# Supporting Information

## for

# Occurrence of Pharmaceuticals and Personal Care Products in German

### Fish Tissue: A National Study

Bikram Subedi<sup>§,\*</sup>, Bowen Du<sup>\*,†,‡</sup>, C. Kevin Chambliss<sup>§,\*,‡</sup>, Jan Koschorreck<sup>±</sup>, Heinz Rüdel<sup>±</sup>, Markus Quack<sup>II</sup>, Bryan W. Brooks<sup>\*,†,‡</sup> and Sascha Usenko<sup>§,\*,†,‡,\*</sup>

Environmental Science and Technology

Total number of pages (including cover page): 17

Page S2: Figure S1

Page S3: Analytes, Surrogates, and Internal Standards

Page S4: Quality Assurance and Quality Control (QAQC)

Page S5: Table S1

Page S6: Table S2

Page S7: Table S3

Page S8: Table S4

Page S9: Table S5

Page S10: Table S6

Page S11 and S12: Table S7

Page S13: Table S8

Page S14: Lipid Determination and Figure S2

Page S15: Influence of WWTPs on PCPs Fish Tissue Concentration

Page S16: Figure S3

Page S17: References

<sup>§</sup>Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798

<sup>\*</sup>Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798

<sup>†</sup>Department of Environmental Science, Baylor University, Waco, Texas 76798

<sup>‡</sup>The Institute of Ecological, Earth and Environmental Sciences, Baylor University, Waco, Texas 76798, USA

<sup>L</sup>Umweltbundesamt, P. O. Box 330022, Berlin 14191, Germany

<sup>II</sup> Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 57392 Schmallenberg, Germany <sup>II</sup>Department of Biogeography, Trier University, 54286 Trier, Germany

\*Corresponding author: Phone: +1 254 710 2302, fax: +1 254 710 3409, e-mail: Sascha\_Usenko@Baylor.edu

**GESB** Sample Locations.



Figure S1. GESB sample locations

Analytes, Surrogates, and Internal Standards. All chemicals were purchased as reagent grade or better from commercial vendors and have been previously described.<sup>1, 2</sup> The pharmaceuticals measured include: analgesics (acetaminophen, codeine), antihypertensions (atenolol, propranolol, and diltiazem), antibiotics (trimethoprim and sulfamethoxazole), antidepressants (sertraline, fluoxetine, and paroxetine), stimulant (caffeine), antihistamine (diphenhydramine (DPH)), antiseizure (carbamazepine), benzodiazepine (diazepam), antilipemic (gemfibrozil), and select metabolites (norfluoxetine and desmethylsertraline (DMS)). Personal care products include: insect repellent (*m*-tolumide), sunscreen and UV-filters (benzophenone, octocrylene, and 4-methylbenxylidine camphor (4-MBC)), synthetic musk fragrances (galaxolide (HHCB), tonalide (AHTN), celestolide, musk ketone, and musk xylene), surfactant metabolites (*p*-octylphenol and *p*-nonylphenol), and antimicrobial (triclosan). All pharmaceuticals were accompanied with their isotopically labeled compounds as surrogates for personal care products. Phenanthrene-d<sub>10</sub> was used as internal standard for personal care products. N-methyl-N-(trimethylsilyl)-trifluoroacetamide (derivatizing agent) was obtained from VWR Scientifics (Irving, TX, USA).

**Quality Assurance and Quality Control (QAQC).** Twenty-eight fish tissue composites were grouped into two batches when performing extraction and the analysis. Each batch composed of two blanks (extraction solvent spiked with isotopically labeled analogs only), and duplicate matrix spikes. Two samples (out of 28) were randomly selected for matrix spikes (matrix spike and its duplicate, MS and MSD). Spiking concentrations of unlabeled compounds were equivalent to the CCV concentrations.

Eight reference samples were fortified with analytes at a concentration corresponding to less than ten times the expected method detection limits (MDL). Approximately 1 g and 2.5 g ww of fish tissue samples for pharmaceutical and personal care products were extracted for MDL calculation, respectively. MDL were calculated by multiplying the standard deviation of eight replicates of matrix spike by the one-sided Student *t*-value at  $\alpha = 0.01$  and df = 7. The MDL for pharmaceuticals analytes ranged from 0.04 to 2.04 ng g<sup>-1</sup> ww (Table S1) while from 1.2 to 37.9 ng g<sup>-1</sup> ww for personal care products (Table S2).

Continuous Calibration Verification (CCV) was used to evaluate the instrumental performance by the relative percent difference (RPD) between initial concentration of prepared CCV standards and their measured concentration. Two samples (out of 28) were randomly selected to prepare a pair of matrix spikes (matrix spike and its duplicate, MS and MSD) and analytes were spiked at CCV level concentrations. Laboratory blanks were included with each batch of fish tissue samples. Analytes were not detected in blanks and hence, fish tissue concentrations were not blank corrected.

Average pharmaceuticals recoveries for MS and MSD were 89% and 85% for batch I and II, respectively (Table S3 and S4), indicating acceptable accuracy for monitored target analytes in fish samples. RPDs between the pair of matrix spikes were  $\pm$  12%. The average PCPs recoveries for the MS and MSD for batch I and II were 68% and 64%, respectively (Table S5 and S6) and the RPDs between the pair of matrix spikes were within  $\pm$  22%, except for 4-MBC which shows an average RPD of  $\pm$  31%. Average recoveries of HHCB and AHTN for the batch I and II were 64% and 74% with an average RPD of 16% and 15%, respectively. CCVs analyses performed both at the beginning and at the end of batch analysis results into average RPDs of  $\pm$  20% and  $\pm$  26% for pharmaceuticals and personal care products, respectively.

Duplicate fish samples were analyzed for PPCPs in all of 14 different GESB sampling locations. The relative standard deviations of measured tissue concentration of HHCB and AHTN for duplicate analysis were  $\leq$  30%; however, relative standard deviations for AHTN at Ulm/Danube and Jochenstein/Danube are 34 and 43%, respectively.

