Supporting Informations

Study of the Total Synthesis of (-)-Exiguolide

Cyril Cook, Frédéric Liron, Xavier Guinchard and Emmanuel Roulland*

Institut de Chimie des Substances Naturelles / CNRS.
Centre de Recherche de Gif.
Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
Fax: (+) 33169077247.
Web site: http://www.icsn.cnrs-gif.fr.
emmanuel.roulland@icsn.cnrs-gif.fr
General Methods and Standard Procedures S2
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound:
6 S4
11 S5
12 S7
13 S8
14 S9
15 S10
16 S12
17 S13
2 S14
23 and 24 S15
(-)-28 S16
7 S17
32 S18
8 S19
33 S20
34a S22
34b S23
35 S24
36 S25
37 S26
39 S28
40 S29
41 S30
42 S31
43 S32
44 S33
45 S34
46 S35
38 S36
47 S37

General Methods and Standard Procedures

Solvents: THF, $\mathrm{Et}_{2} \mathrm{O}$ and toluene were refluxed on sodium-benzophenone and then distilled under argon. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and NMP were dried by refluxing on CaH_{2} and then distilled under argon. Acetone, $\mathrm{CH}_{3} \mathrm{CN}$, DMF, DMSO and EtOH were stored over $4 \AA \mathrm{MS}$ and MeOH over $3 \AA \mathrm{MS}$. When required, solvent degassing was achieved by repeated freeze-vacuum cycles. Solvents used for extractions and purifications were used as received, except heptane and pentane, which were distilled using a rotational evaporator prior to use in chromatography, to remove non-volatile impurities.

Reagents and reactants: Unless otherwise noted, all reagents were obtained from commercial suppliers and were used as received. However, some of them were specifically purified prior to use:

- $\mathrm{Et}_{3} \mathrm{~N}$ was dried by refluxing on CaH_{2} and distilled under argon.
- Acrolein was refluxed on CaSO_{4} and distilled under argon prior to use.
- Commercial solution of organometallic reagents ($n-\mathrm{BuLi}, t-\mathrm{BuLi}, \mathrm{MeMgBr}$, vinylmagnesium bromide, ethynylmagnesium bromide, KHMDS) were used as received, based on their theoretical concentrations. However, when needed, their actual concentration was assessed using the s - $\mathrm{BuOH}-1,10$-phenanthroline titration method. ${ }^{1}$
- LDA and LiHMDS were prepared prior to use by slow addition of the amine into a solution of n-BuLi in heptanes at $0^{\circ} \mathrm{C}$ and stirred for 30 min . The concentration of these solutions might then be adjusted by addition of distilled THF.

Reaction conditions: Unless otherwise noted, all reactions were performed using oven dried glassware under an atmosphere of dry argon.

Purification methods: Classic flash chromatography was performed using silica gel 60 (35-70 $\mu \mathrm{m}$). Preparative HPLC purifications were carried out normal phase silica gel columns and a differential refractometer as the detector. Several products were purified by short-path and bulb-tobulb distillation apparatus. In this case, the given temperature ($\mathrm{T}_{\text {set }}$) is not the actual temperature of distillation of the product but just an indicative setting temperature.

Analytical methods: Thin-layer chromatography (TLC) plates (F_{254} aluminium sheets) were analyzed by ultraviolet (254 nm and/or 365 nm) and spraying with various stains, followed by heating:

- Vanillin: vanillin $(1 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{~mL})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$.

[^0]- Phosphomolybdic acid: Phosphomolybdic acid (10 g) in EtOH (100 mL).
- $\mathrm{FeCl}_{3}: \mathrm{FeCl}_{3}(1 \mathrm{~g})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$. Used for specific staining of phenols.
- Retention factors $(\mathbf{R} \boldsymbol{f})$ are defined as the distance traveled by the compound divided by the distance traveled by the solvent.

Infrared spectra (IR) were recorded neat. Wavenumbers (\boldsymbol{v}) are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$.
For ${ }^{1} \mathbf{H}$ NMR-spectra (300 or 500 MHz) and ${ }^{13} \mathbf{C}$ NMR-spectra $(75,5$ or 125.8 MHz), chemical shifts $(\boldsymbol{\delta})$ are given in ppm and were referenced to the internal solvent signal ${ }^{2}$ or to TMS as an internal standard. Multiplicities are declared as follow: s (singlet), d (doublet), t (triplet), q (quadruplet), dd (doublet of doublet), ddd (doublet of doublet of doublet), ddt (doublet of doublet of triplet), ddq (doublet of doublet of quadruplet), td (triplet of doublet), m (multiplet) and br (broad signal). Coupling constant (J) are given in Hz. Assignments of proton resonances were confirmed, when possible, by correlated spectroscopy (COSY $\left.{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}, \mathrm{HMQC}, \mathrm{HMBC}\right)$.

Low- and high-resolution mass spectra methods (LRMS TOF and HRMS TOF) used are electrospray (ESI), electronic impact (EI) and chemical ionization (CI).

Elemental analyses (Anal.) results are given as the everage values of at least two determinations.
Melting points (MP) were determined after crystallization or precipitation from the solvents indicated between brackets.

Special instructions for acid-sensitive compounds: Many compounds described in this work are acid-sensitive. In order to avoid their degradation, the following preventive measures were taken:

- washing with a saturated aqueous solution of NaHCO_{3} at the end of the extraction;
- drying on a $\mathrm{Na}_{2} \mathrm{SO}_{4} / \mathrm{K}_{2} \mathrm{CO}_{3}$ mixture before filtration and removal of the solvents;
- purification on neutralized silica gel, prepared by treatment with $\mathrm{Et}_{3} \mathrm{~N}$ (25 mL per kg of silica gel) in EtOAc, followed by concentration and drying under vacuum;
- NMR experiments carried out in $\mathrm{C}_{6} \mathrm{D}_{6}$ instead of CDCl_{3}.

[^1]

(

(

[^2]

$000^{\circ} 0$
,

\qquad
000 O-
$0:$
869'レ-
9 68^{\prime} ᄂ
と $26^{\circ}\llcorner$

LSL ' ε
$9 S L \cdot \varepsilon$
$09 L^{\prime} \varepsilon$
GLL' ε
$6 \angle L^{\prime} \varepsilon$
t 8 L' ε

$\begin{aligned} & 699^{\prime} \varepsilon \\ & 8 \angle 9^{\circ} \varepsilon\end{aligned}>-$
$\left.\begin{array}{l}\text { OLL' } \\ \text { GLL' } \\ \angle 9 L \\ \text { ZLL' } \\ \angle L L \\ L O Z ' g \\ 90 Z ' g\end{array}\right\rangle$
$898^{\circ} \mathrm{g}$
$206^{\circ} \mathrm{G}=$
$926^{\circ} \mathrm{G} \%$
$696^{\circ} \mathrm{c}$
$992<-$
udd

产
©

$\frac{\vee}{7}$, 3 둥잉

(

[^0]: ${ }^{1}$ S. C. Watson, J. F. Eastham, J. Organomet. Chem. 1967, 9, 165-168.

[^1]: ${ }^{2}$ H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515.

[^2]: | 1 |
 | :---: |
 | $-0,5$ |

 | 1 |
 | :--- |
 | 0,5 |

