Supporting Information

Ionic liquid mediated sol-gel synthesis in the presence of water or formic acid : which synthesis for which material?

Lydie Viau,^{*a} Marie-Alexandra Néouze,^b Christine Biolley,^a Sabrina Volland,^a David Brevet,^a Philippe Gaveau,^a Philippe Dieudonné,^c Anne Galarneau,^b and André Vioux^{*a}

^a Institut Charles Gerhardt de Montpellier, UMR 5253 CNRS- UM2- ENSCM- UM1, Université Montpellier 2, cc 1701, F34095 Montpellier, France; E-mail: <u>vioux@univ-montp2.fr</u>

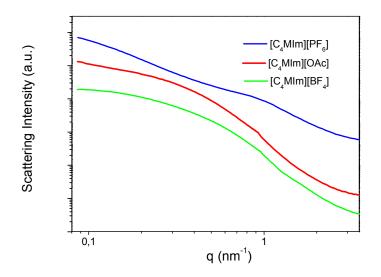
^b Institute of Materials Chemistry; Vienna University of Technology; 1060 Wien, Austria

^c Laboratoire Charles Coulomb (UMR CNRS 5521), Université Montpellier 2, 34095 Montpellier Cedex 5, France

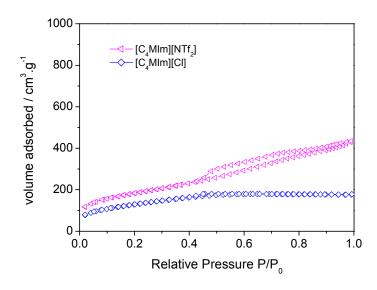
Experimental section

Stability of $[C_4MIm][PF_6]$ in HCOOH :

Sample preparation


The stability was tested using the same molar ratio as those used in the ionogel synthesis. In a Vial, 238 mg (0.84 mmol) of $[C_4MIm][PF_6]$ were dissolved in 0.5 mL HCOOH (13.2 mmol). The mixture was stirred for 48h at room temperature while samples for NMR measurements were taken periodically.

NMR spectroscopy


The ¹⁹F and ³¹P spectra were recorded using a Bruker Avance 400 MHz (9.4 T) spectrometer using CD₃CN or D₂O as solvents at a frequency of 376.5 MHz (¹⁹F) and 161.97 MHz (³¹P).

Small angle X Ray scattering (SAXS) experiments were performed with an in-house setup of the Laboratoire Charles Coulomb, "Réseau X et gamma", Université Montpellier 2,

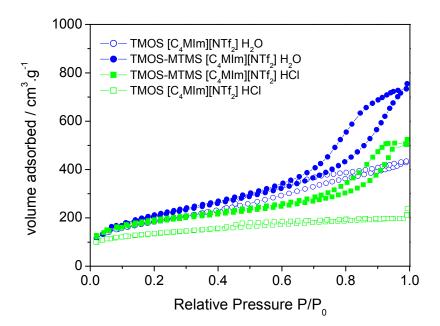
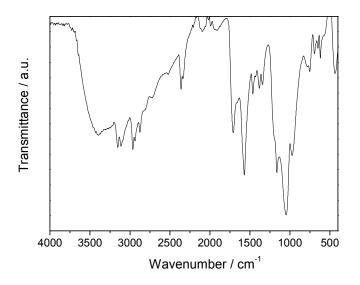

France. A high brightness low power X- ray tube, coupled with aspheric multilayer optic (GeniX^{3D} from Xenocs) was employed. It delivers an ultralow divergent beam (0.5mrad). Scatterless slits were used to give a clean 0.8mm beam diameter (35 Mphotons/s) at the sample. We worked in a transmission configuration and scattered intensity was measured by a Schneider 2D imageplate detector prototype, at a distance of 1,9m from the sample. Intensities were corrected by transmission and the empty cell contribution was substracted.

Figure S1. Small-angle X-ray scattering (SAXS) pattern of the washed gels obtained by the hydrolysis way.

Figure. S2. Influence of anion in hydrolysis way: N_2 sorption isotherms of washed gels arising from $[C_4MIm][NTf_2]$ and $[C_4MIm][Cl]$ ILs.

Figure S3. Effect of the addition of a methylated precursor in hydrolysis way: N_2 sorption isotherms of washed gels arising from [C₄MIm] [NTf₂] and 50/50 TMOS-MTMS precursor mixture.



