Supporting Information

Organocatalytic One Pot Asymmetric Synthesis of 4*H*,5*H*-Pyrano[2,3-c]pyrazoles

Dieter Enders,*^{,†} André Grossmann,[†] Bianca Gieraths, [†] Muharrem Düzdemir, [†] and Carina Merkens[‡]

Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1,52074 Aachen, Germany, and Institute of Inorgnaic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany

enders@rwth-aachen.de

Contents

1. General Methods	2
2. Materials	2
3. General Procedure for the Asymmetric Michael/Wittig/oxa-Michael One Pot Reaction	3
4. Solvent Screening of the Asymmetric Michael/Acetalization Cascade Reaction	3
5. Optimization of the Ring opening/Wittig/oxa-Michael Cascade	4
6. Epimerization/Decomposition Experiment of Compound 9a	4
7. Analytical data	5
8. NMR Spectra	. 15
9. NOESY of Compounds 13e and 13f	. 30
10. HPLC Chromatograms	. 32

[†] Institute of Organic Chemistry

[‡] Institute of Inorgnaic Chemistry

1. General Methods

- Preparative column chromatography: Merck silica gel 60, particle size 0.040-0.063 mm (230-240 mesh, flash).
- Analytical TLC: SIL G-25 UV254 from MACHEREY&NAGEL. Visualization of the developed TLC plates was performed with ultraviolet irradiation (254 nm) or by staining with basic potassium permanganate solution.
- **Optical rotation** values were measured on a Perkin-Elmer 241 polarimeter.
- Microanalyses were performed with a Vario EL element analyzer. •
- Mass spectra were acquired on a Finnigan SSQ7000 (EI/CI) spectrometer and high resolution • mass spectra on a Finnigan MAT 95 (EI/CI) or on a ThermoFisher Scientific LTOOrbitrap XL (ESI). All signals over 10% relative intensity are listed.
- **IR spectra** were taken on a Perkin-Elmer FT-IR Spectrum 100 using a Diamant/KRS5 ATR.
- ¹H-, ¹³C- and ¹⁹F-NMR spectra were recorded at ambient temperature on Varian Mercury 300, VNMRS 600 and Inova 400 instruments with tetramethylsilane as an internal standard.
- Analytical HPLC was performed on a Hewlett-Packard 1100 Series instrument using chiral stationary phases (Daicel AD, Daicel IA, Daicel OD).

2. Materials

- Trifluoromethylpyrazolones 7a and 7b were purchased from Fluorochem and ABCR and were used as received.
- Catalysts **10-11** were purchased from Sigma Aldrich and were used as received.
- Aldehydes **6a-f** were purchased from Sigma Aldrich, distilled and stored in the fridge previous to use.
- Aldehydes $6g^{1}_{,1} 6h^{2}_{,2} 6i^{3}_{,3}$ were synthesized according to the literature procedures.
- Organocatalysts $8a-c^4$ and $8d^5$ were prepared according to the literature procedure. •
- The racemic products were prepared using morpholine instead of 8b as the catalyst and • chloroform as sole solvent.⁶
- CHCl₃ (spectroscopy grade) was purchased from a commercial source and used as received. All other solvents were of technical grade and dried using common purification techniques.

⁽¹⁾ Bulger, P. G.; Moloney, M. G.; Trippier, P. C. Org. Biomol. Chem. 2003, 1, 3726-3737.

⁽²⁾ Boone, M. A.; McDonald, F. E.; Lichter, J.; Lutz, S.; Cao, R.; Hardcastle, K. I. Org. Lett. 2009, 11, 851.

⁽³⁾ Belardi, J. K.; Curtis, L. A.; Clareen, S. S.; Shimp, H. L.; Leimkuhler, C. E.; Simonowicz, N. L; Casillas, E. Synth.

⁽a) Bolardi, J. R., Culter, E. A., Clarcen, S. S., Simili, H. E., Eclinkunder, C. E., Simonowicz, N. E., Castnas, E. Synn. Commun. 2005, 35, 1633-1640.
(4) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem. 2005, 117, 804–807; Angew. Chem. Int. Ed. Engl. 2005, 44, 794.
(5) Sparr, C. Tanzer, E.-M.; Bachmann, J.; Gilmour, R. Synthesis 2010, 1394–1397.
(6) Morpholine led to complex mixtures of products, when a toluene/methanol mixture was used as solvent.

3. General Procedure for the Asymmetric Michael/Wittig/oxa-Michael One Pot Reaction

A solution of trifluoromethyl pyrazolone 7 (1.0 mmol, 1.0 equiv.) and catalyst **8b** (0.20 mmol, 0.2 equiv.) in toluene/methanol 10:1 (3 mL) was cooled to -78 °C. Subsequently, a solution of the aldehyde **6** was added dropwise. After the mixture was stirred for 24 h chloroform (4 mL) was added and the temperature was raised to -20 °C. Finally, phosphorus ylide **12** was added in one portion and the reaction was continued stirring for 24 h while the reaction was allowed to reach room temperature. The crude product was transferred on a small amount of silica and then directly purified by column chromatography gaining the products **13** as an inseparable mixture of diastereomers.

4. Solvent Screening of the Asymmetric Michael/Acetalization Cascade Reaction^a

^{*a*} Reaction conditions: **6a** (1.0 mmol), **7a** (1.0 mmol), solvent (4.0 mL). ^{*b*} Yields of **9a** were determined via 1H NMR spectroscopy using 4,4'-ditert-butylbiphenyl (DTBP) as internal standard; sum of isomers. ^{*c*} Enantiomeric ratios were determined by HPLC analysis on a chiral stationary phase after converting **9a** to **13k**.

5. Optimization of the Ring opening/Wittig/oxa-Michael Cascade^a

^{*a*} Reaction conditions: **9a** (1.0 mmol), **12k** (1.0 mmol), solvent (8.0 mL). ^{*b*} Yields of isolated **13k**; sum of diastereomers. ^{*c*} Diastereomeric ratio was determined by HPLC analysis or 1H NMR spectroscopy. n.d. = not determined.

6. Epimerization/Decomposition Experiment of Compound 9a

A solution of acetal **9a** (0.25 mmol) in toluene/methanol 10:1 (1 mL) was treated with (*R*)-**8b** (0.25 mmol) or morpholine (0.25 mmol) and stirred at ambient temperature for 24 h. Subsequently, chloroform (1 mL) and the Wittig reagent **12k** (0.25 mmol) were added while the reaction mixture was stirred for additional 24 h. Finally, compounds **13k** was directly purified by column chromatography (Et₂O/n-pentane 1:1) yielding the corresponding product as a colorless oil.

entry	catalyst	yield ^a (%)	dr^b	er ^b (trans)	er ^b (cis)
1	none	76	71:29	89:11	88:12
2	(<i>R</i>)-8b	25	72:28	75:25	71:29
3	morpholine	38	71:29	89:11	88:12

^{*a*} Yields of isolated **13k**; sum of diastereomers. ^{*b*} The diastereomeric and enantiomeric ratio was determined by HPLC analysis on a chiral stationary phase.

