Supporting information (SI)

- 2 Arsenic dynamics in mangrove sediments: the Sundarbans, Bangladesh-Part 1
- 3 Mahmud Hossain, Paul N Williams, Mestrot Adrien, Gareth J. Norton, Claire M.
- 4 Deacon, Andrew A. Meharg

5 Contents

Figure SI 1	Core sampling locations in the Sundarbans overlain with the
	DPHE-BGS-DFID groundwater As map of Bangladesh.
Figure SI 2	Sampling sites at Koromjal
Figure SI 3	Particle size analysis of Mongla, Dacope and Shyamnagar core
	sediments overlain with total As and TOC concentration for each
	sediment core slice.
Figure SI 4	Regression plots showing relation between particle size and total
	As.
Figure SI 5	Sequentially extracted different fractions of As in sediments with
	their percentage of totals.
Figure SI 6	Particle size percentage overlain with TOC and total As in
	sediments of 4 different cites at Koromjal.
Figure SI 7	Regression plots showing relations between particle size
	percentage, total As, TOC and total Fe from sediments.
Figure SI 8	Correlation between porewater As, DOC, Fe and Mn.
Figure SI 9	Total As and DOC in surface water collected from 4 sites at
	Koromjal on 19 December, 2009.
Figure SI 10	Arsenic and DOC in tidal seawater collected from Koromjal, the
	Sundarbans, Bangladesh.
Figure SI 11	Arsenic speciation in porewater collected from 4 sites at Koromjal
	on 18 December 2009.
Table SI 1	Correlation matrix of elemental concentrations in Mongla, Dacope
	and Shyamnagar core sediments
Table SI 2	Sediments settled on synthetic turf after two tidal cycles at
	Koromjal.
Table SI 3	Correlation matrix of elemental concentrations at Koromjal core
	sediments.
Text SI	Additional methods

6

7

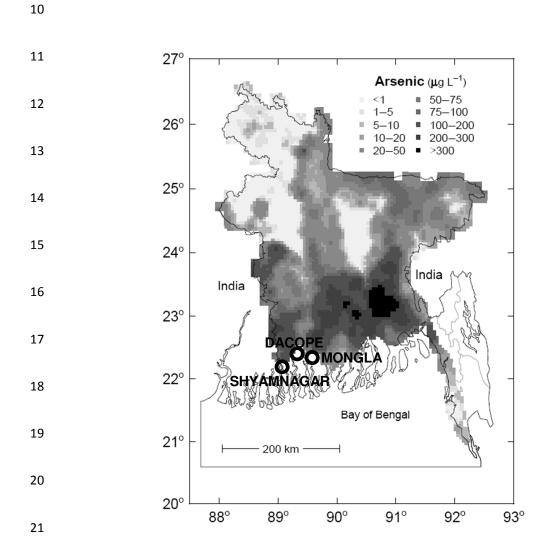
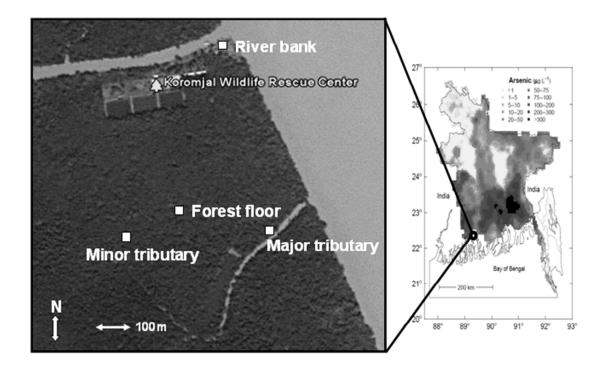
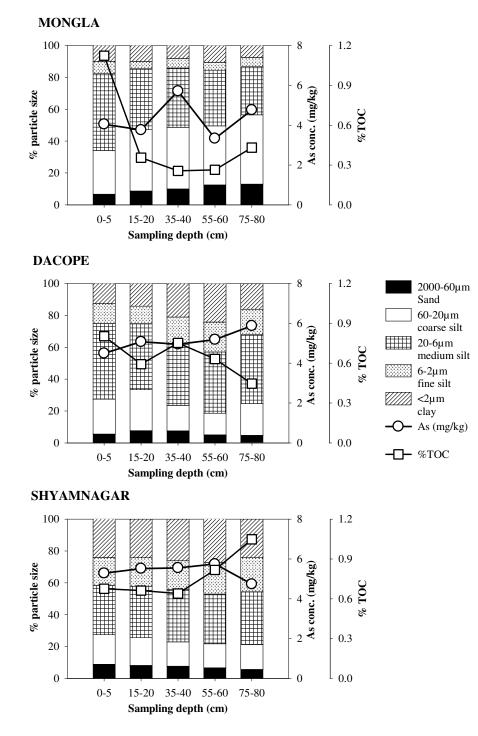
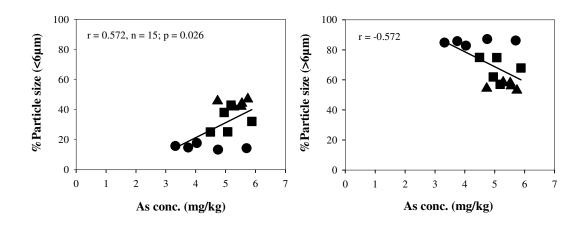




