.56	7	1	8	1	8.00	0.06	-0.47	-5.64	0.39	-0.57	0.53	98.16	-0.58	0.26	1.20	-0.80
6 (5,2)	3.53	504.00 487.55	7	1	8	2	8.00	0.08	-0.42	-0.25	0.49	-0.92	0.62	106.91	-0.84	-0.69	1.09	-0.95
6{5.4}	1.82	477 53	9	1	11	1	11 00	0.00	-0.82	-5.96	0.04	-0.30	0.37	96 78	-0.45	0.57	1.40	-0.88
6{5,5}	3.45	534.03	8	1	9	2	9.00	0.08	-0.65	-6.82	0.27	-0.94	0.53	111.93	-0.68	-0.50	1.04	-1.18
6{5,6}	4.03	518.03	7	1	8	2	8.00	0.08	-0.23	-7.15	0.58	-0.97	0.62	108.85	-0.80	-0.58	0.34	-1.33
6{5,7}	3.53	504.00	7	1	8	2	8.00	0.08	-0.14	-6.90	0.55	-0.87	0.58	106.47	-0.75	-0.50	0.45	-1.24
6 {5,8}	4.25	538.45	7	1	8	2	8.00	0.08	-0.30	-6.87	0.54	-1.02	0.62	109.78	-0.85	-0.85	0.54	-1.32
0 {0,1} 6 (6,2)	3.00 2.53	521.99	9	1	0	2	0.00	0.08	-0.40	-7.03	0.22	-0.60	0.40	105.81	-0.71	-0.29	0.52	-1.24
6{63}	2.33	517.57	8	1	9	2	9.00	0.00	-0.39	-5.91	-0.01	-0.59	0.32	97 85	-0.55	0.09	0.37	-0.70
6{6.4}	3.46	501.57	7	1	8	2	8.00	0.06	-0.75	-6.01	0.22	-0.60	0.46	99.65	-0.58	0.27	0.63	-0.91
6{6,5}	2.96	487.55	7	1	8	1	8.00	0.06	-0.66	-5.90	0.17	-0.53	0.43	101.66	-0.55	0.37	1.14	-0.76
6{6,6}	3.68	521.99	7	1	8	2	8.00	0.08	-0.68	-6.45	0.22	-0.85	0.51	111.07	-0.80	-0.44	1.06	-0.85
6{6,7}	3.11	505.54	7	1	8	2	8.00	0.06	-0.93	-5.84	-0.26	-0.48	0.18	96.35	-0.52	0.49	1.09	-0.87
6 {6,8}	1.96	495.52	9	1	11	1	11.00	0.29	-0.95	-5.73	-0.33	-0.23	0.01	84.52	-0.52	0.74	1.11	-0.84
8{1,1} 8(1,2)	2.00	529.01	9	1	10	2	10.00	0.06	-0.32	-0.83	0.13	-0.64	0.22	108.89	-0.33	0.03	0.43	-0.80
8 { 1,2 } 8 { 1,3 }	3.24 2.74	499 58	8	1	9	2	9.00	0.00	-0.81	-0.02	0.08	-0.50	0.31	108.06	-0.20	-0.09	1.04	-1.02
8{1,4}	3.45	534.03	8	1	9	2	9.00	0.08	-0.75	-7.33	0.15	-0.82	0.37	116.52	-0.52	-0.80	1.23	-1.09
8{1,5}	2.88	517.57	8	1	9	2	9.00	0.06	-1.31	-6.45	-0.30	-0.42	0.05	101.98	-0.31	0.18	1.48	-1.02
8 {1,6}	1.73	507.56	10	1	12	2	12.00	0.06	-0.68	-5.78	-0.23	-0.27	-0.07	81.57	-0.22	0.43	1.22	-0.50
8 {1,7}	1.48	493.53	10	1	11	1	11.00	0.06	-0.54	-5.36	-0.21	-0.14	0.06	79.29	-0.23	0.78	1.45	-0.25
8{1,8}	0.70	509.58	10	1	10	2	10.00	0.06	-0.53	-5.84	-0.31	-0.23	-0.02	79.99	-0.13	0.38	1.33	-0.58
8{2,1} 8(2,2)	3.24	513.01 407.61	8	1	9	2	9.00	0.06	-0.18	-0.57	0.27	-0.59	0.28	100.88	-0.30	-0.06	0.57	-1.03
8(2,2)	3.32	483.58	7	1	8	1	8.00	0.00	-0.20	-6.33	0.37	-0.02	0.36	100.32	-0.34	0.05	1 04	-0.99
8{2.4}	4.03	518.03	7	1	8	2	8.00	0.08	-0.06	-7.13	0.46	-0.87	0.47	115.42	-0.64	-0.85	0.74	-1.11
8{2,5}	3.46	501.57	7	1	8	2	8.00	0.06	-0.54	-6.35	0.02	-0.48	0.18	103.90	-0.36	0.24	0.90	-1.05
8{2,6}	2.31	491.56	9	1	11	1	11.00	0.06	-0.68	-5.62	-0.09	-0.29	0.02	83.36	-0.29	0.57	1.39	-0.48
8 {2,7}	2.06	477.53	9	1	10	1	10.00	0.29	-1.05	-4.93	-0.18	-0.14	0.16	76.96	-0.34	0.94	2.19	-0.22
8 {2,8}	1.28	493.58	9	1	9	1	9.00	0.06	-1.15	-5.03	-0.26	-0.22	0.10	79.46	-0.34	0.52	2.20	-0.25
8(3,1)	2.74	499.58	8	1	9	1	9.00	0.06	-0.94	-0.25	0.07	-0.51	0.28	99.87	-0.37	0.15	1.54	-0.84