7. Analytical data

2-((4*R*,6*S*)-1,4-Dimethyl-3-(trifluoromethyl)-1,4,5,6-tetrahydropyrano[2,3-c]pyrazol-6-yl)-1-(3methoxyphenyl)ethanone (13a) was purified by flash chromatography (*n*-pentane/Et₂O 1:1) yielding an inseparable mixture of diastereomers of **13a** as a colorless oil. For analytical purposes a sample of the *trans*diastereomer was obtained via preparative HPLC (LiChrosorb Si 60 7µm 250x25 mm, *n*-pentane/diethylether 6:4, 18 mL/min), $t_R = 18.58 \text{ min } (trans)$, $t_R \sim 19.00 \text{ min } (cis)$.⁷ The *ee* (*trans* 92%, *cis* 92%) was determined by HPLC on a chiral stationary phase (Daicel AD, *n*-heptane/*i*PrOH 95:5, 0.7 mL/min), $t_R = 15.93 \text{ min } (trans, major)$, 21.49 min (*trans*, minor), $t_R = 23.53 \text{ min } (cis, major)$, 25.77 min (*cis*, minor). $R_f = 0.21$ (**13a**), (*n*-pentane/Et₂O 2:1);

trans-Diastereomer: $[\alpha]_D^{25} = +19.2$ (c = 1.0, CHCl₃), $[\alpha]_{365}^{24} = +62.8$ (c = 1.0, CHCl₃); IR (ATR): 3219, 2953, 1685, 1583, 1489, 1433, 1354, 1259, 1165, 1117, 1030, 892, 851, 776, 725 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.30$ (d, J = 6.9 Hz, 3H), 1.85 (dt, J = 14.4 Hz, 2.5Hz, 1H), 1.90 (ddd, J = 15.9 Hz, 10.4 Hz, 5.5 Hz, 1H), 3.00 – 3.07 (m, 1H), 3.20 (dd, J = 16.8 Hz, 5.9 Hz, 1H), 3.59 (s, 3H), 3.60 (dd, J = 16.8 Hz, 6.4 Hz, 1H), 3.87 (s, 3H), 4.93 - 4.99 (m, 1H), 7.16 (ddd, J = 8.4 Hz, 2.5 Hz, 1.0 Hz, 1H), 7.41 (t, J = 8.2 Hz, 1H), 7.52 (dd, J = 2.5 Hz, 1.5 Hz, 1H), 7.56 (dt, J = 7.9 Hz, 1.0 Hz, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 22.2$, 23.0, 33.8, 35.1, 43.3, 55.4, 72.7, 100.4, 112.4, 119.9, 120.7, 121.6 (q, J = 269.6 Hz, CF₃) 129.7, 136.9 (q, J = 36.9 Hz), 138.0, 150.0, 159.9, 196.2 ppm; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = 61.9$ ppm; MS (EI, 75 eV): m/z 368 (M⁺, 26%), 135 (100), 107 (14); HRMS (ESI): m/z calcd for C₁₈H₂₀F₃N₂O₃⁺: 369.1421 [M+H⁺]; found: 369.1409.

1-(3-Methoxyphenyl)-2-((4R,6S)-4-methyl-1-phenyl-3-(trifluoromethyl)-1,4,5,6-tetrahydropyrano[2,3c]pyrazol-6-yl)ethanone (13b) was purified by flash chromatography (*n*-pentane/Et₂O 2:1) yielding an inseparable mixture of diastereomers of 13b as a colorless oil. For analytical purposes a sample of the *trans*diastereomer was obtained via preparative HPLC (LiChrosorb Si 60 7 μ m 250x25 mm,

⁽⁷⁾ The cis-diastereomer was only observed as a shoulder of the major peak and could not be completely separated.

n-pentane/diethylether 6:4, 18 mL/min), $t_{\rm R} = 12.14$ min (*trans*), $t_{\rm R} \sim 12.70$ min (*cis*).⁷ The *ee* (*trans* 87%, *cis* 85%) was determined by HPLC on a chiral stationary phase (Daicel IA, *n*-heptane/*i*PrOH 9:1, 1.0 mL/min), $t_{\rm R} = 6.33$ min (*trans*, major), 7.01 min (*cis*, minor), $t_{\rm R} = 8.11$ min (*trans*, minor), 9.59 min (*cis*, major). R_f = 0.48 (**13b**), (*n*-pentane/Et₂O 2:1);

trans-Diastereomer: $[\alpha]_D^{26} = +1.8 \ (c = 1.0, CHCl_3), <math>[\alpha]_{365}^{26} = -31.9 \ (c = 1.0, CHCl_3); IR (ATR): 3072, 2966, 2875, 1951, 1875, 1686, 1593, 1517, 1481, 1397, 1350, 1261, 1131, 1023, 874, 840, 761, 690, 634, 565, 505 cm⁻¹; ¹H NMR (600 MHz, CDCl_3): <math>\delta = 1.36 \ (d, J = 6.9 \ Hz, 3H), 1.90 \ (dt, J = 13.4 \ Hz, 2.5Hz, 1H), 1.97 \ (ddd, J = 15.9 \ Hz, 10.4 \ Hz, 5.5 \ Hz, 1H), 3.05 - 3.15 \ (m, 1H), 3.22 \ (dd, J = 16.4 \ Hz, 6.0 \ Hz, 1H), 3.61 \ (dd, J = 16.8 \ Hz, 6.9 \ Hz, 1H), 3.83 \ (s, 3H), 4.97 - 5.05 \ (m, 1H), 7.14 \ (dd, J = 8.4 \ Hz, 1.9 \ Hz, 1H), 7.22 \ (t, J = 7.4 \ Hz, 1H), 7.31 \ (t, J = 8.4 \ Hz, 2H), 7.38 \ (t, J = 7.9 \ Hz, 1H), 7.50 \ (dd, J = 2.5 \ Hz, 1.5 \ Hz, 1H), 7.55 \ (d, J = 7.4 \ Hz, 1H), 7.65 \ (dd, J = 8.9 \ Hz, 1.5 \ Hz, 2H) \ ppm; ^{13}C \ NMR \ (151 \ MHz, CDCl_3): \delta = 22.3, 23.1, 34.8, 43.3, 55.4. 73.5, 101.7, 112.4, 120.0, 120.8, 121.0, 121.5 \ (q, J = 269.6 \ Hz, CF_3), 126.7, 128.9, 129.7, 137.7, 138.0, 138.7 \ (q, J = 36.9 \ Hz), 149.9, 159.9, 196.4 \ ppm; ^{19}F \ NMR \ (564 \ MHz, CDCl_3): \delta = 62.1 \ ppm; MS \ (CI, 100 \ eV): m/z \ 432 \ (M+H^+, 15\%), 255 \ (17), 205 \ (15), 204 \ (100), 177 \ (84); \ HRMS \ (ESI): m/z \ calcd \ for \ C_{23}H_{22}F_3N_2O_3^+: \ 431.1577 \ [M+H^+]; \ found: 431.1577.$