Figure SI 1. Core sampling locations in the Sundarbans overlain with the DPHEBGS-DFID groundwater As map of Bangladesh (1).


- Figure SI 2. Sampling sites at Koromjal are denoted by squares. Koromjal, the
- 30 Sundarbans is further pointed on the groundwater As map of Bangladesh published
- 31 by the DPHE-BGS-DFID (1). Unshaded Sundarbans and some hilly districts of
- 32 Bangladesh indicate unavailability of data.

33 Figure SI 3. Particle size analysis of Mongla, Dacope and Shyamnagar core

34 sediments plotted as stacked bars, overlain with total As and TOC concentration for

35 each sediment core slice.

³⁹ Figure SI 4. Regression plots showing relation between particle size and total As.

40 Closed circle, square and triangle represent Mongla, Dacope and Shyamnagar

41 sediments respectively.

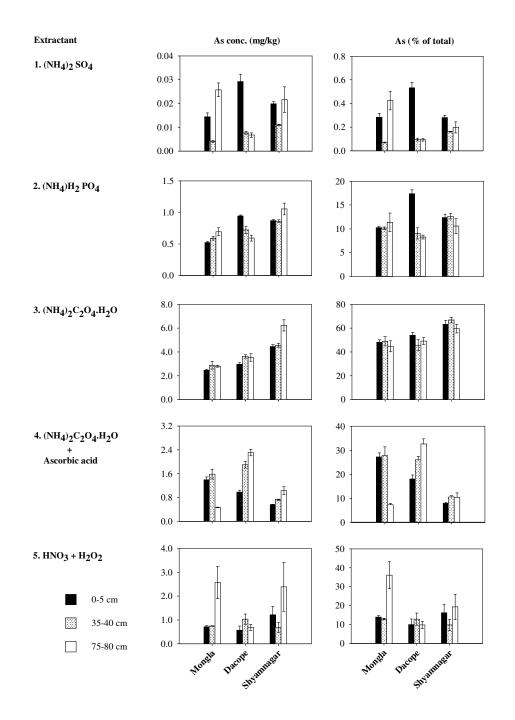
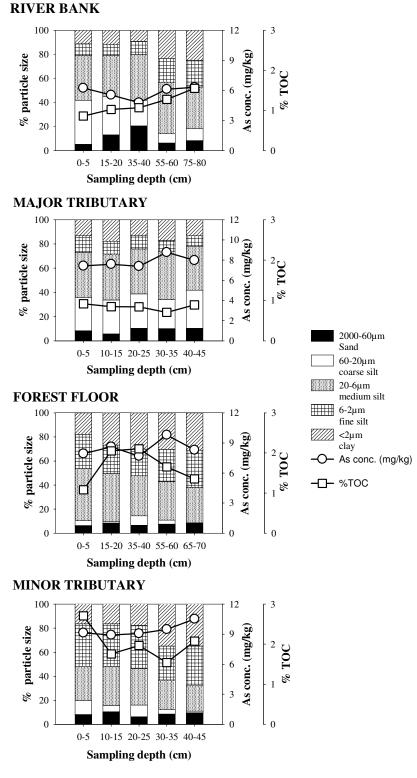



Figure SI 5. Sequentially extracted different fractions of As in Mongla, Dacope and Shyamnagar sediments with their percentage of total As. Data are mean values and \pm SE (n = 6).

72 Figure SI 6. Particle size percentage overlain with TOC and total As in sediments of

73 4 different cites at Koromjal.