| analytes         | lowest<br>cal. pt. | highest<br>cal. pt. | BC1  | BC2  | BC3  | BC4  | BC5  | BC6  | BC7  | BC8  | mean | STD<br>Dev | RSD<br>% | MDL <sup>3</sup> | spiking<br>level | spiking<br>level/MDL |
|------------------|--------------------|---------------------|------|------|------|------|------|------|------|------|------|------------|----------|------------------|------------------|----------------------|
| Acetaminophen    | 0.20               | 400                 | 3.95 | 4.37 | 4.12 | 4.92 | 3.94 | 4.58 | 4.06 | 4.22 | 4.27 | 0.34       | 8.0      | 1.02             | 4.32             | 4.2                  |
| Atenolol         | 0.10               | 200                 | 1.87 | 1.65 | 1.61 | 1.90 | 1.74 | 1.49 | 1.92 | 1.73 | 1.74 | 0.15       | 8.9      | 0.46             | 2.10             | 4.6                  |
| Codeine          | 0.40               | 800                 | 10.9 | 11.3 | 11.3 | 12.0 | 10.8 | 12.6 | 12.3 | 11.8 | 11.6 | 0.65       | 5.6      | 1.95             | 10.4             | 5.3                  |
| Caffeine         | 0.20               | 400                 | 5.53 | 5.54 | 6.32 | 5.97 | 7.55 | 5.96 | 5.72 | 5.53 | 6.02 | 0.68       | 11.3     | 2.04             | 6.00             | 2.9                  |
| Sulfamethoxazole | 0.10               | 200                 | 4.03 | 3.93 | 4.36 | 3.90 | 3.89 | 4.45 | 3.99 | 4.39 | 4.12 | 0.24       | 5.9      | 0.72             | 4.04             | 5.6                  |
| Trimethoprim     | 1.00               | 200                 | 4.14 | 4.79 | 4.25 | 4.96 | 3.98 | 4.67 | 4.75 | 4.81 | 4.54 | 0.36       | 8.0      | 1.09             | 4.90             | 4.5                  |
| DPH              | 0.01               | 20.0                | 0.09 | 0.07 | 0.09 | 0.05 | 0.07 | 0.09 | 0.07 | 0.09 | 0.08 | 0.01       | 19       | 0.04             | 0.10             | 2.2                  |
| Propanolol       | 0.10               | 200                 | 2.38 | 1.91 | 2.26 | 1.90 | 1.90 | 2.01 | 2.17 | 2.27 | 2.10 | 0.19       | 9.2      | 0.58             | 1.37             | 2.4                  |
| Diltiazem        | 0.01               | 20.0                | 0.09 | 0.07 | 0.10 | 0.08 | 0.09 | 0.12 | 0.08 | 0.09 | 0.09 | 0.01       | 15       | 0.04             | 0.11             | 2.8                  |
| CBZ              | 0.10               | 200                 | 0.65 | 0.67 | 0.65 | 0.55 | 0.58 | 0.59 | 0.73 | 0.72 | 0.64 | 0.06       | 10       | 0.19             | 0.77             | 4.0                  |
| Paroxetine       | 0.20               | 400                 | 3.62 | 3.51 | 3.44 | 3.39 | 3.15 | 3.54 | 3.59 | 3.74 | 3.50 | 0.17       | 5.0      | 0.52             | 3.62             | 6.9                  |
| Norfluoxetine    | 0.20               | 400                 | 4.19 | 3.30 | 3.65 | 3.87 | 3.70 | 4.01 | 3.70 | 3.54 | 3.74 | 0.28       | 7.4      | 0.83             | 4.14             | 5.0                  |
| Fluoxetine       | 0.40               | 800                 | 6.76 | 6.60 | 6.53 | 6.69 | 7.23 | 6.91 | 6.65 | 6.38 | 6.72 | 0.26       | 3.9      | 0.78             | 7.46             | 9.6                  |
| DMS              | 0.20               | 400                 | 4.87 | 5.36 | 5.59 | 5.15 | 5.76 | 5.06 | 6.12 | 5.16 | 5.38 | 0.41       | 7.7      | 1.24             | 5.13             | 4.1                  |
| STL              | 0.20               | 400                 | 2.67 | 2.68 | 2.50 | 2.42 | 2.77 | 2.89 | 2.71 | 2.95 | 2.70 | 0.18       | 6.6      | 0.53             | 2.90             | 5.4                  |
| Diazepam         | 0.20               | 400                 | 5.57 | 6.22 | 5.54 | 5.74 | 5.57 | 5.67 | 6.04 | 5.50 | 5.73 | 0.26       | 4.6      | 0.78             | 5.63             | 7.2                  |
| Gemfibrozil      | 0.40               | 800                 | 8.50 | 9.50 | 8.89 | 8.41 | 8.38 | 8.10 | 9.06 | 8.80 | 8.70 | 0.45       | 5.1      | 1.34             | 10.5             | 7.8                  |

Table S1. Method Detection Limits for Pharmaceuticals Using 100 µL Injections (ng g<sup>-1</sup> wet weight)

BC = Bream composite; STD Dev = standard deviation; MDL = method detection limit; MDL = STD Dev\*2.998 (student *t*-value at  $\alpha = 0.01$  and df = 7); RSD = relative standard deviation; DPH = diphenhydramine; CBZ = carbamazepine; DMS = desmethylsertraline; STL = sertraline; cal. pt. = calibration point.

| analytes                 | lowest<br>cal. pt.<br>(ng g <sup>-1</sup> ) | highest<br>cal. pt.<br>(ng g <sup>-1</sup> ) | spiking<br>level<br>(ng g <sup>-1</sup> ) | BC1  | BC2  | BC3  | BC4  | BC5  | BC6  | BC7  | mean | STD<br>Dev | RSD% | $MDL^4$ (ng g <sup>-1</sup> ) | spiking<br>level/MD<br>L |
|--------------------------|---------------------------------------------|----------------------------------------------|-------------------------------------------|------|------|------|------|------|------|------|------|------------|------|-------------------------------|--------------------------|
| <i>m</i> -Toluamide      | 10.0                                        | 2000                                         | 20.0                                      | 19.0 | 20.3 | 22.6 | 23.0 | 21.4 | 20.5 | 21.6 | 21.2 | 1.37       | 6.5  | 4.3                           | 4.6                      |
| Benzophenone             | 19.2                                        | 3840                                         | 38.4                                      | 22.7 | 44.7 | 45.6 | 41.2 | 49.0 | 40.8 | 21.8 | 38.0 | 11.1       | 29   | 34.9                          | 1.1                      |
| Celestolide              | 5.60                                        | 1080                                         | 11.2                                      | 5.04 | 6.88 | 6.08 | 5.76 | 4.40 | 3.84 | 7.28 | 5.61 | 1.26       | 23   | 4.0                           | 2.8                      |
| p-Octylphenol            | 6.00                                        | 1200                                         | 12.0                                      | 20.6 | 18.2 | 17.7 | 19.3 | 18.0 | 18.7 | 19.0 | 18.8 | 1.00       | 5.3  | 3.1                           | 3.8                      |
| ННСВ                     | 4.00                                        | 803                                          | 8.00                                      | 4.80 | 5.84 | 5.92 | 6.24 | 6.16 | 6.16 | 6.24 | 5.91 | 0.51       | 8.7  | 1.6                           | 5.0                      |
| AHTN                     | 7.20                                        | 1440                                         | 14.4                                      | 9.04 | 9.92 | 11.2 | 9.52 | 9.68 | 9.04 | 11.4 | 9.97 | 0.95       | 9.6  | 3.0                           | 4.8                      |
| Musk Xylene              | 110                                         | 22000                                        | 220                                       | 169  | 198  | 180  | 182  | 161  | 171  | 186  | 178  | 12.1       | 6.8  | 37.9                          | 5.8                      |
| <i>p</i> -Nonylphenol    | 4.00                                        | 800                                          | 8.00                                      | 5.12 | 5.04 | 5.20 | 4.80 | 4.40 | 4.24 | 4.48 | 4.75 | 0.38       | 8.1  | 1.2                           | 6.6                      |
| 4-MBC                    | 40.0                                        | 8000                                         | 80.0                                      | 23.4 | 16.9 | 18.8 | 17.4 | 15.0 | 18.9 | 10.5 | 17.3 | 3.94       | 23   | 12.4                          | 6.5                      |
| Musk Ketone              | 180                                         | 36000                                        | 360.0                                     | 243  | 228  | 264  | 253  | 248  | 242  | 240  | 245  | 11.2       | 4.6  | 35.2                          | 10                       |
| Triclosan                | 4.80                                        | 960                                          | 9.60                                      | 7.44 | 9.04 | 10.4 | 9.76 | 8.48 | 7.52 | 8.88 | 8.79 | 1.09       | 12   | 3.4                           | 2.8                      |
| Octocrylene <sup>a</sup> | 10.0                                        | 2000                                         | 20.0                                      | 11.1 | 10.6 | 11.7 | 11.5 | 10.6 | 10.6 | 10.7 | 11.0 | 0.48       | 4.4  | 1.5                           | 13                       |

Table S2. Method Detection Limits for PCPs (ng g<sup>-1</sup> wet weight)

BC = Bream composite (% lipid 2.76); STD Dev = standard deviation; MDL = method detection limit; MDL = STD Dev x 3.143 (student *t*-value at  $\alpha = 0.01$  and

df = 6; <sup>a</sup>spiking level > 10×MDL; RSD = relative standard deviation; HHCB = galaxolide; AHTN = tonalide; 4-MBC = 4-methylbenxylidine camphor; cal. pt. = calibration point.

