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I. Implementation of solute polarization by MM atoms in MOPAC2009 

interfaced with molaris9.11 

In the present work all  the QM/MM simulations were performed using a development version of 

MOLARIS simulation package (MM program) and a development version of MOPAC2009
1
 

(QM program) which we modified to enable the QM/MM coupling described below. 

In this QM/MM approach, the electrostatic coupling is implemented according to earlier works
2,3

 

(See Eq. 34 of the main text). The implementation involved: 

Evaluation by the MM program of the electrostatic potential (ESP), vqc, at centers of the QM 

atoms: 

  
MM atoms

( ) 332
j

ij

q
vqc i

r
= ∑          (S1) 

Where i is the QM atom number, j is the MM atom number, rij is the distance between the atoms 

i and j, [vqc]=kcal/(mol·e) where e stands for the elementary charge.  

The QM program reads the supplied ESP from the file mol.in created by the MM program: 

first_line 

6    0     # of qmmm atoms, # of link atoms in Region I 

CL   -1.591010336   -3.497323620   -4.177329152  119.381953977  

C     0.623273531   -3.927769978   -4.243650888   88.802327810 

H     0.627631085   -3.831528682   -5.334074435   77.449540155 

H     0.737788528   -3.010768158   -3.634868517   83.899739734 

H     0.444587282   -4.863821218   -3.677635261   90.477795343 

CL    2.837655032   -4.254371189   -4.197078072  120.024810232 

 

The reading is activated by (DEBUG + MOL_QMMM(new) ) keywords, e.g.:  

PM6 1SCF CHARGE=-1 SINGLET GRAD LET XYZ DEBUG MOL_QMMM 

snapshot of MD step 0 
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CL    -1.5910103360  1   -3.4973236200  1   -4.1773291520  1 

C     0.6232735310  1   -3.9277699780  1   -4.2436508880  1 

H     0.6276310850  1   -3.8315286820  1   -5.3340744350  1 

H     0.7377885280  1   -3.0107681580  1   -3.6348685170  1 

H     0.4445872820  1   -4.8638212180  1   -3.6776352610  1 

CL     2.8376550320  1   -4.2543711890  1   -4.1970780720  1 

 

These new keywords make the QM program open the file mol.in. The first line is skipped; on the 

second line the first two numbers (QM atoms + link atoms) are read to determine the total 

number of atoms in the QM input. vqc(i) on the link atoms can be approximated by the ESP on 

the host QM atom. We add to the one-electron matrix elements the energy of interaction between 

the electron and MM atoms, -vqc(i): 

 E.g. to convert kcal/mol into eV: 

( ) ( )QM/MM QM

( )

23.0606

vqc i
h i h i= −         (S2) 

We have made these few changes to the QM program. The MM-program now reads energy (heat 

of formation), gradients and the solute charges (note that now the solute wavefunction is 

polarized and the calculated heat of formation and the solute charges correspond to the polarized 

solute). Thus, the QM/MM coupling electrostatic energy is included in the calculated heat of 

formation. However, the electrostatic QM/MM coupling in the energy gradients (both for QM 

and for MM atoms) is still needed to be calculated by the MM program using the read solute 

charges.   

Note that the MOPAC2009 program is developed and distributed by Stewart Computational 

Chemistry, and authors of this article have worked with the MOPAC2009 code under the non-
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distribution code-donor agreement. The MOLARIS
4
 program is developed in Arieh Warshel’s 

research group (laetro.usc.edu) and might be available on request.   