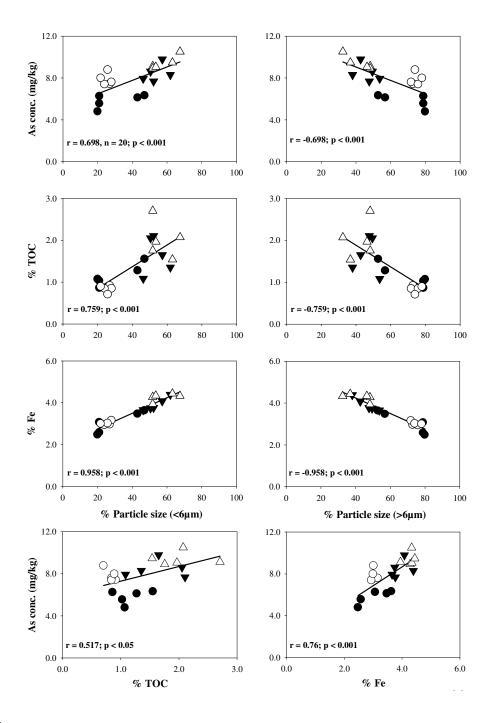


Figure SI 7. Regression plots showing relations between particle size percentage,
total As, TOC and total Fe from sediments. Closed circle represent river bank
sediments, open circle represent major tributary sediment, closed triangle down
represent forest floor sediment, open triangle up represent minor tributary sediment.

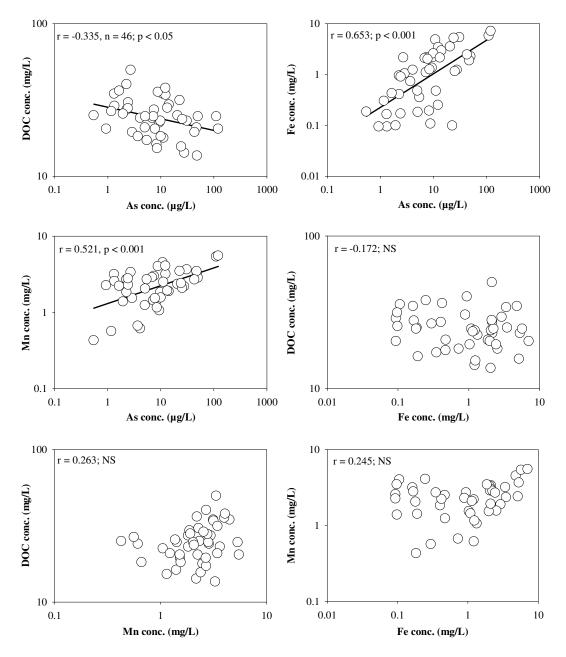
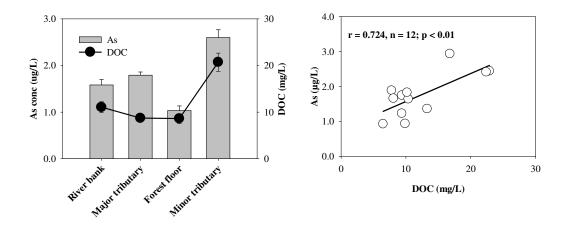
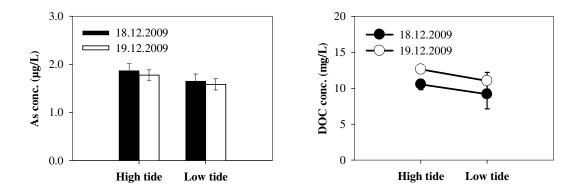
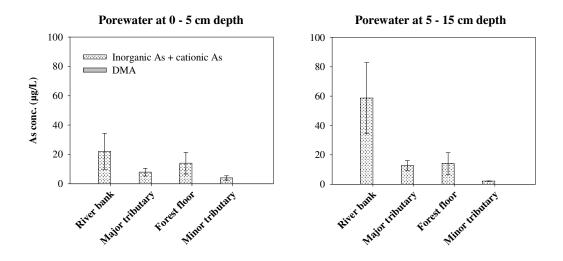




Figure SI 8. Correlation between porewater As, DOC, Fe and Mn at Koromjal. NS =not significant.



101 Figure SI 9. Total As and DOC in surface water collected from 4 sites at Koromjal on

102 19 December, 2009. Data are means and \pm SE (n = 3).