|                  | calibrati | on range          | method | l blank | continui | ng calibra | tion veri     | fication ( | CCV) |         | (    | duplicate n            | natrix spik | te  |          |
|------------------|-----------|-------------------|--------|---------|----------|------------|---------------|------------|------|---------|------|------------------------|-------------|-----|----------|
|                  | (ng       | g <sup>-1</sup> ) |        |         |          | (n         | $g mL^{-1}$ ) |            |      |         |      | (ng g <sup>-1</sup> we | t weight    | .)  |          |
| analytes         | lowest    | highest           | Ι      | II      | spiking  | CCV -      | RPD           | CCV -      | RPD  | spiking | MS   | MSD                    | mean        | RPD | recovery |
| <u> </u>         | cal. pt.  | cal. pt.          |        |         | level    | initial    | %             | final      | %    | level   |      |                        |             | %   | %        |
| Acetaminophen    | 0.20      | 400               | ND     | ND      | 100      | 94.7       | 5.0           | 93.7       | 6.0  | 100     | 96.0 | 101                    | 98.4        | 4.7 | 98       |
| Atenolol         | 0.10      | 200               | ND     | ND      | 50.0     | 44.2       | 12            | 42.0       | 16   | 50.0    | 44.9 | 43.4                   | 44.1        | 3.2 | 88       |
| Codeine          | 0.40      | 800               | ND     | ND      | 200      | 175        | 12            | 174        | 13   | 200     | 175  | 172                    | 174         | 1.9 | 87       |
| Caffeine         | 0.20      | 400               | ND     | ND      | 100      | 85.7       | 14            | 89.7       | 10   | 100     | 81.4 | 89.5                   | 85.5        | 9.5 | 85       |
| Sulfamethoxazole | 0.10      | 200               | ND     | ND      | 50.0     | 45.0       | 10            | 44.5       | 11   | 50.0    | 43.1 | 43.4                   | 43.2        | 0.6 | 86       |
| Trimethoprim     | 1.00      | 200               | ND     | ND      | 50.0     | 44.2       | 11            | 43.6       | 13   | 50.0    | 48.6 | 45.8                   | 47.2        | 5.9 | 94       |
| DPH              | 0.01      | 20                | ND     | ND      | 5.00     | 4.16       | 17            | 4.13       | 17   | 5.00    | 4.55 | 4.57                   | 4.56        | 0.4 | 91       |
| Propanolol       | 0.10      | 200               | ND     | ND      | 50.0     | 41.9       | 16            | 41.9       | 16   | 50.0    | 43.0 | 41.6                   | 42.3        | 3.1 | 85       |
| Diltiazem        | 0.01      | 20                | ND     | ND      | 5.00     | 4.34       | 13            | 4.38       | 12   | 5.00    | 4.62 | 4.41                   | 4.51        | 4.7 | 90       |
| CBZ              | 0.10      | 200               | ND     | ND      | 50.0     | 44.0       | 12            | 43.7       | 13   | 50.0    | 44.1 | 44.3                   | 44.2        | 0.5 | 88       |
| Paroxetine       | 0.20      | 400               | ND     | ND      | 100      | 89.2       | 11            | 89.8       | 10   | 100     | 95.5 | 93.3                   | 94.4        | 2.3 | 94       |
| Norfluoxetine    | 0.20      | 400               | ND     | ND      | 100      | 86.4       | 14            | 84.4       | 16   | 100     | 84.7 | 83.2                   | 83.9        | 1.7 | 84       |
| Fluoxetine       | 0.40      | 800               | ND     | ND      | 200      | 175        | 13            | 176        | 12   | 200     | 179  | 180                    | 180         | 0.3 | 90       |
| DMS              | 0.20      | 400               | ND     | ND      | 100      | 85.3       | 15            | 83.0       | 17   | 100     | 85.3 | 84.2                   | 84.7        | 1.4 | 85       |
| STL              | 0.20      | 400               | ND     | ND      | 100      | 85.7       | 14            | 85.3       | 15   | 100     | 86.7 | 87.2                   | 87.0        | 0.6 | 87       |
| Diazepam         | 0.20      | 400               | ND     | ND      | 100      | 91.2       | 9.0           | 92.5       | 8.0  | 100     | 85.5 | 89.5                   | 87.5        | 4.6 | 88       |
| Gemfibrozil      | 0.40      | 800               | ND     | ND      | 200      | 191        | 5.0           | 190        | 5.0  | 200     | 185  | 180                    | 183         | 3.0 | 91       |

Table S3. Quality Assurance and Quality Control Summary for 100 µL Injections for Analysis of Pharmaceuticals-Batch I

ND = non-detected; RPD = relative percentage deviation; DPH = diphenhydramine; CBZ = carbamazepine; DMS = desmethylsertraline; STL = sertraline;

cal pt. = calibration point; CCV = continuous calibration verification; MS = matrix spiked; MSD = matrix spiked duplicate; cal. pt. = calibration point.

|                  | method | l blank | continuir        | ng calibratior   | n verification | n (CCV) (ng    | g mL <sup>-1</sup> ) |                  | duplicate | matrix spik | ke (ng g <sup>-1</sup> We | et weight) |           |
|------------------|--------|---------|------------------|------------------|----------------|----------------|----------------------|------------------|-----------|-------------|---------------------------|------------|-----------|
| analytes         | Ι      | II      | spiking<br>level | CCV -<br>initial | RPD%           | CCV -<br>final | RPD%                 | spiking<br>level | MS        | MSD         | mean                      | RPD%       | recovery% |
| Acetaminophen    | ND     | ND      | 100              | 94.3             | 6.0            | 91.9           | 8.0                  | 100              | 86.6      | 87.6        | 87.1                      | 1.1        | 87        |
| Atenolol         | ND     | ND      | 50.0             | 41.8             | 16             | 41.5           | 17                   | 50.0             | 41.2      | 40.7        | 40.9                      | 1.2        | 82        |
| Codeine          | ND     | ND      | 200              | 168              | 16             | 166            | 17                   | 200              | 160       | 160         | 160                       | 0.2        | 80        |
| Caffeine         | ND     | ND      | 100              | 81.0             | 19             | 81.6           | 19                   | 100              | 75.7      | 83.6        | 79.6                      | 9.9        | 80        |
| Sulfamethoxazole | ND     | ND      | 50.0             | 40.0             | 20             | 41.2           | 18                   | 50.0             | 41.0      | 41.6        | 41.3                      | 1.6        | 83        |
| Trimethoprim     | ND     | ND      | 50.0             | 40.2             | 20             | 40.5           | 19                   | 50.0             | 40.1      | 45.1        | 42.6                      | 12         | 85        |
| DPH              | ND     | ND      | 5.00             | 4.02             | 20             | 4.03           | 19                   | 5.00             | 4.00      | 4.06        | 4.03                      | 1.5        | 81        |
| Propanolol       | ND     | ND      | 50.0             | 40.4             | 19             | 40.6           | 19                   | 50.0             | 40.1      | 39.9        | 40.0                      | 0.6        | 80        |
| Diltiazem        | ND     | ND      | 5.00             | 4.86             | 3.0            | 4.70           | 6.0                  | 5.00             | 4.58      | 4.80        | 4.69                      | 4.7        | 94        |
| CBZ              | ND     | ND      | 50.0             | 41.8             | 16             | 42.2           | 16                   | 50.0             | 40.4      | 40.0        | 40.2                      | 1.0        | 80        |
| Paroxetine       | ND     | ND      | 100              | 93.6             | 6.0            | 90.4           | 10                   | 100              | 88.5      | 88.7        | 88.6                      | 0.3        | 89        |
| Norfluoxetine    | ND     | ND      | 100              | 90.2             | 10             | 87.2           | 13                   | 100              | 80.0      | 84.0        | 82.0                      | 4.9        | 82        |
| Fluoxetine       | ND     | ND      | 200              | 187              | 6.0            | 189            | 6.0                  | 200              | 175       | 179         | 177                       | 2.5        | 89        |
| DMS              | ND     | ND      | 100              | 83.3             | 17             | 84.0           | 16                   | 100              | 86.3      | 82.1        | 84.2                      | 5.0        | 84        |
| STL              | ND     | ND      | 100              | 85.7             | 14             | 83.2           | 17                   | 100              | 87.0      | 85.4        | 86.2                      | 1.8        | 86        |
| Diazepam         | ND     | ND      | 100              | 81.0             | 19             | 92.0           | 8.0                  | 100              | 88.5      | 89.9        | 89.2                      | 1.6        | 89        |
| Gemfibrozil      | ND     | ND      | 200              | 181              | 10             | 182            | 9.0                  | 200              | 171       | 180         | 175                       | 5.1        | 88        |