2-((4*R*,6*S*)-4-Ethyl-1-methyl-3-(trifluoromethyl)-1,4,5,6-tetrahydropyrano[2,3-c]pyrazol-6-yl)-1-(3methoxyphenyl)ethanone (13c) was purified by flash chromatography (*n*-pentane/Et₂O 1:1) yielding inseparable mixture of diastereomers of 13c as a colorless oil. For analytical purposes a sample of the *trans*diastereomer was obtained via preparative HPLC (LiChrosorb Si 60 7µm 250x25 mm, *n*-pentane/diethylether 6:4, 18 mL/min), $t_R = 17.79 \text{ min } (trans)$, $t_R \sim 17.00 \text{ min } (cis)$.⁸ The *ee* (trans 94%, *cis* 95%) was determined by HPLC on a chiral stationary phase (Daicel AD, *n*-heptane/EtOH 97:3, 0.3 mL/min), $t_R = 34.91 \text{ min } (trans, \text{ major})$, 49.73 min (*cis*, minor), $t_R = 51.95 \text{ min } (trans, \text{ minor})$, 56.84 min (*cis*, major). $R_f = 0.21$ (13c), (*n*-pentane/Et₂O 2:1);

trans-Diastereomer: $[\alpha]_D^{25} = +9.8$ (c = 1.0, CHCl₃), $[\alpha]_{365}^{25} = +43.9$ (c = 1.0, CHCl₃); IR (ATR): 2956, 1685, 1585, 1548, 1491, 1429, 1354, 1256, 1161, 1116, 1040, 991, 887, 785, 730, 684 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.01$ (t, J = 7.4 Hz, 3H), 1.45 - 1.55 (m, 1H), 1.74 (ddd, J = 16.4 Hz, 10.9 Hz, 5.5 Hz, 1H), 1.80 - 1.86 (m, 1H), 2.09 (dt, J = 14.4 Hz, 2.0 Hz, 1H), 2.75 - 2.80 (m, 1H), 3.22 (dd, J = 16.8 Hz, 6.0 Hz, 1H), 3.59 (s, 3H), 3.60 (dd, J = 16.8 Hz, 6.4 Hz, 1H), 3.88 (s, 3H), 4.89 - 4.95 (m, 1H), 7.16 (dd, J = 7.9 Hz, 2.5 Hz, 1H), 7.41 (t, J = 7.9 Hz, 1H), 7.52 (t, J = 2.0 Hz, 1H), 7.57 (d, J = 7.4 Hz, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 11.6$, 28.7, 30.0, 30,9, 33.8, 43.5, 55.5, 72.9, 99.8, 112.4, 120.0, 120.7, 121.8 (q, J = 268.3 Hz, CF₃), 129.7, 137.1 (q, J = 38.2 Hz), 138.1, 150.1, 160.0, 196.3 ppm; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = 61.7$

⁽⁸⁾ The cis-diastereomer was only observed as a shoulder of the major peak and could not be completely separated.

ppm; MS (EI, 75 eV): m/z 383 (M⁺, 56%), 203 (41), 135 (100), 107 (14); HRMS (ESI): m/z calcd for $C_{19}H_{22}F_{3}N_{2}O_{3}^{+}$: 383.1577 [M+H⁺]; found: 383.1577.

1-(3-Methoxyphenyl)-2-((4*R*,6*S*)-1-methyl-4-propyl-3-(trifluoromethyl)-1,4,5,6-tetrahydropyrano[2,3c]pyrazol-6-yl)ethanone (13d) was purified by flash chromatography (*n*-pentane/Et₂O 1:1) yielding an inseparable mixture of diastereomers of 13d as a colorless oil. For analytical purposes a sample of the *trans*diastereomer was obtained via preparative HPLC (LiChrosorb Si 60 7µm 250x25 mm, *n*-pentane/diethylether 6:4, 18 mL/min), $t_R = 17.16 min (trans)$, $t_R \sim 17.00 min (cis)$.⁹ The *ee* (trans 95%, cis >99%) was determined by HPLC on a chiral stationary phase (Daicel AD, *n*-heptane/*i*PrOH 95:5, 0.7 mL/min), $t_R = 13.14 min (trans, major)$, 16.74 min (trans, minor), $t_R = 18.38 min (cis, major)$, 30.88 min (*cis*, minor). $R_f = 0.21$ (13d), (*n*-pentane/Et₂O 2:1);

trans-Diastereomer: $[\alpha]_D^{24} = +8.5$ (c = 1.0, CHCl₃), $[\alpha]_{365}^{24} = +37.9$ (c = 1.0, CHCl₃); IR (ATR): 2930, 2869, 2322, 2110, 1740, 1685, 1585, 1546, 1492, 1429, 1396, 1354, 1257, 1162, 1118, 1037, 991, 930, 854, 783, 730, 683 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 0.96$ (t, J = 6.9 Hz, 3H), 1.33 – 1.40 (m, 1H), 1.46 – 1.55 (m, 2H), 1.65 – 1.80 (m, 2H), 2.06 (dt, J = 14.4 Hz, 2.0 Hz, 1H), 2.85 – 2.90 (m, 1H), 3.21 (dd, J = 16.8 Hz, 6.4 Hz, 1H), 3.59 (s, 3H), 3.61 (dd, J = 16.8 Hz, 6.4 Hz, 1H), 3.88 (s, 3H), 4.89 – 4.95 (m, 1H), 7.16 (dd, J = 7.4 Hz, 1.5 Hz, 1H), 7.41 (t, J = 7.9 Hz, 1H), 7.52 (t, J = 2.0 Hz, 1H), 7.57 (dt, J = 8.4 Hz, 1.0 Hz, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 13.9$, 20.1, 28.0, 31.4, 33.8, 38.0, 43.5, 55.5, 72.8, 99.9, 112.4, 120.0, 120.7, 121.7 (q, J = 269.6 Hz, CF₃), 129.7, 136.9 (q, J = 36.9 Hz), 138.1, 150.1, 160.0, 196.4 ppm; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = 61.6$ ppm; MS (CI, 100 eV): m/z 397 (M+H⁺, 100%), 396 (11), 377 (55), 61 (16); elemental analysis calcd (%) for C₂₀H₂₃F₃N₂O₃: C 60.60, H 5.85, N 7.07; found: C 60.64, H 6.18, N 7.33.