II. Computational details 

Simulation 1. FEP from PM3/MM to PM6/MM for the SN2 reaction in water 

between methyl chloride and chloride 

The FEP between the  2 QM/MM potentials, EREF (PM3/MM) and ETARG (PM6/MM) at the TS 

(transition state), was done between the potentials given by Eq. 16 and 17 of the main text. Note 

that the solute charges in these simulations are derived according to the scheme of Mulliken. The 

system was solvated by an 18 A sphere of water
5
 and  pre-equilibrated on the potential EREF. A 

harmonic constraint with K=100 kcal/(mol·A
2
) was used to contain sampling within the TS (ξ= 

d(C-Cl1) - d(C-Cl2); RC=0 here). We started from 41 independent MD trajectories which were 

propagated for 100,000 MD steps at 300 K in NVT ensemble (MD step size of 0.5 fs) on one of 

the mapping potentials given by: 

( ) PM3/MM PM6/MM1m m m CONSE E E Eλ λ= − + +        (S3) 

where  

QM/MM QM/MMpolar polar VdWE H E′= Ψ Ψ +        (S4) 

and with the weight of the potential ETARG being changed in the equal increments of 0.025 from 

0 to 1. Thus, the potentials in the adjacent windows are close which in turn guarantees good 

overlap between them and good FEP convergence. 
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The whole procedure was repeated for the simulation at the RS (reactant state) with the only 

difference that the sampling was contained at RC=-1.75. Note, however, that use of constraints 

on the RC here is solely for demonstration and testing purposes, since the RS is effectively 

sampled on the unbiased potential.   

Next, we process the MD trajectories to calculate the FEP. Each 10 MD steps we collected the 

following information: EREF, ETAR, the value of the constraining potential, ECONS, and the two 

distances, d(C-Cl1) and d(C-Cl2) for the QM subsystem. Next, the second half of each MD 

trajectory (5000 points per simulation window) for the RS was used in the analysis described 

below. The same procedure was repeated for the simulation at the TS. Two input files obtained 

in this way were processed by several computational techniques for evaluation of FEP as well as 

by the generalized FEP/US to get the free energy functions.  

Part I: FEP estimates by LRA, FEP and TDI 

LRA: 

( )1

2 REF TARG
LRA TARG REF TARG REFE E

G E E E E∆∆ = − + −         (S5) 

The 1-st and the 2-nd terms (averages of the energy gap between the reference potential (RP) and 

the target potential (TP), taken correspondingly on the MD trajectories propagated on the RP and 

on the TP) of Eq. S5. 

average FEP: 

1
1 1

1 2

1
ln exp ln exp

2
m m

n n
m m m m

FEP

m mE E

E E E E
G kT kT

kT kT

−
+ −

= =

 − −    ∆∆ = − − − − −        
∑ ∑  (S6)  
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of the forward FEP and the backward FEP which  are the 1-st and the 2-nd terms of Eq. S6 

n-steps LRA where each step of the full FEP is approximated by LRA: 

( )
1

1

1 1

1

1

2 m m

n
n

LRA m m m mE E
m

G E E E E
+

−

+ +
=

∆∆ = − + −∑       (S7) 

TDI (Thermodynamic Integration) with the trapezoid rule: 

( )
1

1

20

1

2 m m

n

TDI TARG REF TARG REFE E
m

G
G d E E E Eλ λ

λ −
=

∂
∆∆ = = − + − ∆

∂ ∑∫     (S8) 

The aforementioned techniques of Part I obtained from the trajectories generated in Simulation 1 

are plotted in Figure 2 of the main text (A) and (B). 

Next part of the analysis included: 

Part II. FEP/US, constructing the free energy functions 

The free energy profiles along ξ=d(C-Cl1)-d(C-Cl2) were constructed by: 

( ) ( ) i
i ln exp

m

m
m

E

E E
g G kT x

kT
ξ δ ξ

− ∆ = ∆∆ − −  
 

      (S9) 

Weight-averaged ∆gREF profile and the weight-averaged ∆gTARG profile over all points were 

obtained by averaging Eq. S9 over all mapping potentials (simulation frames) with the weighting 

coefficient: 

( )
( )
( )

( )j

i j

frames j

frames

N
g g

N

ξ
ξ ξ

ξ
∆ = ∆∑ ∑

        (S10) 
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where Nj(ξ) is the number of times MD visited a particular RC value, ξ, while propagating on the 

j-th mapping potential, and ∆gj is the free energy function estimate by Eq. S9 on the j-th mapping 

potential. 