Table S4. Quality Assurance and Quality Control Summary for 100 µL Injections for Analysis of Pharmaceuticals-Batch II

ND = non-detected; RPD = relative percentage deviation; DPH = diphenhydramine; CBZ = carbamazepine; DMS = desmethylsertraline; STL = sertraline;

cal pt. = calibration point; CCV = continuous calibration verification; MS = matrix spiked; MSD = matrix spiked duplicate.

| analytas              | method b        | lank data                   | continui         | ng calibrati   | on verificati | on (CCV) (r  | $\mu L^{-1}$ |                  | duplicate | matrix spik | e <sup>†</sup> (ng g <sup>-1</sup> wet | weight)  | 4             |
|-----------------------|-----------------|-----------------------------|------------------|----------------|---------------|--------------|--------------|------------------|-----------|-------------|----------------------------------------|----------|---------------|
| anarytes              | $I (ng g^{-1})$ | II<br>(ng g <sup>-1</sup> ) | spiking<br>Level | CCV<br>initial | RPD<br>%      | CCV<br>final | RPD<br>%     | spiking<br>level | MS        | MSD         | average                                | RPD<br>% | recovery<br>% |
| <i>m</i> -Toluamide   | ND              | ND                          | 1.56             | 1.60           | 2.3           | 1.68         | 7.6          | 125              | 100       | 112         | 106                                    | 11       | 85            |
| Benzophenone          | ND              | ND                          | 3.00             | 2.91           | 3.0           | 2.90         | 3.4          | 240              | 166       | 197         | 182                                    | 17       | 76            |
| Celestolide           | ND              | ND                          | 0.84             | 0.99           | 17            | 1.02         | 21           | 67.2             | 35.8      | 40.4        | 38.1                                   | 12       | 57            |
| p-Octylphenol         | ND              | ND                          | 0.94             | 0.81           | 14            | 0.81         | 14           | 75.2             | 53.6      | 55.3        | 54.4                                   | 3.1      | 72            |
| ННСВ                  | ND              | ND                          | 0.63             | 0.54           | 14            | 0.56         | 12           | 50.4             | 32.9      | 40.5        | 36.7                                   | 21       | 73            |
| AHTN                  | ND              | ND                          | 1.13             | 1.09           | 3.3           | 1.14         | 1.1          | 90.4             | 49.0      | 61.3        | 55.2                                   | 22       | 61            |
| Musk Xylene           | ND              | ND                          | 17.2             | 12.9           | 25            | 13.4         | 22           | 1375             | 937       | 1160        | 1048                                   | 21       | 76            |
| <i>p</i> -Nonylphenol | ND              | ND                          | 0.62             | 0.56           | 9.8           | 0.55         | 11           | 49.6             | 33.2      | 36.5        | 34.8                                   | 9.4      | 70            |
| 4-MBC                 | ND              | ND                          | 6.25             | 6.40           | 2.4           | 6.16         | 1.4          | 500              | 305       | 373         | 339                                    | 20       | 68            |
| Musk Ketone           | ND              | ND                          | 28.1             | 20.8           | 26            | 24.6         | 13           | 2250             | 1287      | 1284        | 1286                                   | 0.2      | 57            |
| Triclosan             | ND              | ND                          | 0.75             | 0.57           | 24            | 0.56         | 26           | 60.0             | 39.9      | 39.4        | 39.6                                   | 1.4      | 66            |
| Octocrylene           | ND              | ND                          | 1.56             | 1.09           | 30            | 1.25         | 20           | 125              | 71.4      | 70.2        | 70.8                                   | 1.6      | 57            |

Table S5. Quality Control and Quality Assurance Summary for PCPs-Batch I

ND = not detected; RPD = relative percentage deviation; <sup>†</sup> fish fillet composite; "Bimmen/Rhine" was taken for matrix spiking recovery study; HHCB =

galaxolide; AHTN = tonalide; 4-MBC = 4-methylbenxylidine camphor; CCV = continuous calibration verification; MS = matrix spiked; MSD = matrix spiked duplicate.

| analytas              | metho                      | d blank                     | continui         | ing calibratio | on verificati | on (CCV) (1  | ng $\mu L^{-1}$ ) | duplicate matrix spike <sup>†</sup> (ng g <sup>-1</sup> wet weight) |      |      |         |          |               |  |
|-----------------------|----------------------------|-----------------------------|------------------|----------------|---------------|--------------|-------------------|---------------------------------------------------------------------|------|------|---------|----------|---------------|--|
| anarytes              | I<br>(ng g <sup>-1</sup> ) | II<br>(ng g <sup>-1</sup> ) | spiking<br>level | CCV<br>initial | RPD<br>%      | CCV<br>final | RPD<br>%          | spiking<br>level                                                    | MS   | MSD  | average | RPD<br>% | recovery<br>% |  |
| <i>m</i> -Toluamide   | ND                         | ND                          | 1.56             | 1.45           | 7.2           | 1.62         | 3.5               | 125                                                                 | 95.0 | 100  | 97.6    | 5.3      | 78            |  |
| Benzophenone          | ND                         | ND                          | 3.00             | 2.79           | 7.1           | 2.98         | 0.6               | 240                                                                 | 160  | 167  | 163     | 4.6      | 68            |  |
| Celestolide           | ND                         | ND                          | 0.84             | 0.87           | 3.5           | 0.94         | 12                | 67.2                                                                | 62.2 | 63.8 | 63.0    | 2.4      | 94            |  |
| p-Octylphenol         | ND                         | ND                          | 0.94             | 0.69           | 27            | 0.67         | 28                | 75.2                                                                | 51.6 | 54.6 | 53.1    | 5.6      | 71            |  |
| ННСВ                  | ND                         | ND                          | 0.63             | 0.55           | 13            | 0.56         | 12                | 50.4                                                                | 26.2 | 29.3 | 27.7    | 11       | 55            |  |
| AHTN                  | ND                         | ND                          | 1.13             | 1.34           | 19            | 1.36         | 20                | 90.4                                                                | 74.4 | 80.4 | 77.4    | 7.8      | 86            |  |
| Musk Xylene           | ND                         | ND                          | 17.2             | 20.9           | 22            | 17.4         | 1.1               | 1375                                                                | 1083 | 1067 | 1075    | 1.5      | 78            |  |
| <i>p</i> -Nonylphenol | ND                         | ND                          | 0.62             | 0.49           | 21            | 0.48         | 23                | 49.6                                                                | 34.6 | 37.1 | 35.9    | 6.9      | 72            |  |
| 4-MBC                 | ND                         | ND                          | 6.25             | 7.16           | 15            | 6.37         | 1.9               | 500                                                                 | 124  | 190  | 157     | 42       | 31            |  |
| Musk Ketone           | ND                         | ND                          | 28.1             | 32.7           | 16            | 31.5         | 12                | 2250                                                                | 1140 | 1354 | 1247    | 17       | 55            |  |
| Triclosan             | ND                         | ND                          | 0.75             | 0.58           | 23            | 0.51         | 32                | 60.0                                                                | 29.8 | 31.4 | 30.6    | 5.2      | 51            |  |
| Octocrylene           | ND                         | ND                          | 1.56             | 1.64           | 4.9           | 0.90         | 42                | 125                                                                 | 43.4 | 42.0 | 42.7    | 3.4      | 34            |  |

Table S6. Quality Control and Quality Assurance Summary for PCPs-Batch II

 $ND = not detected; RPD = relative percentage deviation; ^{\dagger} fish fillet composite; "Lake Belau" was taken for matrix spiking recovery study; HHCB = galaxolide; AHTN = tonalide; 4-MBC = 4-methylbenxylidine camphor; CCV = continuous calibration verification; MS = matrix spiked; MSD = matrix spiked duplicate.$ 

