Supporting Information

Particle size and Structural Control of ZnWO₄ Nanocrystals via Sn²⁺ Doping for Tunable Optical and Visible Photocatalytic Properties

Yiguo Su, [†] Baoling Zhu, [†] Kai Guan, [†] Shushu Gao, [†] Li, Lv, [‡] Chunfang Du, [†] Liman

Peng, [†] Lichun Hou, [†] Xiaojing Wang*[†]

†College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner

Mongolia 010021, P. R. China

[‡]Chemical Engineering College of Inner Mongolia University of Technology, Hohhot,

Inner Mongolia 010021, P. R. China

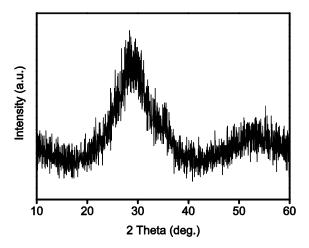


Figure S1 XRD pattern of Sn²⁺ doped ZnWO₄ with initial dopant concentration of 0.60.

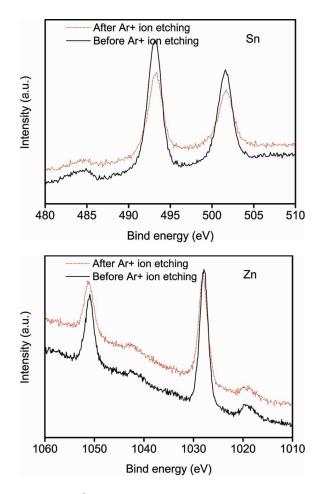


Figure S2 XPS spectra of Sn^{2+} doped $\mathrm{ZnWO_4}$ nanocrystals before and after Ar^+ ion etching.

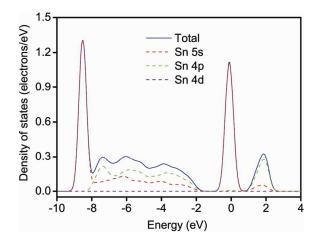


Figure S3 Density of states (DOS) of Sn in Sn²⁺ doped ZnWO₄.

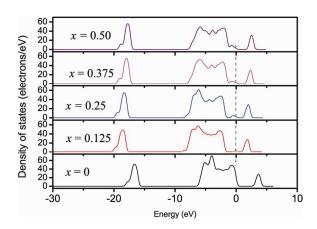


Figure S4 Density of states (DOS) of Zn_{1-x}Sn_xWO₄

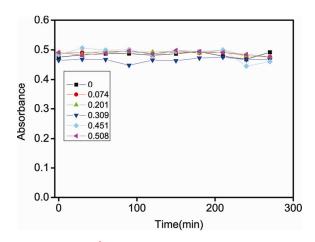


Figure S5 MO absorbance for Sn^{2+} doped $\mathrm{ZnWO_4}$ nanocrystals before illumination.

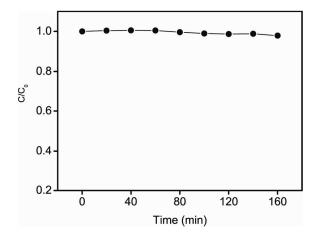


Figure S6 MO direct photodegradation as a function of irradiation time.

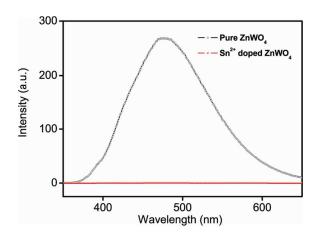


Figure S7 Emission spectra of pure $ZnWO_4$ and Sn^{2+} (Sn = 0.074) doped $ZnWO_4$ nanocrystals under 285 nm excitation.