Supporting Information

Pressure-Induced Crystal Structure and Spin-State Transitions in $\label{eq:Magnetite} \textbf{Magnetite (Fe}_3\textbf{O}_4\textbf{)}$

Sheng Ju,^{1,*} Tian-Yi Cai,¹ Hai-Shuang Lu,¹ and Chang-De Gong^{2,3}

¹ Department of Physics and Jiangsu Key Laboratory of Thin Films,

Soochow University, Suzhou 215006, P. R. China

² Center for Statistical and Theoretical Condensed

Matter Physics and Department of Physics,

Zhejiang Normal University, Jinhua 321004, P. R. China

³ National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, P. R. China

 $*\ Corresponding\ Author\ jusheng@suda.edu.cn$

- 1. Detailed lattice constants and atomic coordinate parameters for the nine typical samples. Table I for $Fd\bar{3}m$ phase. Table II and Table III for Pbcm phase. Table IV and Table V for Bbmm phase.
- 2. Orbital resolved density of states for the nine typical samples. Figure 1 for A-site Fe and Figure 2 for B-site Fe.

TABLE I: Lattice constant (Å) and atomic coordinate parameter of Fe₃O₄ (sample II, sample III, and sample III) with the space group $Fd\bar{3}m$.

Sample	I	II	III	
\overline{a}	8.4018	8.2333	8.0415	
u	0.2546	0.2545	0.2544	

TABLE II: Lattice constant (Å) of Fe $_3$ O $_4$ (sample IV, sample V, and sample VI) with the space group Pbcm.

Sample	IV	V	VI	
a	2.64872	2.59084	2.55332	
b	9.31928	9.10468	9.00087	
<i>c</i>	9.37144	9.20406	9.12054	

TABLE III: Atomic coordinates (x,y,z) of Fe₃O₄ (sample IV, sample V, and sample VI) with the space group Pbcm.

Atom	Site	IV	V	VI
Fe1	4d	(0.74985, 0.36270, 0.25)	(0.74999, 0.35843, 0.25)	(0.74998, 0.35643, 0.25)
Fe2	8e	(0.24974, 0.11603, 0.07154)	(0.24999, 0.11357, 0.07109)	(0.24979, 0.11244, 0.07105)
O1	4c	(0.74946, 0.25, 0)	(0.74998, 0.25, 0)	(0.74986, 0.25, 0)
O2	4d	(0.24967, 0.20465, 0.25)	(0.25009, 0.20016, 0.25)	(0.24982, 0.19803, 0.25)
O3	8e	(0.24999, 0.46650, 0.11728)	(0.24990, 0.46433, 0.11889)	(0.25016, 0.46335, 0.11965)

TABLE IV: Lattice constant (Å) of Fe $_3$ O $_4$ (sample VII, sample VIII, and sample IX) with the space group Bbmm.

Sample	VII	VIII	IX	
a	8.98279	8.88086	8.84489	
b	9.04893	8.89412	8.85431	
c	2.54251	2.48289	2.46635	

TABLE V: Atomic coordinates (x,y,z) of Fe₃O₄ (sample VII, sample VIII, and sample IX) with the space group Bbmm.

Atom	Site	VII	VIII	IX
Fe1	4c	(0.38484, 0.25, 0)	(0.38832, 0.25, 0)	(0.38970, 0.25, 0)
Fe2	8f	(0.13324, 0.07290, 0)	(0.13493, 0.07291, 0)	(0.13553, 0.07279, 0)
O1	4c	(0.04543, 0.25, 0)	(0.04731, 0.25, 0)	(0.04827, 0.25, 0)
O2	8f	(0.21872, 0.61514, 0)	(0.21718, 0.61663, 0)	(0.21656, 0.61727, 0)
О3	4a	(0.5,0,0)	(0.5,0,0)	(0.5,0,0)

FIG. 1: 3*d*-orbital resolved local density of states of Fe ions at A-site for the nine typical samples.

(a) Up-spin channel. (b) Down-spin channel. The vertical line indicates the Fermi level.

FIG. 2: 3*d*-orbital resolved local density of states of Fe ions at B-site for the nine typical samples.

(a) Up-spin channel. (b) Down-spin channel. The vertical line indicates the Fermi level.