### Table S7. WWTPs nearby the GESB sampling locations

| river  | GESB<br>sampling<br>locations | $ \begin{array}{c} \text{MAF} \\ \text{(m}^3  \text{s}^{-1}) \end{array} $ | WWTPs                      | PSL  | CIE       | start up   | WWTPs<br>capacity<br>(m <sup>3</sup> d <sup>-1</sup> ) | additional information                                                                                               |
|--------|-------------------------------|----------------------------------------------------------------------------|----------------------------|------|-----------|------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|        | Cudingen                      | 60                                                                         | Brebach                    | 0.0  | 135 000   | Mar, 2001  | up to 41 000                                           |                                                                                                                      |
|        | Guaingen                      | 60                                                                         | Saargemünd                 | 10.8 | 61 500    | 1976, 2005 | -                                                      | built in 1976, re-newed in 2005                                                                                      |
| Saar   |                               |                                                                            | Saarlouis                  | 6.2  | 93 000    | Nov, 1989  | up to 48 000                                           | no information available, small WWTP with capacity < 10 000                                                          |
|        | Rehlingen                     | 80                                                                         | Ensdorf                    | 13.7 | 58 000    | 1995       | up to 58 000                                           |                                                                                                                      |
|        |                               |                                                                            | Völklingen                 | 19.7 | 80 000    | 1994       | up to 40 000                                           |                                                                                                                      |
|        |                               |                                                                            | Burbach                    | 28.5 | 200 000   | 1989       | up to 60 000                                           |                                                                                                                      |
|        |                               |                                                                            | Basel                      | 4.4  | 1 200 000 | Sep, 1983  | up to 120 000                                          | 500-1 500 m <sup>3</sup> s <sup>-1</sup> effluent in the River Rhine                                                 |
|        | Weil                          | 500                                                                        | Chemie Basel               | 4.4  | *         | Dec, 1982  | up to 9 500                                            | 10 600 m <sup>3</sup> s <sup>-1</sup> effluent in the River Rhine                                                    |
|        |                               |                                                                            | Steith                     | 4.6  | **        | -          | up to 4 200                                            | 4 320 $\text{m}^3 \text{d}^{-1}$ effluent in the River Rhine                                                         |
|        |                               |                                                                            | Rheinmünster               | 8.5  | 6 400     | 1978       | -                                                      |                                                                                                                      |
|        |                               |                                                                            | Lichtenau                  | 15.5 | -         | -          | -                                                      | no information available, small WWTP                                                                                 |
|        |                               |                                                                            | Straßbourg                 | 34.1 | 1 000 000 | 1988       | up to 240 000                                          |                                                                                                                      |
|        | Iffezheim                     | -                                                                          | Kehl                       | 35.4 | 48 000    | 1981       | about 8 000                                            | 10 411 m <sup>3</sup> d <sup>-1</sup> effluent in the River Rhine                                                    |
| Rhine  |                               |                                                                            | Offenburg                  | 50.7 | 200 000   | -          | about 28 000                                           | discharge into the River Kinzig<br>distance to the River Kinzig is 14.3 km<br>distance to the River Rhine is 36.4 km |
|        |                               |                                                                            | Salmorth                   | 6.9  | 40 833    | 1975       | up to 76 800                                           | 5 524 487 m <sup>3</sup> y <sup>-1</sup> effluent in the River Rhine                                                 |
|        |                               |                                                                            | Emmerich                   | 14.0 | 126 736   | 1982       | up to 67 200                                           | 5 331 880 $\text{m}^3 \text{ y}^{-1}$ effluent in the River Rhine                                                    |
|        | Bimmen                        | 2000                                                                       | Kalkar-Hönnepel            | 23.2 | 38 401    | 1980       | up to 27 744                                           | $\begin{array}{c} 2 \ 661 \ 626 \ m^3 \ y^{-1} \ effluent \ in \ the \ River \ Rhine \\ (2009) \end{array}$          |
|        | Diminen                       | 2000                                                                       | Xanten-Vynen               | 33.8 | 606       | 1972       | up to 2 400                                            | 248 423 m <sup>3</sup> y <sup>-1</sup> effluent in the River Rhine                                                   |
|        |                               |                                                                            | Xanten-Lüttingen           | 41.1 | 5 753     | 1982       | up to 17 280                                           | 1 336 890 m <sup>3</sup> y <sup>-1</sup> effluent in the River Rhine (2009)                                          |
|        |                               |                                                                            | Wesel                      | 50.1 | 19 900    | 1980       | up to 60 000                                           | $6\ 200\ 780\ \text{m}^3\ \text{y}^{-1}$ effluent in the River Rhine                                                 |
|        |                               |                                                                            | Erbach                     | 6.1  | class 4   | -          | -                                                      |                                                                                                                      |
|        |                               |                                                                            | Ehingen                    | 22.3 | class 4   | -          | -                                                      | no additional information available                                                                                  |
| Danube | Ulm                           | 100                                                                        | Rottenacker                | 26.8 | class 4   | -          | -                                                      |                                                                                                                      |
|        |                               |                                                                            | see additional information |      |           |            |                                                        | 8 further plants (class 4) on the next 175 km                                                                        |

|       |             |                               | Danubeschingen                                      | 181                       | 148 000                |                | up to 86 400       |                                                                                                |
|-------|-------------|-------------------------------|-----------------------------------------------------|---------------------------|------------------------|----------------|--------------------|------------------------------------------------------------------------------------------------|
|       |             |                               | Saal                                                | 6.9                       | class 4                | -              | -                  |                                                                                                |
|       |             |                               | Staubing                                            | 18.6                      | class 2                | -              | -                  |                                                                                                |
|       | Kelheim     | 400                           | Neustadt                                            | 29.4                      | class 4                | -              | -                  |                                                                                                |
|       |             |                               | see additional inform                               | ation                     |                        |                |                    | 3 further WWTPs of class 3                                                                     |
|       |             |                               | Ingolstadt                                          | 50.3                      | 275 000                | 1972           | up to 156 000      | 22 570 000 m <sup>3</sup> y <sup>-1</sup>                                                      |
|       |             |                               | Obernzell                                           | 0.0                       | class 3                | -              | -                  | no further WWTPs were added in this list because                                               |
|       | Jochenstein | 1000                          | Thyrnau                                             | 5.6                       | class 3                | -              | -                  | of many tributaries upstream Achleiten. There are                                              |
|       |             |                               | Achleiten                                           | 8.0                       | class 4                | -              | -                  | several WWTPs (classes 1, 2, and 3) at each river.                                             |
|       | Prossen     | no data avai<br>the city of U | lable, the sampling site<br>(100 000) sti and Labem | is located<br>) inhabitar | at the Czech b<br>nts) | order; 23.5 km | downstream the cit | y of Decin (50 000 inhabitants), 48 km downstream                                              |
|       |             |                               | Aken                                                | 15.6                      | 27 000                 | 1995           | about 8 100        |                                                                                                |
|       |             |                               | Calbe                                               | 17.7                      | -                      | -              | -                  | no information available, discharge in the River<br>Saale (17.0 km), 10 100 inhabitants        |
|       |             |                               | Dessau                                              | 28.3                      | -                      | -              | about 18 000       | 3 300 000 $\text{m}^3 \text{ y}^{-1}$ effluent in the River Elbe (2008),<br>87 700 inhabitants |
| Elbe  | Barby       | -                             | Bernburg                                            | 34.2                      | -                      | -              | -                  | no information available, discharge in the River<br>Saale (33.5 km), 35 900 inhabitants        |
|       |             |                               | Coswig                                              | 50.4                      | 20 000                 | 1995           | -                  |                                                                                                |
|       |             |                               | Wittenberg                                          | 68.9                      | -                      | 1995           | -                  | no information available, 50 000 inhabitants                                                   |
|       |             |                               | Halle-Nord                                          | 86.8                      | 300 000                | Sep, 1998      | about 75 000       | discharge in the River Saale (86.1 km)                                                         |
|       | Plankonoso  | 800                           | Köhlbrandhöft/<br>Dradenau                          | 4.0                       | 2 900 000              | 1910           | up to<br>1 641 600 | 450 000 $\text{m}^3 \text{d}^{-1}$ effluent in the River Elbe (2010)                           |
|       | Blankenese  | 800                           | Geesthacht<br>Düneberg                              | 42.6                      | 60 000                 | 1970           | up to 5 800        |                                                                                                |
|       |             |                               | Halle-Nord                                          | 15.0                      | 300 000                | Sep, 1998      | about 75 000       |                                                                                                |
| Saale | Wettin      | 115                           | Leipzig-Rosental                                    | 63.7                      | 628 000                | -              | -                  | no further information available, discharge in the Elster-Saale-channel                        |
| Mulde | Dessau      | 64                            | Bitterfeld-Wolfen                                   | 37.2                      | 422 000                | 1994           | -                  | also WWTP for industrial wastewater                                                            |