8(3,2) 8(3,3)	2.32	463.56	7	1	8	1	8.00	0.00	-0.20	-0.51	0.38	-0.55	0.41	107.45	-0.28	0.09	1 04	-0.87
8{3.4}	3.53	504.00	7	1	8	2	8.00	0.08	-0.02	-6.87	0.43	-0.77	0.47	114.36	-0.54	-0.63	0.83	-0.94
8{3,5}	2.96	487.55	7	1	8	1	8.00	0.06	-0.48	-6.20	0.02	-0.39	0.15	103.57	-0.33	0.32	0.92	-0.93
8 {3,6}	1.82	477.53	9	1	11	1	11.00	0.29	-0.64	-5.51	-0.14	-0.20	-0.04	82.27	-0.25	0.58	1.46	-0.48
8 {3,7}	1.56	463.51	9	1	10	1	10.00	0.29	-0.49	-5.03	-0.10	-0.06	0.09	75.83	-0.28	0.86	1.54	-0.29
8 {3,8}	0.78	479.55	9	1	9	1	9.00	0.06	-0.62	-5.14	-0.18	-0.14	0.03	78.06	-0.28	0.44	1.54	-0.33
8 { 4, 1 }	3.45	534.03	8	1	9	2	9.00	0.08	0.00	-7.13	0.25	-0.73	0.29	107.04	-0.42	-0.46	0.54	-1.15
8 {4,2 } 8 {4,3 }	4.03	504.00	7	1	8	2	8.00	0.08	-0.12	-7.13	0.38	-0.77	0.42	107.60	-0.42	-0.45	0.65	-1.21
8{4,4}	4,25	538.45	7	1	8	2	8.00	0.08	-0.11	-7.29	0.32	-0.87	0.44	118.63	-0.61	-0.80	0.73	-1.22
8{4,5}	3.68	521.99	7	1	8	2	8.00	0.08	-0.40	-6.84	0.01	-0.60	0.19	110.16	-0.42	-0.17	0.81	-1.10
8 {4,6}	2.53	511.98	9	1	11	2	11.00	0.08	-0.68	-5.99	-0.13	-0.43	0.07	87.65	-0.46	0.16	1.32	-0.55
8{4,7}	2.27	497.95	9	1	10	1	10.00	0.08	-0.54	-5.41	-0.11	-0.29	0.19	81.50	-0.47	0.45	1.49	-0.34
8{4,8}	1.49	513.99	9	1	9	2	9.00	0.08	-0.66	-5.60	-0.18	-0.37	0.14	83.52	-0.47	0.03	1.44	-0.38
8 {5,1}	2.88	517.57	8	1	9	2	9.00	0.06	-0.58	-6.60	-0.07	-0.49	0.21	106.31	-0.31	0.32	0.97	-0.82
ð {3,2} 8 (5 3)	3.40 2.96	201.57 487 55	7	1	0 8	∠ 1	0.00 8.00	0.00	-0.53	-0.72 -6.40	0.14	-0.20	0.33	108.84	-0.28 _0.28	0.23	1.07	-0.85 _0.83
8{5,4}	3,68	521.99	7	1	8	2	8,00	0.08	-0.37	-6.95	0.12	-0.70	0.36	119.55	-0,48	-0.34	0.91	-0.85
8{5,5}	3.11	505.54	7	1	8	2	8.00	0.29	-0.71	-6.39	-0.30	-0.36	0.01	104.79	-0.35	0.39	0.87	-0.85
8{5,6}	1.96	495.52	9	1	11	1	11.00	0.29	-0.85	-5.78	-0.50	-0.14	-0.21	82.50	-0.17	0.69	1.39	-0.55
8{5,7}	1.70	481.50	9	1	10	1	10.00	0.29	-0.65	-5.20	-0.44	-0.03	-0.12	73.28	-0.25	0.87	1.41	-0.42

8{5,8}	0.92	497.54	9	1	9	1	9.00	0.06	-0.76	-5.35	-0.51	-0.10	-0.17	76.52	-0.24	0.54	1.37	-0.42
8 {6,1}	1.31	435.50	8	1	8	1	8.00	0.51	-0.79	-5.28	0.09	-0.27	0.30	91.59	-0.20	1.09	1.66	0.24
8 {6,2}	1.89	419.50	7	1	7	1	7.00	0.51	-0.59	-5.06	0.28	-0.22	0.39	89.28	-0.19	1.09	1.62	0.21
8{6,3}	1.39	405.47	7	1	7	1	7.00	0.51	-0.55	-4.84	0.25	-0.15	0.36	87.54	-0.20	1.06	1.75	0.32
8{6,4}	2.10	439.92	7	1	7	1	7.00	0.18	-0.60	-4.92	0.32	-0.41	0.42	94.16	-0.41	0.55	1.59	0.16
8{6,5}	1.53	423.46	7	1	7	1	7.00	0.51	-0.70	-4.98	-0.10	-0.09	0.10	86.62	-0.22	1.14	1.62	0.29
8{6,6}	0.38	413.45	9	1	10	1	10.00	0.51	-1.08	-4.15	-0.36	0.19	-0.13	59.16	-0.15	1.52	2.15	0.32
8 {6,7}	0.13	399.42	9	1	9	1	9.00	0.51	-0.68	-4.05	-0.40	0.44	-0.18	48.33	0.07	1.62	2.14	0.01
8{6,8}	-0.65	415.46	9	1	8	1	8.00	0.51	-0.87	-3.86	-0.33	0.20	-0.16	55.59	-0.14	1.39	1.85	0.42
averages	2.57	486.26	8	1	9	1	8.71	0.16	-0.53	-5.94	0.14	-0.46	0.30	96.04	-0.46	0.29	1.12	-0.71