Supporting Information

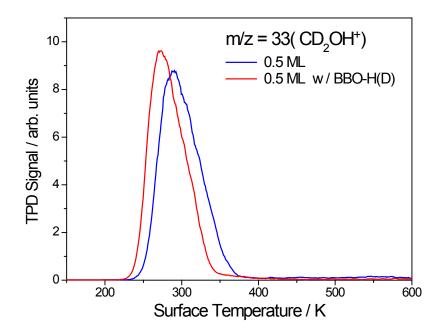
for

Stepwise photocatalytic dissociation of methanol and water on $TiO_2(110)$

Qing Guo,¹ Chenbiao Xu,^{1,+} Zefeng Ren,¹ Wenshao Yang,¹ Zhibo Ma,¹ Dongxu Dai,¹ Hongjun Fan,^{1,*} Timothy K. Minton,^{2,#,*} Xueming Yang^{1,*}

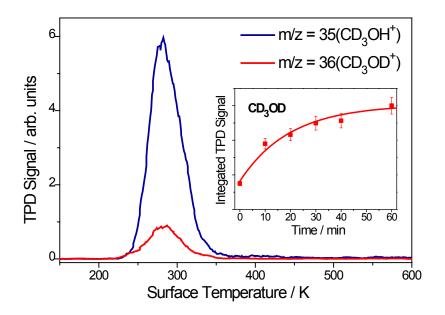
¹State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian 116023, Liaoning, P. R. China

and

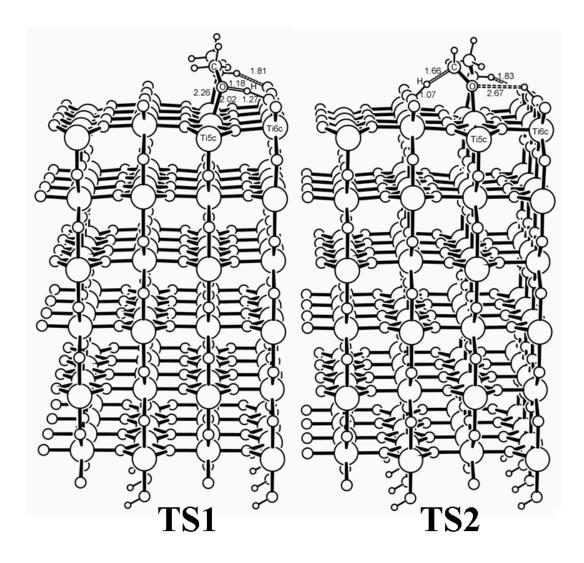

²Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA

⁺ Also with School of Physics and Optoelectric Engineering, Dalian University of Technology, Dalian, Liaoning 59717, CHINA

[#] Chinese Academy of Sciences Visiting Senior Scientist


* To whom all correspondence should be addressed. Emails: <u>fanhj@dicp.ac.cn</u>, <u>tminton@montana.edu</u>, <u>xmyang@dicp.ac.cn</u>.

Effect of BBO-H(D) on the CD₃OH TPD spectra. From the experimental results, especially the TPD spectra of the water isotopologues, we have learned that all the dissociated H or D atoms from CD₃OH go to the neighboring bridge-bonded oxygen (BBO) rows on the $TiO_2(110)$ surface. Here we investigate the shifting edge of the TPD peak for CD₃OH (Figure 3A in the main text). The TPD spectra of CD₃OH seem to show that those CD₃OH molecules that desorb at higher temperature are specifically depleted after laser irradiation. In order to understand this observation, we carried out an experiment to investigate how the binding of H or D atoms to the BBO sites affected the TPD of CD₃OH. In this experiment, we first prepared a large coverage of H or D atoms on the BBO sites by photocatalyzed dissociation of CD₃OH (0.5 ML) by laser irradiation of the surface for 30 minutes at 100 K, followed by a TPD measurement as the sample was heated to 400 K. At this point, all the undissociated CD₃OH molecules and the CD₂O products were desorbed, leaving only H or D atoms, which must be bound to oxygen atoms on the BBO rows. Then we cooled the surface again to 100 K and adsorbed 0.5 ML of CD₃OH and made the TPD measurement again. The results, presented in Figure S1, show that the CD₃OH TPD peak with the presence of BBO-H(D) is shifted by about 20 K to lower temperature in comparison with the original CD₃OH TPD peak (solid blue curve) before laser irradiation. Therefore, the shift of the CD₃OH TPD peak toward lower temperatures after laser irradiation is caused by the presence of the H and D atoms on the BBO rows.


Figure S1. TPD signals for methanol, collected at m/z = 33 (CD₂OH⁺), with and without the presence of pre-formed BBO-H(D).