WWTP: waste water treatment plant, MAF: mean annual flow, PSL: proximity to the sampling locations, CIE: capacity inhabitant equivalent

\* WWTP of chemical industry: F. Hoffmann-LaRoche AG, Novartis Pharma AG, Ciba Chemie AG and Syngenta AG, right-hand side of the River Rhine

\*\* WWTP of chemical industry: Clariant, Ciba AG (Huningue) and Novartis Pharma AG (St. Johann), left-hand side of the River Rhine

Class 1: < 1000, class 2 = 1000 - 5000, class 3: 5000 - 10000, class 4: 10000 - 100000, class 5: > 100000

Note: Authors acknowledge the fact these WWTPs and the relevant information are not the exhaustive ones; however, represent the maximum information that could be acquired.

|            | CECD                     |                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                                                                                                                                                                              | fish tissue                                                                                                                                      | concentration                                                                                                        |                                                                                          |                                                              |                                  |                               |
|------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|-------------------------------|
| river      | sampling                 |                                                                                                                                                                                                                                      | phari                                                                                                                                                                                                    | maceuticals (ng                                                                                                                                                              | $g^{-1}$ ww)                                                                                                                                     |                                                                                                                      | personal                                                                                 | care products (r                                             | ng g <sup>-1</sup> lw)           | $\binom{1}{n} = \binom{1}{n}$ |
|            | locations                | DPH                                                                                                                                                                                                                                  | DMS                                                                                                                                                                                                      | CBZ                                                                                                                                                                          | diltiazem                                                                                                                                        | atenolol                                                                                                             | ННСВ                                                                                     | ATHN                                                         | triclosan                        |                               |
|            | Weil                     | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1110</td><td>120</td><td><mdl< td=""><td>6.09</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1110</td><td>120</td><td><mdl< td=""><td>6.09</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1110</td><td>120</td><td><mdl< td=""><td>6.09</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td>1110</td><td>120</td><td><mdl< td=""><td>6.09</td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td>1110</td><td>120</td><td><mdl< td=""><td>6.09</td></mdl<></td></mdl<>                                | 1110                                                                                     | 120                                                          | <mdl< td=""><td>6.09</td></mdl<> | 6.09                          |
|            |                          | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>960</td><td>127</td><td><mdl< td=""><td>0.98</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>960</td><td>127</td><td><mdl< td=""><td>0.98</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>960</td><td>127</td><td><mdl< td=""><td>0.98</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                 | <mdl< td=""><td><mdl< td=""><td>960</td><td>127</td><td><mdl< td=""><td>0.98</td></mdl<></td></mdl<></td></mdl<>                                 | <mdl< td=""><td>960</td><td>127</td><td><mdl< td=""><td>0.98</td></mdl<></td></mdl<>                                 | 960                                                                                      | 127                                                          | <mdl< td=""><td>0.98</td></mdl<> | 0.98                          |
| Rhine      | Iffezheim                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1870</td><td>182</td><td><mdl< td=""><td>7.51</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1870</td><td>182</td><td><mdl< td=""><td>7.51</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1870</td><td>182</td><td><mdl< td=""><td>7.51</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td>1870</td><td>182</td><td><mdl< td=""><td>7.51</td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td>1870</td><td>182</td><td><mdl< td=""><td>7.51</td></mdl<></td></mdl<>                                | 1870                                                                                     | 182                                                          | <mdl< td=""><td>7.51</td></mdl<> | 7.51                          |
| Tunne      | Intellient               | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1610</td><td>129</td><td><mdl< td=""><td>7.51</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1610</td><td>129</td><td><mdl< td=""><td>7.51</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1610</td><td>129</td><td><mdl< td=""><td>7.51</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td>1610</td><td>129</td><td><mdl< td=""><td>7.51</td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td>1610</td><td>129</td><td><mdl< td=""><td>7.51</td></mdl<></td></mdl<>                                | 1610                                                                                     | 129                                                          | <mdl< td=""><td>7.51</td></mdl<> | 7.51                          |
|            | Bimmen                   | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1410</td><td>68.0</td><td><mdl< td=""><td>6.00</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                               | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1410</td><td>68.0</td><td><mdl< td=""><td>6.00</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                               | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1410</td><td>68.0</td><td><mdl< td=""><td>6.00</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                               | <mdl< td=""><td><mdl< td=""><td>1410</td><td>68.0</td><td><mdl< td=""><td>6.00</td></mdl<></td></mdl<></td></mdl<>                               | <mdl< td=""><td>1410</td><td>68.0</td><td><mdl< td=""><td>6.00</td></mdl<></td></mdl<>                               | 1410                                                                                     | 68.0                                                         | <mdl< td=""><td>6.00</td></mdl<> | 6.00                          |
|            | Diminen                  | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1330</td><td>91.0</td><td><mdl< td=""><td>0.09</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                               | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1330</td><td>91.0</td><td><mdl< td=""><td>0.09</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                               | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1330</td><td>91.0</td><td><mdl< td=""><td>0.09</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                               | <mdl< td=""><td><mdl< td=""><td>1330</td><td>91.0</td><td><mdl< td=""><td>0.09</td></mdl<></td></mdl<></td></mdl<>                               | <mdl< td=""><td>1330</td><td>91.0</td><td><mdl< td=""><td>0.09</td></mdl<></td></mdl<>                               | 1330                                                                                     | 91.0                                                         | <mdl< td=""><td>0.09</td></mdl<> | 0.09                          |
|            | Gudingen                 | 0.04                                                                                                                                                                                                                                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>10,100</td><td>246</td><td><mdl< td=""><td>2.00</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>10,100</td><td>246</td><td><mdl< td=""><td>2.00</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                              | <mdl< td=""><td><mdl< td=""><td>10,100</td><td>246</td><td><mdl< td=""><td>2.00</td></mdl<></td></mdl<></td></mdl<>                              | <mdl< td=""><td>10,100</td><td>246</td><td><mdl< td=""><td>2.00</td></mdl<></td></mdl<>                              | 10,100                                                                                   | 246                                                          | <mdl< td=""><td>2.00</td></mdl<> | 2.00                          |
| Saar       | Guaingen                 | <mdl< td=""><td>1.65</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>9250</td><td>330</td><td><mdl< td=""><td>5.90</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                               | 1.65                                                                                                                                                                                                     | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>9250</td><td>330</td><td><mdl< td=""><td>5.90</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td>9250</td><td>330</td><td><mdl< td=""><td>5.90</td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td>9250</td><td>330</td><td><mdl< td=""><td>5.90</td></mdl<></td></mdl<>                                | 9250                                                                                     | 330                                                          | <mdl< td=""><td>5.90</td></mdl<> | 5.90                          |
| Suu        | Rehlingen                | 0.07                                                                                                                                                                                                                                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>12,000</td><td>316</td><td><mdl< td=""><td>4.02</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>12,000</td><td>316</td><td><mdl< td=""><td>4.02</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                              | <mdl< td=""><td><mdl< td=""><td>12,000</td><td>316</td><td><mdl< td=""><td>4.02</td></mdl<></td></mdl<></td></mdl<>                              | <mdl< td=""><td>12,000</td><td>316</td><td><mdl< td=""><td>4.02</td></mdl<></td></mdl<>                              | 12,000                                                                                   | 316                                                          | <mdl< td=""><td>4.02</td></mdl<> | 4.02                          |
|            | - toningen               | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>10,200</td><td>448</td><td><mdl< td=""><td>4.02</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>10,200</td><td>448</td><td><mdl< td=""><td>4.02</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>10,200</td><td>448</td><td><mdl< td=""><td>4.02</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                              | <mdl< td=""><td><mdl< td=""><td>10,200</td><td>448</td><td><mdl< td=""><td>4.02</td></mdl<></td></mdl<></td></mdl<>                              | <mdl< td=""><td>10,200</td><td>448</td><td><mdl< td=""><td>4.02</td></mdl<></td></mdl<>                              | 10,200                                                                                   | 448                                                          | <mdl< td=""><td>4.02</td></mdl<> | 4.02                          |
|            | Ulm                      | <mdl< td=""><td>1.83</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1270</td><td>199</td><td><mdl< td=""><td>6.66</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                               | 1.83                                                                                                                                                                                                     | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1270</td><td>199</td><td><mdl< td=""><td>6.66</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td>1270</td><td>199</td><td><mdl< td=""><td>6.66</td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td>1270</td><td>199</td><td><mdl< td=""><td>6.66</td></mdl<></td></mdl<>                                | 1270                                                                                     | 199                                                          | <mdl< td=""><td>6.66</td></mdl<> | 6.66                          |