2-((4*R*,6*S*)-4-Isopropyl-1-methyl-3-(trifluoromethyl)-1,4,5,6-tetrahydropyrano[2,3-c]pyrazol-6-yl)-1-(3methoxyphenyl)ethanone (13e) was purified by flash chromatography (*n*-pentane/ Et_2O 1:1) yielding an inseparable mixture of diastereomers of 13e as a colorless oil. For analytical purposes samples of the *trans*-

⁽⁹⁾ The cis-diastereomer was only observed as a shoulder of the major peak and could not be completely separated.

diastereomer and *cis*-diastereomers were obtained via preparative HPLC (LiChrosorb Si 60 7µm 250x25 mm, *n*-pentane/diethylether 6:4, 18 mL/min), $t_R = 17.10 \text{ min}$ (*trans*), $t_R = 16.30 \text{ min}$ (*cis*). The *ee* (*trans* 93%, *cis* 95%) was determined by HPLC on a chiral stationary phase (Daicel AD, *n*-heptane/*i*PrOH 95:5, 1.0 mL/min), $t_R = 7.18 \text{ min}$ (*trans*, major), 10.09 min (*cis*, major), $t_R = 10.48 \text{ min}$ (*trans*, minor), 14.00 min (*cis*, minor). $R_f = 0.17$ (**13e**), (*n*-pentane/Et₂O 2:1);

trans-Diastereomer: $[\alpha]_D^{24} = +8.4$ (c = 1.0, CHCl₃), $[\alpha]_{365}^{24} = +45.9$ (c = 1.0, CHCl₃); IR (ATR): 2957, 2325, 2099, 1684, 1582, 1483, 1430, 1358, 1259, 1119, 1035, 874, 784, 734, 686, 540 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 0.94$ (d, J = 6.9 Hz, 3H), 1.03 (d, J = 6.9 Hz, 3H), 1.65 (ddd, J = 16.4 Hz, 10.4 Hz, 6.0 Hz, 1H), 2.00 – 2.08 (m, 1H), 2.18 (dt, J = 14.4 Hz, 2.5 Hz, 1H), 2.73 – 2.77 (m, 1H), 3.19 (dd, J = 16.8 Hz, 6.9 Hz, 1H), 3.56 (dd, J = 16.8 Hz, 6.0 Hz, 1H), 3.59 (s, 3H), 3.87 (s, 3H), 4.96 – 5.02 (m, 1H), 7.15 (dd, J = 7.4 Hz, 2.0 Hz, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.51 (t, J = 2.0 Hz, 1H), 7.55 (dt, J = 7.9 Hz, 1.5 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 18.8$, 20.7, 29.0, 31.7, 33.8, 34.3, 43.6, 55.4, 74.1, 98.2, 112.3, 120.0, 120.7, 121.7 (q, J = 268.7 Hz, CF₃), 129.7, 137.3 (q, J = 36.5 Hz), 137.9, 150.2, 159.9, 196.4 ppm; ¹⁹F NMR (282 MHz, CDCl₃): $\delta = 60.9$ ppm; MS (CI, 100 eV): m/z 397 (M+H⁺, 100%), 377 (48).

cis-Diastereomer: $[\alpha]_D^{24} = -48.9$ (*c* = 1.0, CHCl₃), $[\alpha]_{365}^{24} = -180.5$ (*c* = 1.0, CHCl₃); IR (ATR): 2961, 2325, 2095, 1686, 1582, 1544, 1486, 1428, 1393, 1354, 1294, 1256, 1163, 1115, 1041, 995, 883, 763, 728, 684, 556 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 0.68$ (d, *J* = 6.9 Hz, 3H), 1.02 (d, *J* = 6.9 Hz, 3H), 1.54 – 1.61 (m, 1H), 2.02 (ddd, *J* = 13.9 Hz, 6.4 Hz, 1.5 Hz, 1H), 2.37 – 2.45 (m, 1H), 3.04 (ddd, *J* = 10.4 Hz, 6.0 Hz, 3.5 Hz, 1H), 3.25 (dd, *J* = 16.8 Hz, 6.0 Hz, 1H), 3.59 (s, 3H), 3.61 (dd, *J* = 16.8 Hz, 6.4 Hz, 1H), 3.88 (s, 3H), 4.72 – 4.78 (m, 1H), 7.16 (dd, *J* = 7.4 Hz, 1.9 Hz, 1H), 7.42 (t, *J* = 7.9 Hz, 1H), 7.52 (t, *J* = 1.9 Hz, 1H), 7.58 (dt, *J* = 7.4 Hz, 1.5 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 15.1$, 20.4, 27.7, 28.3, 33.8, 35.9, 44.0, 55.5, 76.9, 98.8, 112.4, 120.0, 120.8, 121.7 (q, *J* = 268.7 Hz, CF₃), 129.7, 136.8 (q, *J* = 37.1 Hz), 138.0, 151.5, 159.9, 196.2 ppm; ¹⁹F NMR (282 MHz, CDCl₃): $\delta = 61.6$ ppm; MS (CI, 100 eV): *m/z* 397 (M+H⁺, 27%), 377 (11), 231 (27), 221 (40), 205 (10), 201 (13), 178 (12), 177 (100), 135 (36).

Elemental analysis calcd (%) for C₂₀H₂₃F₃N₂O₃: C 60.60, H 5.85, N 7.07; found: C 60.59, H 5.48, N 7.21.

1-(3-Methoxyphenyl)-2-((4*R*,6*S*)-1-methyl-4-phenyl-3-(trifluoromethyl)-1,4,5,6-tetrahydropyrano[2,3c]pyrazol-6-yl)ethanone (13f) was purified by flash chromatography (*n*-pentane/Et₂O 1:1) yielding an inseparable mixture of diastereomers of 13f as a colorless oil. For analytical purposes a sample of the *trans*diastereomer was obtained via preparative HPLC (LiChrosorb Si 60 7µm 250x25 mm, *n*-pentane/diethylether 65:35, 18 mL/min), $t_R = 25.84 \text{ min } (trans)$, $t_R = 26.50 \text{ min } (cis)$. The *ee* (*trans* 76%) was determined by HPLC on a chiral stationary phase (Daicel AD, *n*-heptane/*i*PrOH 95:5, 1.0 mL/min), $t_{\rm R} = 13.34$ min (*trans*, major), 17.46 min (*trans*, minor), $t_{\rm R} = 25.47$ min (*cis*, unseparated). R_f = 0.26 (**13f**), (*n*-pentane/Et₂O 2:1);

trans-Diastereomer: $[\alpha]_D^{26} = +3.3$ (c = 1.0, CHCl₃), $[\alpha]_{365}^{26} = +4.9$ (c = 1.0, CHCl₃); IR (ATR): 2944, 2321, 2099, 1686, 1588, 1548, 1494, 1430, 1350, 1256, 1161, 1119, 1035, 878, 757, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 2.11$ (dt, J = 14.4 Hz, 2.5 Hz, 1H), 2.22 (ddd, J = 14.4 Hz, 10.9 Hz, 6.0 Hz, 1H), 3.07 (dd, J = 16.8 Hz, 4.5 Hz, 1H), 3.54 (dd, J = 16.8 Hz, 7.4 Hz, 1H), 3.64 (s, 3H), 3.83 (s, 3H), 4.26 (d, J = 3.5 Hz, 1H), 4.79 – 4.84 (m, 1H), 7.11 – 7.15 (m, 3H), 7.22 (t, J = 7.4 Hz, 1H), 7.30 (t, J = 7.4 Hz, 2H), 7.37 (t, J = 7.9 Hz, 1H), 7.45 (t, J = 2.5 Hz, 1H), 7.50 (d, J = 7.9 Hz, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 33.9$, 34.1, 36.8, 43.0, 55.4, 72.5, 96.1, 112.4, 119.9, 120.7, 121.3 (q, J = 269.6 Hz, CF₃), 126.7, 127.6, 128.4, 129.6, 137.6 (q, J = 38.2 Hz), 138.0, 143.8, 151.2, 159.9, 195.8 ppm; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = 62.3$ ppm; MS (CI, 100 eV): m/z 431 (M+H⁺, 100%), 412 (11), 411 (41); elemental analysis calcd (%) for C₂₃H₂₁F₃N₂O₃: C 64.18, H 4.92, N 6.51; found: C 64.22, H 5.11, N 6.38.