TPD spectra for CD₃OD versus CD₃OH. TPD signals resulting from photocatalysis of CD₃OH on the TiO₂(110) surface were also observed at parent mass-to-charge ratios (m/z) of 35(CD₃OH⁺) and 36(CD₃OD⁺). Figure S2 shows the TPD spectra at m/z = 35 and 36 after a laser irradiation time of 30 minutes. The TPD signal at $m/z = 36(CD_3OD^+)$ is about 16.4% of that at $m/z = 35(CD_3OH^+)$. The TPD signal at m/z = 36 increases as the laser irradiation time increases and is anti-correlated with the TPD signal at m/z = 35, similar to the formaldehyde signal (Figure 4 in main text). The photoinduced CD₃OD signal is likely the result of recombination of CD₃O intermediate products on the Ti_{5c} sites with D atoms on the BBO sites. This implies that the intermediate species of CD₃O on Ti_{5c} is present in the photocatalytic dissociation of methanol. This observation thus supports the stepwise dissociation mechanism inferred in this work.

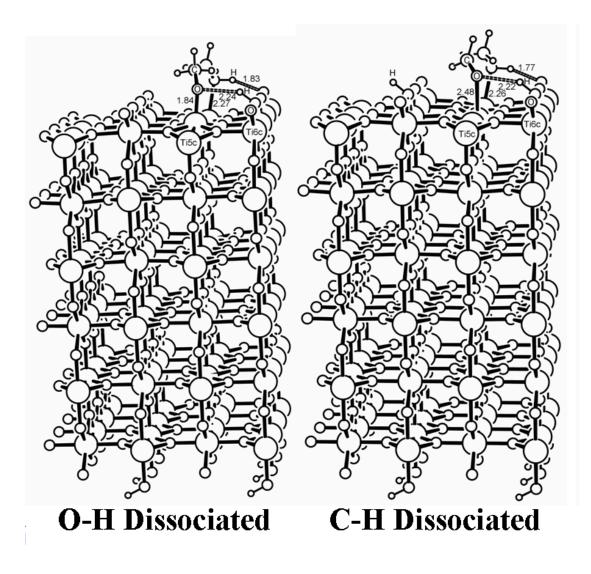


Figure S2. TPD spectra collected at $m/z = 35(CD_3OH^+)$ and $36(CD_3OD^+)$ from the photocatalysis of CD₃OH/TiO₂(110) with a laser irradiation time of 30 min. The inset graph shows the integrated TPD signal for CD₃OD, collected at m/z = 36, as a function of irradiation time. The integrated signal for CD₃OH decreases with irradiation time, as shown in Figure 4 in the main text.

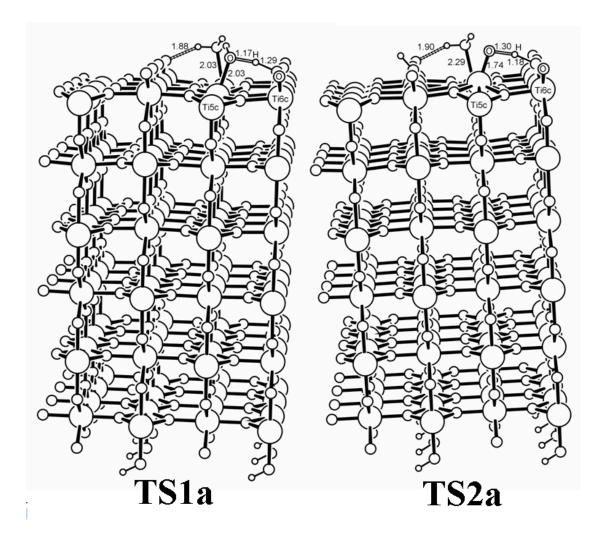

Optimized structures from theory. The optimized CH_3OH and H_2O adsorbed structures are shown in Figure 2 in the main text. The optimized transition states and dissociated structures for stepwise dissociation of CH_3OH are shown in Figures S3 and S4, respectively. The analogous optimized transition states and dissociated structures for stepwise dissociation of H_2O are shown in Figures S6 and S7, respectively.

Figure S3. Transition state structures for O-H and C-H dissociation of CH_3OH on a $TiO_2(110)$ surface.

Figure S4. Optimized structures for products following the first (O-H) and second (C-H) dissociation steps for CH_3OH on a $TiO_2(110)$ surface.

Figure S5. Transition state structures for the first and second O-H dissociation steps for H_2O on a TiO₂(110) surface.

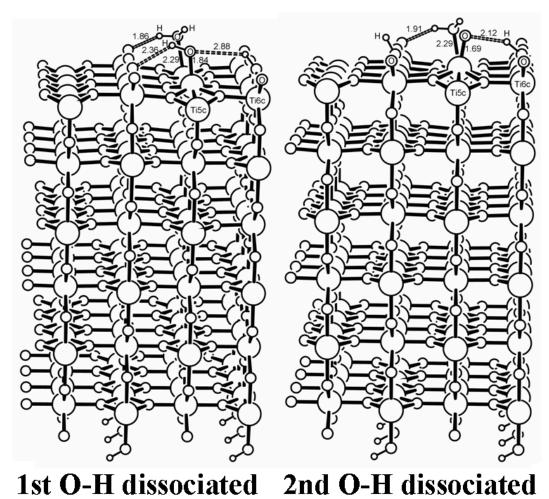


Figure S6. Optimized structures for products following the first and second O-H

dissociation steps for H_2O on a TiO₂(110) surface.