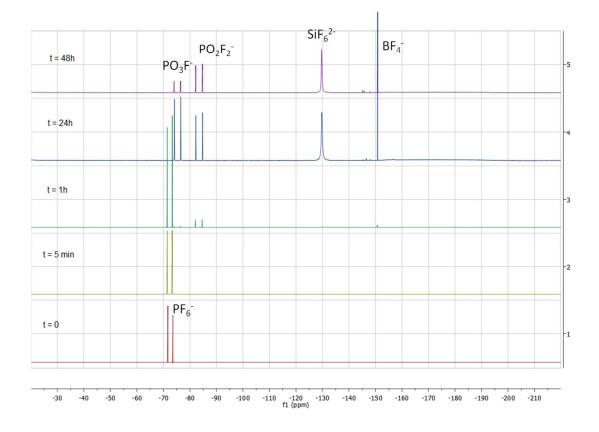

Figure S4. FT-IR psectra of ionogel obtained using [C₄MIm][OAc] and the formic acid solvolysis

Table S1. Condensation extent (²⁹Si MAS NMR) hydrolysis way

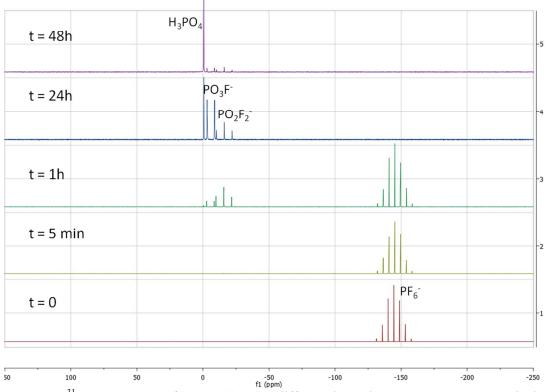

Anion	С %	Q ₂ % (-92 ppm)	Q ₃ % (-101 ppm)	Q4 % (- 110 ppm)
[BF ₄]	97	-	12	88
[OAc]	90	-	40	60
$[PF_6]$	95	-	20	80
[Cl]	89	4	35	61
[NTf ₂]	87	-	35	55

Table S2. Condensation extent (²⁹Si MAS NMR) formic acid solvolysis way

Anion	С %	Q2 %	Q3 %	Q4 %
	C 70	(-92 ppm)	(-101 ppm)	(- 110 ppm)
$[BF_4]$	NA			
[OAc]	87	2	45	53
$[PF_6]$	NA			
[Cl]	90	-	40	60
[NTf ₂]	89	1	42	57

Figure S5. ¹⁹F NMR spectra of $[C_4MIm][PF_6]$ at different time. The spectrum at t = 0 was obtained in CD₃CN while the others were recorded in D₂0.

Figure S6. ³¹P NMR spectra of $[C_4MIm][PF_6]$ at different time. The spectrum at t = 0 was obtained in CD₃CN while the others were recorded in D₂0.

Table S3. Chemical shifts attribution of the species formed during the reaction of $[C_4MIm][PF_6]$ and $HCCOH^1$

product	¹⁹ F δ (ppm)	³¹ P δ (ppm)	
PF ₆	$-72.6 (d, J_{F-P} = 707 Hz)$	-144.3 (sept, $J_{P-F} = 707$ Hz)	
PO_3F^{2-}	-75.2 (d, $J_{\text{F-P}} = 911$ Hz)	-5.6 (d, $J_{P-F} = 911$ Hz)	
PO_2F_2	-83.3 (d, $J_{\text{F-P}} = 960$ Hz)	-15.9 (t, $J_{P-F} = 960$ Hz)	
$\mathrm{SiF_6}^{2-}$	-129.7 (s)		
BF_4	-150.8 (s)		
H_3PO_4		0	

1 Plakthotnyk, A. V.; Ernst, L.; Schmutzler, R. J. Fluorine Chem. 2005, 126, 27-31

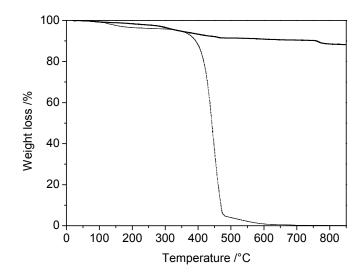


Figure S7. TGA of $[C_4MIm][BF_4]$ (dotted lines) and washed gel after extraction of $[C_4MIm][BF_4]$ (straight line) in CH₃CN