2-((4*R*,6*S*)-4-Benzyl-1-methyl-3-(trifluoromethyl)-1,4,5,6-tetrahydropyrano[2,3-c]pyrazol-6-yl)-1-(3methoxyphenyl)ethanone (13g) was purified by flash chromatography (*n*-pentane/Et₂O 1:1) yielding an inseparable mixture of diastereomers of 13g as a colorless oil. For analytical purposes a sample of the *trans*diastereomer was obtained via preparative HPLC (LiChrosorb Si 60 7µm 250x25 mm, *n*-pentane/diethylether 6:4, 18 mL/min), $t_R = 19.21 \text{ min } (trans)$, $t_R = 17.55 \text{ min } (cis)$. The *ee* (*trans* 93%, *cis* >99%) was determined by HPLC on a chiral stationary phase (Daicel OD, *n*-heptane/*i*PrOH 97:3, 0.7 mL/min), $t_R = 25.36 \text{ min } (trans, \text{ major})$, 28.29 min (*trans*, minor), $t_R = 32.16 \text{ min } (cis, \text{ minor})$, 53.64 min (*cis*, major). $R_f = 0.21$ (13g), (*n*-pentane/Et₂O 2:1);

trans-Diastereomer: $[\alpha]_D^{24} = -11.1$ (c = 1.0, CHCl₃), $[\alpha]_{365}^{24} = -21.2$ (c = 1.0, CHCl₃); IR (ATR): 3025, 2935, 2111, 1684, 1586, 1547, 1493, 1429, 1354, 1257, 1162, 1116, 1044, 1001, 941, 854, 782, 728, 694 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.57$ (ddd, J = 14.4 Hz, 11.4 Hz, 6.0 Hz, 1H), 1.94 (dt, J = 14.4 Hz, 1.5 Hz, 1H), 2.63 (dd, J = 13.9 Hz, 11.4 Hz, 1H), 3.08 – 3.13 (m, 1H), 3.15 – 3.21 (m, 2H), 3.57 (dd, J = 16.8 Hz, 6.0 Hz, 1H), 3.63 (s, 3H), 3.87 (s, 3H), 4.94 – 5.00 (m, 1H), 7.15 (dd, J = 8.4 Hz, 2.5 Hz, 1H), 7.22 (t, J = 6.9 Hz, 1H), 7.25 (d, J = 6.4 Hz, 2H), 7.31 (t, J = 7.9 Hz, 2H), 7.40 (t, J = 7.9 Hz, 1H), 7.50 (t, J = 1.9 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 30.2$, 30.7, 33.8, 42.0, 43.6, 55.4, 72.7, 99.2, 112.4, 119.9, 120.7, 121.8 (q, J = 269.6 Hz, CF₃), 126.3, 128.4, 129.3, 129.7, 137.0 (q, J = 38.2 Hz), 137.9, 139.4, 150.4, 159.9, 196.0 ppm; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = 61.5$ ppm; MS (CI, 100 eV): m/z 445 (M+H⁺, 100%), 425 (33), 353 (12), 135 (17), 61 (25); elemental analysis calcd (%) for C₂₄H₂₃F₃N₂O₃: C 64.86, H 5.22, N 6.30; found: C 64.84, H 5.67, N 6.21.

1-(3-Methoxyphenyl)-2-((4*R*,6*S*)-1-methyl-3-(trifluoromethyl)-4-(((triisopropylsilyl)oxy)methyl)-1,4,5,6tetrahydropyrano[2,3-c]pyrazol-6-yl)ethanone (13h) was purified by flash chromatography (*n*-pentane/Et₂O 1:1) yielding an inseparable mixture of diastereomers of 13h as a colorless oil. For analytical purposes a sample of the *trans*-diastereomer was obtained via preparative HPLC (LiChrosorb Si 60 7µm 250x25 mm, *n*-pentane/diethylether 6:4, 18 mL/min), $t_R = 14.26 \text{ min } (trans)$, $t_R \sim 14.20 \text{ min } (cis)$.¹⁰ The *ee* (*trans* 97%, *cis* >99%) was determined by HPLC on a chiral stationary phase (Daicel IA, *n*-heptane/iPrOH 95:5, 0.5 mL/min), $t_R = 10.53 \text{ min } (trans, \text{ minor})$, 11.37 min (*trans*, major), $t_R = 12.17 \text{ min}$ (*cis*, major), 13.07 min (*cis*, minor). $R_f = 0.37$ (13h), (*n*-pentane/Et₂O 2:1);

trans-Diastereomer: $[\alpha]_D^{26} = +22.7 \ (c = 1.0, CHCl_3), [\alpha]_{365}^{26} = +94.6 \ (c = 1.0, CHCl_3); IR (ATR): 3222, 2941, 2868, 1688, 1584, 1549, 1461, 1361, 1259, 1173, 1113, 1013, 886, 830, 781, 727, 682 cm⁻¹; ¹H NMR (600 MHz, CDCl_3): <math>\delta = 1.01 - 1.13 \ (m, 21H), 1.78 \ (ddd, J = 14.4 \ Hz, 11.9 \ Hz, 6.0 \ Hz, 1H), 2.39 \ (dt, J = 14.4 \ Hz, 1.9 \ Hz, 6.0 \ Hz, 1H), 3.03 - 3.08 \ (m, 1H), 3.17 \ (dd, J = 16.4 \ Hz, 5.0 \ Hz, 1H), 3.54 - 3.60 \ (m, 4H), 3.62 \ (t, J = 9.9 \ Hz, 1H), 3.88 \ (s, 3H), 3.96 \ (dd, J = 9.9 \ Hz, 4.0 \ Hz, 1H), 4.99 - 5.05 \ (m, 1H), 7.15 \ (dd, J = 8.4 \ Hz, 3.0 \ Hz, 1H), 7.41 \ (t, J = 7.9 \ Hz, 1H), 7.52 \ (dd, J = 2.5 \ Hz, 1.5 \ Hz, 1H), 7.57 \ (dt, J = 7.4 \ Hz, 1.3 \ Hz, 1H) \ ppm; {}^{13}C \ NMR \ (100 \ MHz, CDCl_3): \delta = 11.9, 17.9, 29.2, 31.6, 33.9, 43.8, 55.5, 65.4, 73.1, 95.1, 112.5, 119.9, 120.8, 121.5 \ (q, J = 269.5 \ Hz, CF_3), 129.7, 137.3 \ (q, J = 37.3 \ Hz), 138.2, 151.2, 160.0, 196.0 \ ppm; {}^{19}F \ NMR \ (564 \ MHz, CDCl_3): \delta = 61.8 \ ppm; MS \ (CI, 100 \ eV): m/z \ 541 \ (M+H^+, 52\%), 498 \ (15), 497 \ (48), 368 \ (17), 367 \ (80), 346 \ (21), 345 \ (100), 135 \ (32); elemental analysis calcd \ (\%) \ for C_{27}H_{39}F_3N_2O_4Si: C \ 59.98, \ H \ 7.27, \ N \ 5.18; \ found: C \ 59.82, \ H \ 7.35, \ N \ 5.57.$