- 110 Figure SI 10. Arsenic and DOC in tidal seawater collected from Koromjal, the
- 111 Sundarbans, Bangladesh. Data are means and \pm SE (n = 3).

122 Figure SI. 11. Arsenic speciation in porewater collected from 4 sites at Koromjal on

- 123 18 December 2009. Data are means and \pm SE (n = 3).
- 124

126 Table SI 1. Correlation matrix of elemental concentrations in Mongla, Dacope and

127 Shyamnagar core sediments. Each site had 3 replicate samples as described in

128 Materials and Methods. Cell contents are first Pearson correlation and below P-

value. Significant (P<0.05) relationships are shown in bold.

MONGLA	Depth (cm)	As (mg/kg)	TOC (%)	TIC (%)	TN (%)	C:N	Fe (%)	Mn (mg/kg
As	0.007	(ing/itg)	(70)	(70)	(70)		(70)	(mg/ng
(mg/kg)	0.970							
ŤOĆ	-0.532	-0.047						
(%)	0.002	0.797						
TIC	0.309	-0.098	-0.401					
(%)	0.086	0.592	0.023					
TN	-0.568	0.250	0.839	-0.245				
(%)	0.001	0.167	0.001	0.175				
	0.243	0.214	-0.329	0.179	-0.662			
C:N	0.180	0.240	0.066	0.326	0.001			
Fe	-0.122	0.323	0.385	-0.169	0.198	-0.147		
(%)	0.507	0.072	0.030	0.354	0.276	0.421		
Mn	0.031	0.578	0.111	-0.148	-0.063	0.072	0.560	
(mg/kg)	0.867	0.001	0.547	0.418	0.731	0.695	0.001	
P	-0.053	-0.370	-0.035	-0.192	0.159	-0.228	-0.552	-0.41
(mg/kg)	0.775	0.037	0.851	0.293	0.384	0.210	0.001	0.01
DACOPE	0.170	0.001	0.001	0.200	0.001	0.210	0.001	0.01
As	0.517							
(mg/kg)	0.002							
ŤOĆ	-0.621	-0.409						
(%)	0.000	0.020						
ŤIĆ	-0.616	-0.589	0.036					
(%)	0.001	0.001	0.847					
ŤŃ	0.099	0.036	0.460	-0.443				
(%)	0.588	0.843	0.008	0.011				
	-0.591	-0.445	0.080	0.739	-0.780			
C:N	0.001	0.011	0.664	0.001	0.001			
Fe	0.599	0.775	-0.191	-0.845	0.363	-0.688		
(%)	0.000	0.000	0.296	0.001	0.041	0.001		
Mn	0.242	0.726	-0.341	-0.299	-0.081	-0.218	0.527	
(mg/kg)	0.182	0.001	0.056	0.096	0.658	0.231	0.002	
P	-0.172	-0.158	-0.030	0.304	-0.082	0.203	-0.181	0.09
(mg/kg)	0.346	0.388	0.870	0.091	0.656	0.264	0.321	0.62
SHYAMNAGAR								
As	0.011							
(-0.014							
(mg/kg)	-0.014 0.942							
(mg/kg) TOC	0.942	-0.144						
TOC	0.942 0.338	-0.144 0.449						
TOC (%)	0.942 0.338 0.670	0.449	-0.307					
TOC (%) TIC	0.942 0.338 0.670 -0.595	0.449 -0.253	-0.307 0.098					