Part III. Analysis of MD trajectories and of sampling efficiency 

In addition to the above analysis , we created the following histograms: 

The distribution of the energy gap between the RP and the TP was obtained by sorting the values 

from all MD trajectories. This analysis gives the most probable energy gap value, which is a 

rough estimate of the free energy difference for moving between the two potentials. The 

distribution of the difference d(C-Cl1)-d(C-Cl2) was also calculated. It shows how often the 

certain values of the RC were visited during the simulation. 

The corresponding results of Part III for Simulation 1 are plotted in Figure 3 of the main text. 

Simulation 1 was also repeated with a larger value of the force constant, K=1000, used to contain 

the sampling within a certain region of the RC.   

Simulation 2: PMF’s for PM3/MM, PM6/MM potentials 

In this series of simulations we used harmonic constraints on the RC to improve the MD 

sampling. Afterwards we combined the simulation windows and removed the bias potential 

using the WHAM
6
 program.  

We started with the PM3
7
/MM and PM6

8
/MM potentials (Eq. S4) with the QM/MM coupling 

scheme of Eq. (S2). The range of the Reaction Coordinate (RC) [ ]2.5,2.5ξ ∈ − defined as: 
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1 2( ) ( )d C Cl d C Clξ = − − −          (S11)  

was divided by the equal increment of ∆ξ=0.05 A into 101 simulation frames. To contain the 

sampling within a given simulation window (at the corresponding RC) we used harmonic 

constraints with the force constant of 100 kcal/(mol·A
2
): 

( )2

0CONS
E K ξ ξ= −           (S12) 

Starting from the optimized RS gas phase geometry (dipole complex of CH3Cl and Cl
-
) we 

changed the distances d(C-Cl1) and d(C-Cl2) thus moving the system to an approximate RC 

value. Next, the obtained geometries were equilibrated in the gas phase using the constraint of 

Eq. S12 for 4000 MD steps with 0.2 fs step size at 273 K. These equilibrated geometries were 

solvated with 18 A spheres of water; the whole system was equilibrated on the actual QM/MM 

potential with the corresponding constraint for 20000 MD steps (0.2 fs each) at 273 K. The list of 

non-bonded pair interactions was updated every 5 steps. Next the temperature was increased to 

300 K, and the step size was increased to 0.5 fs. The MD trajectories were propagated on the 

given surface for 50000 steps (with frequency of updating the non-bonded pair interactions equal 

to 10 steps). After 10000 MD steps we started collecting data for PMF calculations each 10 

steps, which were performed using the WHAM
6
 program. The PMF’s constructed for the 

PM3/MM potentials (with the charge derivation schemes by Mulliken and by the ESP-fitting) 

and for PM6/MM potential (with the Mulliken charge derivation) are given in Figure 5 of the 

main text.  

Simulation 3: FEP from EVB to PM3/MM 
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In this simulation we used the EVB potential as a RP and PM3/MM (Mulliken charges) as a TP. 

The parameters for the EVB potential are the refined parameters which can be found elsewhere
9
. 

In this work we just used a slightly different EVB off-diagonal element: 

( )2

12
38exp 1.05H ξ= − ⋅           (S13) 

also, the bond-angle coupling was on in all calculations and the C…Cl- interactions were 

additionally described by the harmonic constraint in both EVB states (this energy was included 

in the EVB diabatic states in kcal/mol): 

( )( ) ( )2
... 5 3E r C Cl r− = −           (S14) 

The EVB RP is given by: 

2 2

1 1 2 2 1 2 122EVBE c E c E c c H= + −          (S15) 

while the PM3/MM TP is given by Eq. S4. We used a harmonic constraint at the RC=-1.5 

(which corresponds to the RS) to check the effect of the constrained on the FEP at a particular 

RC with the LRA treatment. Other simulation details were similar to the ones described in 

Simulation 1. At the EVB TS, we found it more efficient to constraint the eigenvectors 

component to be equal (which means mixing 2 EVB diabatic states equally, note that for the 

EVB TS E1=E2 and thus c1=c2), i.e.: 

1 2 12

1 1

2 2
EVBE E E H≠ = + −          (S16) 
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That is, we carried out the perturbation from the potential given by Eq. S16 to the PM3/MM 

potential, with sampling still being contained within the TS by the harmonic constraint at RC=0 

as in Simulation 1.  