((4*R*,6*S*)-6-(2-(3-Methoxyphenyl)-2-oxoethyl)-1-methyl-3-(trifluoromethyl)-1,4,5,6tetrahydropyrano[2,3-c]pyrazol-4-yl)methyl benzoate (13i) was purified by flash chromatography (*n*-pentane/Et₂O 1:1) yielding an inseparable mixture of diastereomers of 13i as a colorless oil. For analytical

⁽¹⁰⁾ The cis-diastereomer was only observed as a shoulder of the major peak and could not be completely separated.

purposes a sample of the *trans*-diastereomer was obtained via preparative HPLC (LiChrosorb Si 60 7 μ m 250x25 mm, *n*-pentane/diethylether 6:4, 18 mL/min), $t_R = 28.13 \text{ min}$ (*trans*), $t_R \sim 27.90 \text{ min}$ (*cis*).¹¹ The *ee* (*trans* 91%) was determined after the separation of the diastereomers by HPLC on a chiral stationary phase (Daicel OD, *n*-heptane/*i*PrOH 7:3, 0.7 mL/min), $t_R = 10.77 \text{ min}$ (*trans*, minor), 13.48 min (*trans*, major). $R_f = 0.25$ (**13i**), (*n*-pentane/Et₂O 1:1);

trans-Diastereomer: $[\alpha]_D^{26} = +1.0$ (c = 0.50, CHCl₃), $[\alpha]_{365}^{26} = -2.2$ (c = 0.50, CHCl₃); IR (ATR): 2947, 2325, 2229, 2189, 2157, 2113, 2077, 2049, 2005, 1963, 1717, 1687, 1585, 1549, 1493, 1432, 1260, 1164, 1112, 1026, 972, 862, 785, 712 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 1.90 (ddd, J = 14.4 Hz, 11.4 Hz, 5.5 Hz, 1H), 2.27 (dt, J = 14.9 Hz, 2.0 Hz, 1H), 3.24 (dd, J = 16.9 Hz, 5.5 Hz, 1H), 3.39 – 3.44 (m, 1H), 3.60 (dd, J = 16.8 Hz, 6.9 Hz, 1H), 3.62 (s, 3H), 3.87 (s, 3H), 3.40 (t, J = 9.9 Hz, 1H), 4.56 (dd, J = 11.4 Hz, 4.0 Hz, 1H), 5.05 – 5.10 (m, 1H), 7.15 (dd, J = 7.9 Hz, 2.5 Hz, 1H), 7.38 – 7.48 (m, 3H), 7.51 (t, J = 1.5 Hz, 1H), 7.54 – 7.59 (m, 2H), 8.06 (dd, J = 7.9 Hz, 15 Hz, 2H) ppm; ¹³C NMR (151 MHz, CDCl₃): δ 28.6, 29.7, 34.0, 43.5, 55.5, 66.2, 72.9, 94.0, 112.5, 120.0, 120.8, 121.4 (q, J = 269.6 Hz, CF₃), 128.4, 129.6, 129.7, 130.0, 133.1, 137.5 (q, J = 36.9 Hz), 138.0, 151.2, 160.0, 166.3, 195.7 ppm; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = 61.8$ ppm; MS (CI, 100 eV): m/z 489 (M+H⁺, 34%), 469 (28), 368 (19), 367 (100), 366 (13), 135 (15), 123 (35), 61 (28); elemental analysis calcd (%) for C₂₅H₂₃F₃N₂O₅: C 61.47, H 4.75, N 5.74; found: C 61.21, H 4.85, N 5.41.

2-((4*R*,6*S*)-4-Benzyl-1-phenyl-3-(trifluoromethyl)-1,4,5,6-tetrahydropyrano[2,3-c]pyrazol-6-yl)-1-(4bromophenyl)ethanone (13j) was purified by flash chromatography (*n*-pentane/Et₂O 2:1) yielding an inseparable mixture of diastereomers of 13j as a colorless solid. For analytical purposes a sample of the *trans*diastereomer was obtained via preparative HPLC (LiChrosorb Si 60 7µm 250x25 mm, *n*-pentane/diethylether 6:4, 18 mL/min), $t_R = 11.18 \text{ min } (trans)$, $t_R = 12.84 \text{ min } (cis)$. The *ee* (trans 96%, *cis* 86%) was determined by HPLC on a chiral stationary phase (Daicel IA, *n*-heptane/EtOH 97:3, 0.5 mL/min), $t_R = 20.50 \text{ min } (trans, \text{ major})$, 21.81 min (trans, minor), $t_R = 24.51 \text{ min } (cis, \text{ major})$, 25.83 min (*cis*, minor). $R_f = 0.71 (13j)$, (*n*-pentane/Et₂O 2:1);

trans-Diastereomer: m.p. 138 – 142 °C (MTBE/*n*-pentane); $[\alpha]_D^{25} = -55.7$ (c = 0.70, CHCl₃), $[\alpha]_{365}^{25} = -209.1$ (c = 0.70, CHCl₃); IR (ATR): 3066, 3025, 2953, 2921, 2321, 2086, 1688, 1591, 1515, 1481, 1454, 1399, 1351, 1266, 1207, 1158, 1120, 1069, 1013, 920, 890, 835, 812, 756, 735, 691 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.65$ (ddd, J = 14.4 Hz, 11.9 Hz, 5.5 Hz, 1H), 2.01 (d, J = 14.4 Hz, 1H), 2.69 (dd, 13.4 Hz, 11.4 Hz, 1H), 3.14 – 3.21 (m, 2H), 3.25 (dd, J = 13.9 Hz, 3.5 Hz, 1H), 3.57 (dd, J = 16.8 Hz, 6.4 Hz, 1H), 4.98 – 5.04 (m, 1H), 7.21 – 7.38 (m, 8H), 7.61 (d, J = 8.9 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 8.4 Hz, 2H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 30.0$, 30.7, 42.0, 43.3, 73.5, 100.5, 121.2, 121.8 (q, J = 8.4 Hz, 2H) ppm;

⁽¹¹⁾ The cis-diastereomer was only observed as a shoulder of the major peak and could not be completely separated.