TOC (%) TIC (%)	0.942 0.338 0.670 -0.595 0.001	0.449 -0.253 0.176	0.098	-0.159				
TOC (%) TIC (%) TN	0.942 0.338 0.670 -0.595 0.001 -0.055	0.449 -0.253 0.176 0.240	0.098 0.272	-0.159 0.403				
TOC (%) TIC (%) TN (%)	0.942 0.338 0.670 -0.595 0.001 -0.055 0.772	0.449 -0.253 0.176 0.240 0.201	0.098 0.272 0.146	0.403	-0.732			
TOC (%) TIC (%) TN	0.942 0.338 0.670 -0.595 0.001 -0.055 0.772 -0.091	0.449 -0.253 0.176 0.240 0.201 -0.340	0.098 0.272 0.146 0.207	0.403 0.390	-0.732 0.001			
TOC (%) TIC (%) TN (%) C:N	0.942 0.338 0.670 -0.595 0.001 -0.055 0.772 -0.091 0.632	0.449 -0.253 0.176 0.240 0.201 -0.340 0.066	0.098 0.272 0.146 0.207 0.273	0.403 0.390 0.033	0.001	-0 141		
TOC (%) TIC (%) TN (%) C:N Fe	0.942 0.338 0.670 -0.595 0.001 -0.055 0.772 -0.091 0.632 -0.164	0.449 -0.253 0.176 0.240 0.201 -0.340 0.066 0.744	0.098 0.272 0.146 0.207 0.273 -0.311	0.403 0.390 0.033 -0.010	0.001 0.052	-0.141 0.457		
TOC (%) TIC (%) TN (%) C:N Fe (%)	0.942 0.338 0.670 -0.595 0.001 -0.055 0.772 -0.091 0.632 -0.164 0.386	0.449 -0.253 0.176 0.240 0.201 -0.340 0.066 0.744 0.001	0.098 0.272 0.146 0.207 0.273 -0.311 0.095	0.403 0.390 0.033 -0.010 0.960	0.001 0.052 0.785	0.457	0 400	
TOC (%) TIC (%) TN (%) C:N Fe (%) Mn	0.942 0.338 0.670 -0.595 0.001 -0.055 0.772 -0.091 0.632 -0.164 0.386 -0.757	0.449 -0.253 0.176 0.240 0.201 -0.340 0.066 0.744 0.001 0.177	0.098 0.272 0.146 0.207 0.273 -0.311 0.095 -0.428	0.403 0.390 0.033 -0.010 0.960 0.347	0.001 0.052 0.785 -0.099	0.457 0.092	0.400	
TOC (%) TIC (%) TN (%) C:N Fe (%) Mn (mg/kg)	0.942 0.338 0.670 -0.595 0.001 -0.055 0.772 -0.091 0.632 -0.164 0.386 -0.757 0.001	0.449 -0.253 0.176 0.240 0.201 -0.340 0.066 0.744 0.001 0.177 0.350	0.098 0.272 0.146 0.207 0.273 -0.311 0.095 -0.428 0.018	0.403 0.390 0.033 -0.010 0.960 0.347 0.061	0.001 0.052 0.785 -0.099 0.601	0.457 0.092 0.628	0.029	0 09
TOC (%) TIC (%) TN (%) C:N Fe (%) Mn	0.942 0.338 0.670 -0.595 0.001 -0.055 0.772 -0.091 0.632 -0.164 0.386 -0.757	0.449 -0.253 0.176 0.240 0.201 -0.340 0.066 0.744 0.001 0.177	0.098 0.272 0.146 0.207 0.273 -0.311 0.095 -0.428	0.403 0.390 0.033 -0.010 0.960 0.347	0.001 0.052 0.785 -0.099	0.457 0.092		0.08 0.65