|            | C IIII                   | <mdl< td=""><td>4.72</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1210</td><td>121</td><td><mdl< td=""><td>0.00</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                               | 4.72                                                                                                                                                                                                     | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1210</td><td>121</td><td><mdl< td=""><td>0.00</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td>1210</td><td>121</td><td><mdl< td=""><td>0.00</td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td>1210</td><td>121</td><td><mdl< td=""><td>0.00</td></mdl<></td></mdl<>                                | 1210                                                                                     | 121                                                          | <mdl< td=""><td>0.00</td></mdl<> | 0.00                          |
| Danube     | Kelheim                  | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1030</td><td>98.0</td><td><mdl< td=""><td>5 21</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                               | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1030</td><td>98.0</td><td><mdl< td=""><td>5 21</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                               | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1030</td><td>98.0</td><td><mdl< td=""><td>5 21</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                               | <mdl< td=""><td><mdl< td=""><td>1030</td><td>98.0</td><td><mdl< td=""><td>5 21</td></mdl<></td></mdl<></td></mdl<>                               | <mdl< td=""><td>1030</td><td>98.0</td><td><mdl< td=""><td>5 21</td></mdl<></td></mdl<>                               | 1030                                                                                     | 98.0                                                         | <mdl< td=""><td>5 21</td></mdl<> | 5 21                          |
| Dundoe     |                          | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>663</td><td><mdl< td=""><td><mdl< td=""><td>5.21</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>663</td><td><mdl< td=""><td><mdl< td=""><td>5.21</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>663</td><td><mdl< td=""><td><mdl< td=""><td>5.21</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td>663</td><td><mdl< td=""><td><mdl< td=""><td>5.21</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td>663</td><td><mdl< td=""><td><mdl< td=""><td>5.21</td></mdl<></td></mdl<></td></mdl<>                 | 663                                                                                      | <mdl< td=""><td><mdl< td=""><td>5.21</td></mdl<></td></mdl<> | <mdl< td=""><td>5.21</td></mdl<> | 5.21                          |
|            | Jochenstein              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>948</td><td>127</td><td><mdl< td=""><td>6.96</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>948</td><td>127</td><td><mdl< td=""><td>6.96</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>948</td><td>127</td><td><mdl< td=""><td>6.96</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                 | <mdl< td=""><td><mdl< td=""><td>948</td><td>127</td><td><mdl< td=""><td>6.96</td></mdl<></td></mdl<></td></mdl<>                                 | <mdl< td=""><td>948</td><td>127</td><td><mdl< td=""><td>6.96</td></mdl<></td></mdl<>                                 | 948                                                                                      | 127                                                          | <mdl< td=""><td>6.96</td></mdl<> | 6.96                          |
|            | ••••••••                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>662</td><td>68.0</td><td><mdl< td=""><td>0.80</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>662</td><td>68.0</td><td><mdl< td=""><td>0.80</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>662</td><td>68.0</td><td><mdl< td=""><td>0.80</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td>662</td><td>68.0</td><td><mdl< td=""><td>0.80</td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td>662</td><td>68.0</td><td><mdl< td=""><td>0.80</td></mdl<></td></mdl<>                                | 662                                                                                      | 68.0                                                         | <mdl< td=""><td>0.80</td></mdl<> | 0.80                          |
|            | Prossen                  | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1500</td><td><mdl< td=""><td><mdl< td=""><td>1.70</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1500</td><td><mdl< td=""><td><mdl< td=""><td>1.70</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1500</td><td><mdl< td=""><td><mdl< td=""><td>1.70</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                | <mdl< td=""><td><mdl< td=""><td>1500</td><td><mdl< td=""><td><mdl< td=""><td>1.70</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                | <mdl< td=""><td>1500</td><td><mdl< td=""><td><mdl< td=""><td>1.70</td></mdl<></td></mdl<></td></mdl<>                | 1500                                                                                     | <mdl< td=""><td><mdl< td=""><td>1.70</td></mdl<></td></mdl<> | <mdl< td=""><td>1.70</td></mdl<> | 1.70                          |
|            | riossen                  | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1250</td><td><mdl< td=""><td><mdl< td=""><td>1.79</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1250</td><td><mdl< td=""><td><mdl< td=""><td>1.79</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1250</td><td><mdl< td=""><td><mdl< td=""><td>1.79</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                | <mdl< td=""><td><mdl< td=""><td>1250</td><td><mdl< td=""><td><mdl< td=""><td>1.79</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                | <mdl< td=""><td>1250</td><td><mdl< td=""><td><mdl< td=""><td>1.79</td></mdl<></td></mdl<></td></mdl<>                | 1250                                                                                     | <mdl< td=""><td><mdl< td=""><td>1.79</td></mdl<></td></mdl<> | <mdl< td=""><td>1.79</td></mdl<> | 1.79                          |
| Elbe       | Barby                    | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>285</td><td><mdl< td=""><td><mdl< td=""><td>2 20</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>285</td><td><mdl< td=""><td><mdl< td=""><td>2 20</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>285</td><td><mdl< td=""><td><mdl< td=""><td>2 20</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td>285</td><td><mdl< td=""><td><mdl< td=""><td>2 20</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td>285</td><td><mdl< td=""><td><mdl< td=""><td>2 20</td></mdl<></td></mdl<></td></mdl<>                 | 285                                                                                      | <mdl< td=""><td><mdl< td=""><td>2 20</td></mdl<></td></mdl<> | <mdl< td=""><td>2 20</td></mdl<> | 2 20                          |
| 2          | 24205                    | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>251</td><td><mdl< td=""><td><mdl< td=""><td>2.59</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>251</td><td><mdl< td=""><td><mdl< td=""><td>2.59</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>251</td><td><mdl< td=""><td><mdl< td=""><td>2.59</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td>251</td><td><mdl< td=""><td><mdl< td=""><td>2.59</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td>251</td><td><mdl< td=""><td><mdl< td=""><td>2.59</td></mdl<></td></mdl<></td></mdl<>                 | 251                                                                                      | <mdl< td=""><td><mdl< td=""><td>2.59</td></mdl<></td></mdl<> | <mdl< td=""><td>2.59</td></mdl<> | 2.59                          |
|            | Blankenese               | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>367</td><td><mdl< td=""><td><mdl< td=""><td>1.64</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>367</td><td><mdl< td=""><td><mdl< td=""><td>1.64</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>367</td><td><mdl< td=""><td><mdl< td=""><td>1.64</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td>367</td><td><mdl< td=""><td><mdl< td=""><td>1.64</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td>367</td><td><mdl< td=""><td><mdl< td=""><td>1.64</td></mdl<></td></mdl<></td></mdl<>                 | 367                                                                                      | <mdl< td=""><td><mdl< td=""><td>1.64</td></mdl<></td></mdl<> | <mdl< td=""><td>1.64</td></mdl<> | 1.64                          |
|            | Diamenese                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>438</td><td><mdl< td=""><td><mdl< td=""><td>4.64</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>438</td><td><mdl< td=""><td><mdl< td=""><td>4.64</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>438</td><td><mdl< td=""><td><mdl< td=""><td>4.64</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td>438</td><td><mdl< td=""><td><mdl< td=""><td>4.64</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td>438</td><td><mdl< td=""><td><mdl< td=""><td>4.64</td></mdl<></td></mdl<></td></mdl<>                 | 438                                                                                      | <mdl< td=""><td><mdl< td=""><td>4.64</td></mdl<></td></mdl<> | <mdl< td=""><td>4.64</td></mdl<> | 4.64                          |
| Mulde      | Dessau                   | 0.06                                                                                                                                                                                                                                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>636</td><td><mdl< td=""><td><mdl< td=""><td>2.69</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>636</td><td><mdl< td=""><td><mdl< td=""><td>2.69</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td><mdl< td=""><td>636</td><td><mdl< td=""><td><mdl< td=""><td>2.69</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                 | <mdl< td=""><td>636</td><td><mdl< td=""><td><mdl< td=""><td>2.69</td></mdl<></td></mdl<></td></mdl<>                 | 636                                                                                      | <mdl< td=""><td><mdl< td=""><td>2.69</td></mdl<></td></mdl<> | <mdl< td=""><td>2.69</td></mdl<> | 2.69                          |
| 1,10100    | <b>D</b> 0550 <b>u</b> u | 0.05                                                                                                                                                                                                                                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.08</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.08</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.08</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.08</td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.08</td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td>2.08</td></mdl<></td></mdl<> | <mdl< td=""><td>2.08</td></mdl<> | 2.08                          |
| Saale      | Wettin                   | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1290</td><td>112</td><td><mdl< td=""><td>4.50</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1290</td><td>112</td><td><mdl< td=""><td>4.50</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1290</td><td>112</td><td><mdl< td=""><td>4.50</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td>1290</td><td>112</td><td><mdl< td=""><td>4.50</td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td>1290</td><td>112</td><td><mdl< td=""><td>4.50</td></mdl<></td></mdl<>                                | 1290                                                                                     | 112                                                          | <mdl< td=""><td>4.50</td></mdl<> | 4.50                          |
| Suure      | vi ottili                | 0.05                                                                                                                                                                                                                                 | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1430</td><td>128</td><td><mdl< td=""><td>4.30</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1430</td><td>128</td><td><mdl< td=""><td>4.30</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td><mdl< td=""><td>1430</td><td>128</td><td><mdl< td=""><td>4.30</td></mdl<></td></mdl<></td></mdl<>                                | <mdl< td=""><td>1430</td><td>128</td><td><mdl< td=""><td>4.30</td></mdl<></td></mdl<>                                | 1430                                                                                     | 128                                                          | <mdl< td=""><td>4.30</td></mdl<> | 4.30                          |
| Lake Belau | Lake Belau               | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.01</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.01</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.01</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.01</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.01</td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.01</td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td>1.01</td></mdl<></td></mdl<> | <mdl< td=""><td>1.01</td></mdl<> | 1.01                          |
| Dolud      | Delud                    | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.91</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.91</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.91</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.91</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.91</td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.91</td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td>1.91</td></mdl<></td></mdl<> | <mdl< td=""><td>1.91</td></mdl<> | 1.91                          |