269.6 Hz, CF₃), 126.5, 127.0, 128.6, 128.9, 129.0, 129.4, 129.7, 132.1, 135.3, 137.7, 138.8 (q, J = 38.2 Hz), 139.2, 150.2, 195.3 ppm; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = 61.4$ ppm; MS (CI, 100 eV): m/z 557 (100), 555 (M+H⁺, 95%), 537 (33), 536 (13), 535 (36), 465 (19), 463 (19), 265 (46), 62 (20); elemental analysis calcd (%) for C₂₈H₂₂BrF₃N₂O₂: C 60.55, H 3.99, N 5.04; found: C 60.35, H 4.03, N 4.73.

2-((4R,6S)-1,4-Dimethyl-3-(trifluoromethyl)-1,4,5,6-tetrahydropyrano[2,3-c]pyrazol-6-yl)-1-

phenylethanone (13k) was purified by flash chromatography (*n*-pentane/Et₂O 1:1) yielding an inseparable mixture of diastereomers of **13k** as a colorless oil. For analytical purposes a sample of the *trans*-diastereomer was obtained via preparative HPLC (LiChrosorb Si 60 7µm 250x25 mm, *n*-pentane/diethylether 6:4, 18 mL/min), $t_{\rm R} = 15.17$ min (*trans*), $t_{\rm R} \sim 15.90$ min (*cis*).¹² The *ee* (*trans* 91%, *cis* 95%) was determined by HPLC on a chiral stationary phase (Daicel AD, *n*-heptane/*i*PrOH 95:5, 0.7 mL/min), $t_{\rm R} = 12.33$ min (*trans*, major), 15.92 min (*trans*, minor), $t_{\rm R} = 17.46$ min (*cis*, major), 19.16 min (*cis*, minor). R_f = 0.28 (**13k**), (*n*-pentane/Et₂O 2:1);

trans-Diastereomer: $[\alpha]_D^{25} = +26.4$ (*c* = 1.17, CHCl₃), IR (ATR): 2960, 2327, 2095, 1686, 1585, 1546, 1498, 1430, 1395, 1355, 1261, 1162, 1116, 1032, 963, 899, 854, 746, 690, 649, 567 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.31$ (d, *J* = 6.9 Hz, 3H), 1.86 (dt, *J* = 13.9 Hz, 2.5 Hz, 1H), 1.91 (ddd, *J* = 14.4 Hz, 10.4 Hz, 5.5 Hz, 1H), 3.01 – 3.07 (m, 1H), 3.21 (dd, *J* = 16.8 Hz, 6.0 Hz, 1H), 3.58 (s, 3H), 3.62 (dd, *J* = 16.8 Hz, 6.4 Hz, 1H), 4.94 – 4.99 (m, 1H), 7.51 (t, *J* = 7.4 Hz, 2H), 7.62 (tt, *J* = 6.9 Hz, 1.5 Hz, 1H), 8.00 (dd, *J* = 8.4 Hz, 1.0 Hz, 2H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 22.3$, 23.0, 33.8, 35.2, 43.2, 72.8, 100.4, 121.6 (q, *J* = 269.6 Hz, CF₃), 128.2, 128.8, 133.6, 136.7, 137.0 (q, *J* = 38.2 Hz), 150.1, 196.5 ppm; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = 61.9$ ppm; MS (CI, 100 eV): *m/z* 339 (M+H⁺, 100%), 338 (14), 320 (11), 319 (45); elemental analysis calcd (%) for C₁₇H₁₂F₃N₂O₃: C 60.35, H 5.06, N 8.28; found: C 60.29, H 5.28, N 8.61.

1-(4-Bromophenyl)-2-((4*R*,6*S*)-1,4-dimethyl-3-(trifluoromethyl)-1,4,5,6-tetrahydropyrano[2,3c]pyrazol-6-yl)ethanone (13l) was purified by flash chromatography (*n*-pentane/Et₂O 1:1) yielding an inseparable mixture of diastereomers of 13l as a colorless oil. For analytical purposes a sample of the *trans*-

⁽¹²⁾ The cis-diastereomer was only observed as a shoulder of the major peak and could not be completely separated.

diastereomer was obtained via preparative HPLC (LiChrosorb Si 60 7µm 250x25 mm, *n*-pentane/diethylether 6:4, 18 mL/min), $t_{\rm R} = 15.10$ min (*trans*), $t_{\rm R} \sim 15.90$ min (*cis*).¹² The *ee* (*trans* 87%, *cis* 87%) was determined by HPLC on a chiral stationary phase (Daicel AD, *n*-heptane/*i*PrOH 95:5, 0.7 mL/min), $t_{\rm R} = 15.41$ min (*trans*, major), 18.41 min (*trans*, minor), $t_{\rm R} = 20.20$ min (*cis*, major), 23.58 min (*cis*, minor). R_f = 0.29 (**13l**), (*n*-pentane/Et₂O 2:1);

trans-Diastereomer: $[\alpha]_D^{24} = +14.4$ (c = 0.95, CHCl₃), $[\alpha]_{365}^{24} = +70.8$ (c = 0.95, CHCl₃); IR (ATR): 3457, 3074, 2922, 2575, 2423, 2289, 1919, 1691, 1579, 1383, 1252, 1021, 913, 808, 727, 662, 602 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.30$ (d, J = 6.9 Hz, 3H), 1.84 (dt, J = 13.9 Hz, 2.5 Hz, 1H), 1.90 (ddd, J = 13.9 Hz, 10.4 Hz, 5.5 Hz, 1H), 3.01 – 3.07 (m, 1H), 3.17 (dd, J = 16.8 Hz, 6.0 Hz, 1H), 3.56 (dd, J = 16.8 Hz, 6.4 Hz, 1H), 3.57 (s, 3H), 4.92 – 4.97 (m, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.86 (d, J = 8.4 Hz, 2H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 22.3$, 23.0, 33.8, 35.2, 43.2, 72.6, 100.4, 121.6 (q, J = 268.3 Hz, CF₃), 128.9, 129.6, 132.1, 135.4, 137.0 (q, J = 38.2 Hz), 150.0, 195.4 ppm; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = 61.9$ ppm; MS (CI, 100 eV): m/z 420 (100), 419 (48), 418 (M+H⁺, 87%), 417 (18), 401 (14), 400 (84), 399 (15), 398 (81), 339 (16), 320 (11), 217 (23), 203 (10), 185 (46), 183 (47); HRMS (ESI): m/z calcd for C₁₇H₁₇BrF₃O₂N₂⁺: 417.0420 [*M*+H⁺]; found: 417.0421.

(R,E)-Ethyl 5-(5-hydroxy-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)hex-2-enoate (13m') was purified by flash chromatography (*n*-pentane/Et₂O 1:2 – 1:5) yielding an inseparable mixture of E/Z-isomers of 13m' (E/Z 18:1) as a colorless oil.