- 130 Table SI 2. Sediments settled on synthetic turf after two tidal cycles at Koromjal.
- 131 Data are means and \pm SE (n = 3).

	Sediment deposits	As (mg/kg)	Fe (%)	Mn (mg/kg)	TOC (%)	TIC (%)
	River bank	7.3 ± 0.3	2.5 ± 0.04	541 ± 8	0.61 ±	0.72 ±
	River ballk	7.5 ± 0.5	2.5 ± 0.04	541 ± 0	0.02	0.02
	Forest floor	13.1 ± 1.0	4.1 ±0.1	884 ± 13	2.08 ± 0.1	0.70 ± 0.1
132						
133						
134						
135						
136						
137						
138						
139						
140						
141						
142						
143						
144						
145						
146						
147						
148						
149						
150						
151						
152						

- 153 Table SI 3. Correlation matrix of elemental concentrations at Koromjal core
- 154 sediments. Each site had 3 replicate samples as described in Materials and
- 155 Methods. Cell contents are first Pearson correlation and below P- value. Significant
 - 157 River Depth TOC TIC Fe As (%) bank (cm) (mg/kg) (%) (%) 158 0.164 As 0.544 (mg/kg) 159 % TOC 0.751 0.011 160 0.001 0.969 % TIC -0.706 -0.921 0.113 0.001 0.002 0.676 % Fe 0.764 0.522 0.678 -0.447 161 0.038 0.004 0.082 0.001 -0.841 0.516 -0.546 % Mn -0.132 -0.512 0.001 0.627 0.969 0.041 0.029 Major tributary 0.437 As (mg/kg) 0.206 % TOC -0.135 -0.212 0.557 0.709 % TIC 0.281 -0.852 0.383 0.002 0.274 0.432 % Fe -0.195 -0.178 0.221 0.192 0.590 0.539 0.595 0.623 % Mn -0.799 -0.230 0.188 -0.300 0.410 0.006 0.523 0.603 0.400 0.240 Forest floor 0.567 As (mg/kg) 0.035 % TOC 0.234 0.235 0.421 0.418 % TIC -0.327 -0.286 -0.431 0.254 0.321 0.124 % Fe 0.885 0.557 -0.027 -0.385 0.174 0.001 0.038 0.927 -0.803 % Mn -0.906 -0.581 -0.240 0.204 0.001 0.029 0.408 0.485 0.001 Minor tributary As 0.458 (mg/kg) 0.184 % TOC 0.067 0.458 0.184 0.855 % TIC -0.129 -0.471 -0.675 0.721 0.169 0.032 % Fe -0.536 -0.840 0.612 0.237 0.51 0.110 0.002 0.060 % Mn -0.832 -0.543 -0.263 0.262 0.087 0.003 0.105 0.462 0.464 0.811
- 156 (P<0.05) relationships are shown in bold.

162 Text SI Additional methods

163 Aristar[®] reagents were used throughout, supplied by BDH (Poole, Dorset, UK), along 164 with high purity 18.2 M Ω cm water (Milli-Q[®]).

165

166 Sediment core slices were oven dried at 60 °C for 24 h and then sediment was 167 ground, sieved (2 mm), and digested with HNO₃ and H₂O₂ at 120 $^{\circ}$ C on a block 168 digester (Error! Reference source not found.). Soil certified reference material 169 (CRM) (NCS-ZC-73007), spikes and sample blanks were included in each digestion 170 batch of 40 samples with randomization as part of the quality control. Total As (m/z 171 75) and Indium (In)(m/z 115) analysis was determined by ICP-MS (Agilent 172 technologies 7500, Tokyo, Japan); the instrument was tuned for the monitoring of 173 m/z 75 (As) and m/z 77 and 82 (Selenium) (m/z 77 and m/z 78 while collision cell 174 was used) to check ArCl interferences. Indium (10 ug/L) was run as internal standard. Standards were prepared from 1000 mg/L ICP-MS grade multi-element 175 stock solutions with appropriate ranges (0 - 50 µg/L). Corrections were not required 176 for polyatomic Ar⁴⁰Cl³⁵ interferences on m/z 75. Total Fe and Mn analysis was 177 178 conducted by flame-atomic absorption spectrophotometry (Perkin Elmer AAnalyst 179 300), calibrated with appropriate standards and change in sensitivity of the 180 instrument checked every 12 samples. A subset of samples were digested for total P 181 analysis using a sulphuric acid,/lithium sulphate,/hydrogen peroxide mixture in 182 84:2.4:70 ratio, with total P determined by flow injection colourimetry (FIAstar 5000 183 Analyzer, FOSS Tecator, Sweden). A further subset of sediments was ball-milled 184 (Retsch, Germany) and analyzed for total carbon (TC), total organic carbon (TOC)

and total nitrogen (TN) by flash combustion (NA 1500 Series 2, Fisons Instruments,UK).

187

188	Porewater, surface water and tidal seawater samples were analyzed for As using
189	ICP-MS as mentioned previously. Porewaters collected on 18 December, 2009 were
190	characterized for As speciation using an anion exchange HPLC (PRP X-100,
191	Hamilton, Switzerland) coupled to ICP-MS Agilent 7500c with 6.6 mM phosphate
192	buffer ($pH = 6.2$).
193	
194	Arsenic in DGT was determined by ICP-MS (Thermo Elemental X7). The
195	concentration of labile As trapped by DGT ($^{As}C_{DGT}$) was calculated using equation [i].
196	
197	$^{As}C_{DGT} = M \times \Delta g / (D \times A \times t) \cdots \cdots \cdots [i]$
198	
199	Where <i>M</i> is the mass of As in the binding (ferrihydrite) gel, Δg is the thickness of the
200	diffusive gel (0.08 cm) plus the thickness of the filter membrane (0.014 cm), A is the

surface area (2.54 cm²), *t* is the deployment time (24 h), and *D* is the temperature

202 corrected diffusion coefficient of As in the gel (Error! Reference source not

found.). ^{As} C_{DGT} was compared with porewater As concentrations collected on the same day.