### Table S8. Pharmaceuticals and Personal Care Products Measured in Fish Fillet Composites from GESB Sites

<MDL = below method detection limits; DPH = diphenhydramine; DMS = desmethylsertraline; CBZ = carbamazepine; HHCB = galaxolide; AHTN =

tonalide; <sup>a</sup>mean data from the German Federal Environmental Agency.

**Lipid Determination.** The correlation between the percent lipid content and the measured tissue concentration of HHCB and AHTN has been demonstrated (Figure S3). The logarithmic fish tissue concentration of HHCB and AHTN were positively correlated with percent lipid contents in fish tissue composites (HHCB:  $r^2 = 0.71$ , p = 0.001 and AHTN:  $r^2 = 0.59$ , p = 0.043). The HHCB and AHTN concentrations from Saar were not plotted. Potential correlations of pharmaceuticals fish tissue concentration with lipid content could not be investigated due to insufficient data. The pharmaceuticals fish tissue concentrations were not correlated with lipid content from fish collected from the United States.<sup>1</sup> In fact, the bioaccumulation potential depends on the physiological pH,<sup>5</sup> metabolism, and degree of ionization (pKa).<sup>1</sup> HHCB and AHTN have lower ionization properties than that of pharmaceuticals which make them more bioaccumulative.



Figure S2. Correlations of HHCB and AHTN fish tissue concentrations with lipid

Influence of WWTPs on PCPs Fish Tissue Concentrations. Excluding CIE, the least significant predictor variable, from the MLR analysis of HHCB and AHTN fish tissue concentrations with PSL and MAF provided  $r^2$  of 0.44 (p = 0.177) and 0.56 (p = 0.131).

HHCB = 
$$6896 - (445 * PSL) - (2.88 * MAF)$$
 (r<sup>2</sup> = 0.44, p = 0.177)  
AHTN =  $271.0 - (10.9 * PSL) - (0.09 * MAF)$  (r<sup>2</sup> = 0.56, p = 0.131)

Furthermore, excluding largest MAF sampling location (Bimmen/Rhine, 2000 m<sup>3</sup> s<sup>-1</sup>), multiple linear regression of HHCB and AHTN fish tissue concentrations with MAF, PSL, and CIE (<30 km) provided r<sup>2</sup> for HHCB of 0.79 (p = 0.075) and AHTN of 0.81 (p = 0.129). The following multiple linear regression equations were obtained.

HHCB = 9825 - (635 \* PSL) - (9.91 \* MAF) + (3.51 × 10<sup>-4</sup> \* CIE) ( $r^2$  = 0.79, p = 0.075) AHTN = 329.0 - (14.9 \* PSL) - (0.26 \* MAF) + (1.70 × 10<sup>-5</sup> \* CIE) ( $r^2$  = 0.81, p = 0.129)



Figure S3. HHCB/AHTN ratio as a function of time: A) Gudingen/Saar and B) Rehlingen/Saar

#### References

- Ramirez, A. J.; Brain, R. A.; Usenko, S.; Mottaleb, M. A.; O'Donnell, J. G.; Stahl, L. L.; Wathen, J. B.; Snyder, B. D.; Pitt, J. L.; Perez-Hurtado, P.; Dobbins, L. L.; Brooks, B. W.; Chambliss, C. K. Occurrence of pharmaceuticals and personal care products in fish: Results of a national pilot study in the United States. *Environ. Toxicol. Chem.* 2009, 28, 2587-2597.
- (2) Mottaleb, M. A.; Usenko, S.; O'Donnell, J. G.; Ramirez, A. J.; Brooks, B. W.; Chambliss, C. K. Gas chromatography-mass spectrometry screening methods for select UV filters, synthetic musks, alkylphenols, an antimicrobial agent, and an insect repellent in fish. *J. Chromatogr. A* 2009, *1216*, 815-823.
- (3) Du, B.; Perez-Hurtado, P.; Brooks, B. W.; Chambliss, C. K. Evaluation of an isotope dilution liquid chromatography-tandem mass spectrometry method for pharmaceuticals in fish. *J. Chromatogr. A* (**2012**), http://dx.doi.org/10.1016/j.chroma.2012.07.026
- (4) Subedi, B.; Mottaleb, M. A.; Chambliss, C. K.; Usenko, S. Simultaneous analysis of select pharmaceuticals and personal care products in fish tissue using pressurized liquid extraction combined with silica gel cleanup. *J. Chromatogr. A* **2011**, *1218*, 6278-6284.
- (5) Esser, H. O.; Moser, P. An appraisal of problems related to the measurement and evaluation of bioaccumulation. *Ecotoxicol. Environ. Saf.* **1982**, *6*, 131-148.