R_f = 0.23 (**13m'**), (*n*-pentane/Et₂O 1:5); $[\alpha]_D^{25} = -10.1$ (*c* = 1.0, CHCl₃), $[\alpha]_{365}^{25} = +109.8$ (*c* = 1.0, CHCl₃); IR (ATR): 2968, 2089, 1698, 1567, 1483, 1376, 1271, 1162, 1121, 1040, 981, 857, 725 cm⁻¹; E-Isomer: ¹H NMR (600 MHz, CDCl₃): $\delta = 1.23$ (d, *J* = 7.4 Hz, 3H), 1.28 (t, *J*=7.2 Hz, 3H), 2.40 - 2.47 (m, 1H), 2.51 - 2.57 (m, 1H), 2.92 - 3.00 (m, 1H), 3.64 (s, 3H), 4.16 (q, *J* = 7.1 Hz, 2H), 5.74 (d, *J* = 15.9 Hz, 1H), 6.77 (dt, *J* = 15.4, 7.4 Hz, 1H) ppm;^{13 13}C NMR (151 MHz, CDCl₃): $\delta = 16.0$, 20.1, 28.2, 34.0, 38.6, 60.8, 106.4, 121.5 (q, *J* = 268.3 Hz, CF₃), 122.3, 137.2 (q, *J* = 36.9 Hz), 148.2, 149.8, 167.6 ppm;¹⁹F NMR (564 MHz, CDCl₃): $\delta = 61.9$ ppm; MS (CI, 100 eV): *m/z* 307 (M+H⁺, 64%), 237 (100), 221 (44), 193 (16), 167 (21); HRMS (ESI): *m/z* calcd for C₁₃H₁₈F₃N₂O₃⁺: 307.1264 [*M*+H⁺]; found: 307.1264.

⁽¹³⁾ The signal for OH was not observed.

(4*R*)-1,4-Dimethyl-3-(trifluoromethyl)-1,4,5,6-tetrahydropyrano[2,3-c]pyrazol-6-ol (9a) was purified by flash chromatography (*n*-pentane/Et₂O 1:5) yielding an inseparable mixture of 9a and 9a' as an off-white solid.

R_f = 0.25 (**9a**), (*n*-pentane/Et₂O 1:5); m.p. 82-86 °C (Et₂O/*n*-pentane); $[\alpha]_D^{26} = +17.1$ (*c* = 1.0, CHCl₃), $[\alpha]_{365}^{26} = +50.6$ (*c* = 1.0, CHCl₃); IR (ATR): 3197, 2954, 2884, 1579, 1553, 1498, 1431, 1400, 1338, 1258, 1167, 1117, 1048, 1017,984, 948, 872, 841, 745, 718, 700 cm⁻¹; *trans*-Diastereomer:^{14 1}H NMR (300 MHz, CDCl₃): $\delta = 1.29$ (d, *J* = 6.9 Hz, 3H), 1.72 (ddd, *J* = 13.9, 7.5, 1.9 Hz, 1H), 2.06 (dt, *J* = 13.9, 5.6 Hz, 1H), 3.05-3.15 (m, 1H), 3.63 (s, 3H), 5.37 (br s, OH), 5.72 (dd, *J*=5.3, 1.9 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 20.8, 21.4, 33.6, 36.5, 95.5, 100.3, 121.5$ (q, *J* = 269.3 Hz, CF₃), 136.8 (q, *J* = 38.3 Hz), 148.9 ppm; ¹⁹F NMR (282 MHz, CDCl₃): $\delta = 61.7$ ppm; MS (CI, 100 eV): *m/z* 237 (M+H⁺, 100%), 217 (52), 193 (12); elemental analysis calcd (%) for C₉H₁₁F₃N₂O₂: C 45.77, H 4.69, N 11.86; found: C 45.78, H 4.43, N 11.87.

⁽¹⁴⁾ The signals were assigned via 2D NMR techniques (COSY, HMQC, HMBC).

Figure S4. 13C NMR spectrum (151 MHz, CDCl₃) of trans-13b.

Figure S5. 1H NMR spectrum (600 MHz, CDCl₃) of *trans*-13c.

Figure S10. 13C NMR spectrum (75 MHz, CDCl₃) of *trans*-13e.

Figure S11. 1H NMR spectrum (600 MHz, CDCl₃) of *cis*-13e.

Figure S20. 13C NMR spectrum (151 MHz, CDCl₃) of trans-13i.

Figure S30. 13C NMR spectrum (75 MHz, CDCl₃) of 9a; mixture of diastereomers.

Figure S31. NOESY spectrum (600 MHz, CDCl₃) of *trans*-13e.

Figure S33. NOESY spectrum (600 MHz, CDCl₃) of *trans*-13f.

10. HPLC Chromatograms

Figure S34. HPLC chromatogram of 13a; comparison of racemic (top) and non-racemic (bottom); mixture of diastreomers.

1	# Re (n	et. Time Nin)	Width	Height (mAU)	Area (mAU*s)	Area %
-	1	3.09	0.14	3.37	37.05	0.39
1	2	6.361	0.15	634.33	6248.35	66.28
1	3	7.081	0.181	17.34	203.761	2.16
L	4	8.16	0.19	34.13	438.87	4.66
1	5	9.65	0.241	161.49	2498.67	26.51
То	tal				9426.70	100.00

Figure S35. HPLC chromatogram of 13b; comparison of racemic (top) and non-racemic (bottom); mixture of diastreomers.

Figure S36. HPLC chromatogram of 13c; comparison of racemic (top) and non-racemic (bottom); mixture of diastreomers.

Figure S37. HPLC chromatogram of 13d; comparison of racemic (top) and non-racemic (bottom); mixture of diastreomers.

Figure S38. HPLC chromatogram of *trans*-13e; comparison of racemic (top) and non-racemic (bottom).

Figure S39. HPLC chromatogram of *cis*-13e; comparison of racemic (top) and non-racemic (bottom).

The signal at 25 min belongs to the unseparated mixture of enantiomers of the second diastereomer.

Figure S40. HPLC chromatogram of 13f; comparison of racemic (top) and non-racemic (bottom); mixture of diastreomers.

Figure S41. HPLC chromatogram of 13g; comparison of racemic (top) and non-racemic (bottom); mixture of diastreomers.

Figure S42. HPLC chromatogram of 13h; comparison of racemic (top) and non-racemic (bottom); mixture of diastreomers.

Figure S43. HPLC chromatogram of trans-13i; comparison of racemic (top) and non-racemic (bottom).

Figure S44. HPLC chromatogram of *trans*-13j; comparison of racemic (top) and non-racemic (bottom).

Figure S45. HPLC chromatogram of 13k; comparison of racemic (top) and non-racemic (bottom); mixture of diastreomers.

Figure S46. HPLC chromatogram of 13I; comparison of racemic (top) and non-racemic (bottom); mixture of diastreomers.