DOC in water samples was analyzed by LabTOC-Aqueous Carbon Analyzer (PPM Ltd., UK) with necessary dilutions for porewaters. Total Fe and Mn in water samples were analysed by flame-AAS with appropriate dilutions. Fe and Mn concentrations in porewater were well above the limit of detection (LOD) but all surface water and tidal seawater fell below the LOD.

211

212 Statistics

All statistical analysis was performed using general linear modeling (GLM) using
Minitab v.15 English (State College, PA).

215

216 *Rhizon samplers*

217 Rhizosphere Research Products, Dolderstraat 62, NL-6706, JG Wageningen, The
218 Netherlands

219

220 Sediment particle size analysis

A subset of sections from each core profile were selected for particle size analysis.

222 Sediment (25 g) was mixed with 1 L of deionized water with 5 mL dispersant (mixture

of sodium polyphosphate and sodium carbonate, buffered at pH 8.3). A hydrometer

224 (g/L. T: 68 °F Zeal, Soil Hydrometer No.2/7243 ASTM. 152H, 0 - 60) was inserted

into the suspension and readings were recorded at 46 s, 6 min 51 s, 76 min and 11.5

h with corresponding temperature (°C) reading to determine particles within the

equivalent spherical diameter (e.s.d.) ranges of 2000 - 60 μ m (sand), 60 - 20 μ m

(coarse silt), 20 - 6 μ m (medium silt), 6 - 2 μ m (fine silt) and < 2 μ m (clay),

respectively (Error! Reference source not found.). Particle size analysis of tidally

- deposited sediment could not be conducted due to the small sample size obtained.
- 231

232 Sequential extraction

233 Arsenic fractionation study of sediments was conducted following a published

234 method (Error! Reference source not found.) using 0.05 M ammonium sulphate

- 235 (NH₄)₂SO₄, 0.05 M ammonium dihydrogen phosphate (NH₄)H₂PO₄, 0.2 M
- ammonium-oxalate, 0.02 M; pH 3.25 ammonium-oxalate buffer + 0.1 M ascorbic acid
- and finally microwave digestion with HNO₃ following the procedures as described by
- Adomako et al. (4). Extractants collected after five consecutive extractions
- represents (I) non-specifically adsorbed As, (II) specifically adsorbed As, (III)
- amorphous and poorly-crystalline hydrous oxides bound As, (IV) crystalline hydrous

oxides bound As, and (V) residual As. Soil extracts were collected in 50 mL

- centrifuge tubes and centrifuged at 1720 x g for 10 minutes and the supernatant
- carefully decanted into 50 mL tube and stored at 20 ℃ for analysis. Soil extracts
- were treated with 20 % potassium iodide (KI) solution (20 % KI, 10 % ascorbic acid
- and 20 % HCl) about 30 minutes prior to analysis for reduction of arsenate (AsV) into
- arsenite (AsIII) and AsIII in extracts were determined by a Hydride generator Atomic
- Absorption Spectrophotometer (HG-AAS) using matrix match AsIII standards.
- Sample spikes (10 μ g/L) and blanks were run with each analytical batch.

249

250 **References**

- 1. BGS (British Geological Survey). Arsenic contamination of groundwater in
- 252 Bangladesh, Final Report. British Geological Survey Technical Report
- 253 WC/00/19; Kinniburgh DG and Smedley PL, Eds.; British Geological Survey:
- 254 Keyworth, **2001**; Vol. 2, Web:
- 255 <u>http://www.bgs.ac.uk/arsenic/bphase1/bintro.htm</u>.
- BSI (British Standards Institution). *Methods of test for soils for civil engineering purposes.* **1975**, British Standard 1377. Brit. Stan. Inst., London.
- 3. Wenzel, W. W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombic, L.;
- Adriano, D. C. Arsenic fractionation in soils using an improved sequential

260 extraction procedure. *Anal. Chim. Acta.* **2001**, *436*, 309-323.

- 4. Adomako, E.; Solaiman, A. R. M.; Williams, P. N.; Deacon, C. M.; Meharg, A.
- A. Enhanced transfer of arsenic to grain for Bangladesh grown rice compared
- to US and EU. *Environ. Int.* **2009**, *35*, 476-479.
- 264