The data points were collected every 10 MD steps after discarding the first 50000 steps for 

equilibration. While for the trajectory propagated at the RS we used exactly the same formalism 

as described in Simulation 1 (created the input file 41x5000 points, and performed Part I-Part III 

analysis of the trajectories), for the TS we had to modify the procedure of constructing the free 

energy functions. Namely, we  calculated the actual EVB adiabatic energy (since, while 

propagating the MD trajectory on the potential of Eq. S16, E1 can be different from E2 even 

when the eigenvector components are forced to be equal): 

( )( )2 2

1 2 1 2 12

1
4

2
EVBE E E E E H

 = + − − +  
       (S17) 

Subsequently, we constructed the free energy functions by Eq. S9 and S10.  

Note that the results displayed in Figure 6 of the main text were obtained by Eq. S5-S8 for both 

FEP (i.e. ETARG is given by Eq. S16 at the TS), as were the results presented in Figure 7. 

However, the results displayed in Figure 8 were obtained by completely removing the actual bias 

potential which is just the harmonic constraint at the RS, but additionally includes the difference 

between the Eq. S16 and Eq. S17 for the TS. In Figure 9 the free energy function at the TS for 

the potential of Eq. S16 is given for comparison (i.e. only the bias due to the harmonic constraint 

was removed). 
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Finally, to construct a PMF for the EVB potential (the PMF for the PM3/MM potential was 

constructed in Simulation 2) we performed an EVB FEP/US calculation. That is we used the 

EVB mapping potentials to sample the EVB potential along the reaction coordinate defined as 

the energy gap between the EVB diabatic states, E1 and E2, also frequently called the product 

state and the reactant state: 

( ) 1 21mE E Eλ λ= − +           (S18) 

In total we generated 41 simulation frames, and ran them sequentially, for 50000 MD steps each 

(0.5 fs step size, 300K, non-bonded pair list updated every 5 steps, 18 A simulation sphere of 

water). Before the first EVB frame we let the system equilibrate for 10000 steps.  

For each frame after the first 10000 steps we collected data (each 10 steps) to construct the free 

energy function using the FEP/US approach (4000 per frame). Then the data points were 

processed using Eq. S9 what gave the results reported in Figure 11 of the main text. 

Fitting of Γ-functions to the Potential Energy Scans 

First, we performed the potential energy scan along the RC using the QM program for the methyl 

chloride and chloride system. The scans were carried out at PM3, PM6 level of theory in the gas 

phase and in the COSMO implicit solvent model.   

Second, we used the approach described in Simulation 2, which involved propagating 101 MD 

trajectories on the EVB potential in the gas phase with additional harmonic constraints with the 

force constants, K, of 70 kcal/(mol·A
2
) imposed on the equally spaced values of the RC in the 

range [ ]2.5,2.5ξ ∈ − . Then we constructed the PMF’s for the EVB potentials (using the WHAM 
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approach) with the constraints of the Eq. S14 acting in the full range of the RC and in the range 

where the constraints were imposed only within the RC region of [ ]1.0,1.0ξ ∈ − . 

Finally, the obtained PES’s and the PMF were fitted by the sums of Gaussians by searching the 

minimum of the least square functions given in Eq. 25 of the main text. We found that it was 

convenient to perform the fitting with a mathematical software package Maple9.5, which gives 

the analytical derivatives of Gaussians (which were subsequently used in the optimal steepest 

descent minimization approach to determine the parameters of the Gaussian functions), another 

advantage being a convenient graphical user interface. See the script example given below. 

The data points of the PES’s and of the PMF used for fitting, as well as the derived Γ-functions 

(the sum of the Gaussian functions approximating the corresponding energy functions obtained 

in the fitting procedure) are given in Figure 11 of the main text. Additionally, the parameters of 

Gaussians are reported in Table 1 of the main text.  

Simulation 4: Gas-phase EVB PMF for the original EVB potential and for the 

refined EVB potential 

In this simulation, we additionally calculated the PMF for the refined EVB potential in the gas 

phase (the PMF for the original EVB potential and the computational details are described in 

Fitting of Γ-functions to the Potential Energy Scans): 

PM6EVB EVB EVBE E′ = − Γ + Γ          (S19) 

The comparison of the free energy functions for the original EVB potential (S15) and for the 

refined EVB potential (S19) is given in Figure 12. 
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Simulation 5: AC solvation free energies  

The PM3 optimized gas-phase geometries were first evaluated  for both the RS and for the TS. 

Next we calculated the work of charging the solute by Eq. S6 (to get the solvation free energies 

for the TS and for the RS reported in Table 2 of the main text) from Q0=0 to Q(RS) and Q(TS) 

by performing  the FEP with 26 mapping potentials of Eq. S18, where  

 1 VdWE E=            (S20) 

2 332
i j

VdW

ij

Q q
E E

r
= + ∑          (S21) 

That is, we propagated 26 MD trajectories on the RS (and for the TS) with the frozen solute 

coordinates. After the initial equilibration of the solute with zero charges in an 18 A sphere of 

water for 20000 MD steps (1 fs, 300 K), each trajectory was sequentially propagated for 20000 

MD steps (1 fs, 300 K).  

 Q0 Q(RS)  Q(TS) 

Cl(L) 0.0 -0.1706  -0.7441 

C 0.0  -0.4322  0.1407 

H 0.0  0.1974  0.1160 

H 0.0   0.1969 0.1158 

H 0.0   0.1972 0.1157 

Cl(A) 0.0 -0.9888  -0.7441 

 

Also for the same geometries we calculated the solvation free energy by the COSMO approach 

as implemented in the QM program. 

The obtained results are reported in Table 2 of the main text. 
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Simulation 6: The PMF for COSMO and its improvement by the with Γ-

COSMO 

We started by propagating 101 independent MD mapping trajectories for the MeCl +Cl- system 

in the gas phase   The mapping potentials defined with the equally spaced coupling parameter 

[ ]0.0,1.0λ∈  

( )1m m RS m PSE E Eλ λ= − +          (S22) 

where 

( )2

RS QM QM RS
E E K ξ ξ= −Γ + −         (S23) 

( )2

PS QM QM PS
E E K ξ ξ= −Γ + −  

QM=PM3+COSMO; K=5 kcal/(mol·A
2
); 2.5RS PS Aξ ξ= − = −  RC is defined by Eq. S11 

Each trajectory was initially equilibrated during  20000 MD steps (0.3 fs step size, 273 K) and 

then was propagated for 100000 steps (1 fs step size, 300K), during the final 75000 steps the data 

points were collected ,each 30 steps, for the subsequent free energy calculations. Additionally, 

we used a harmonic constraint on Cl1-C-Cl2 angle (at π rad with a force constant, K=15 

kcal/(mol·rad
2
)). All the computer experiments were performed in the gas phase, while the 

solvent effect was taken into account by the implicit COSMO model as implemented in 

MOPAC2009. 
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In the free energy calculations we used Eq. S9 where Em is given by Eq. S22 and 

i=PM3+COSMO (PM3 potential with the COSMO solvent, ε=78.4). 

To get the PM3/MM free energy function for the RC we used EQM=EPM3/MM given by Eq. S4. 

The simulation protocol was following. First, by changing d(C-Cl1) and d(C-Cl2) we moved the 

system near the region of interest of the RC. Subsequently, we relaxed the system on each 

potential specified by Eq. S22 in the gas phase with PM3+COSMO for 25000 MD steps (0.3 fs 

stepsize, 273 K, K=10 in Eq. S23). At the next step we solvated the relaxed geometry by an 18 A 

sphere of water molecules and relaxed on the PM3/MM potential (with the ESP-derived solute 

charges) for 25000 MD steps (at 273 K, with a step size 0.3 fs and the frequency of updating the 

non-bonded pair list of 5, K=10). Finally, we increased the temperature to 300K and ran a 

100000 steps MD trajectory with a step size of 1 fs (10 nonbond update frequency, K=10) on the 

same potential. The data points for the free energy calculations were collected each 30 steps for 

the last 2/3 of the trajectory.  In the free energy calculations we used Eq. S9 where Em is given by 

Eq. S22 and i=PM3/MM with the ESP-derived solute charges. 

The calculated free energy profiles are given in Figure 13 of the main text. Additionally, we 

explored the sampling efficiency for the PM3/MM and PM3+COSMO run described here by the 

approach described in Simulation 1 (Part III). That is, we constructed the distribution of the 

sampled RC values for the point used in the free energy analysis. See Figure 14 of the main text. 

Simulation 7: The free energy functions obtained using the EVB-type solvent 

driving potentials. Refining a MO-based QM/MM reference potential   
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The approach of Eq. S22 and S23 was extended by including an additional term in the mapping 

potential: 

( )
( )

sS 12 6
1 1

kQM MM
i j ij ij

k

i j ij ij ij

Q q A B
E

r r r= =

 
= + −  

 
∑∑Q         (S24) 

This was done by using : 

( ) ( ) ( )( ) ( ) ( )( )PM3,gas PM3,gas 1map CONS RS sS RS CONS PS sS PSE E E E E Eλ ξ λ ξ= −Γ + − + + +Q Q
 

(S25) 

where QRS and QPS are the vectors of the QM charges at the RS and at the PS (ESP-charges for 

the PM3 gas-phase optimized RS): 

 ClL C H H H ClA 

( )PM3 RSQ  -0.180 -0.382 0.183 0.183 0.183 -0.987 

( )PM3 PSQ  -0.987 -0.382 0.183 0.183 0.183 -0.180 

 

First, by changing d(C-Cl1) and d(C-Cl2) we moved the system to an approximate value of the 

RC. Then we relaxed the system on each potential derived according to Eq. S22 in the gas phase 

with PM3 gas phase potential for 2000 MD steps (0.2 fs stepsize, 273 K, K=10 in Eq. S23). 

Second, we solvated the relaxed geometry by an 18 A sphere of water molecules and relaxed on 

the potential given by Eq. S25 for 10000 MD steps (at 273 K, with a step size 0.2 fs and the 

frequency of updating the non-bonded pair list of 5, K=10). Finally, we increased the 

temperature to 300K and ran a 50000 steps MD trajectory with a step size of 1 fs (10 nonbond 

update frequency, K=10) on the same potential. The data points for the free energy calculations 

were collected each 10 steps for the final 3/5 of the trajectory.  
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In the free energy calculations we used Eq. S9 where Em is given by Eq. S25 and the PM3/MM 

potential is approximated by the classically coupled with MM, according to Eq. S24, gas phase 

PM3 (solute charges are derived by Mulliken) 

( )PM3,gas sS PM3,gasi
E E E= + Q          (S26) 

The results of the free energy calculation are presented in Figure 15 (A) where the comparison 

with the PM3/MM potential obtained in Simulation 2 is made. 

In the next step we repeated the free energy calculations (with the same data generated on 

potential of Eq. S25)  using for the  Ei of Eq. S9 the following expression : 

( )PM3,gas sS PM3,gas PM3,gas PM6,gasi
E E E= + −Γ + ΓQ       (S27) 

The results of this free energy calculation are presented in Figure 15 (B) where the comparison 

with the PM6/MM potential obtained in Simulation 2 is also made. 

Simulation 8: Refinement of the EVB reference potential  

Finally, we refined the EVB potential (used in Simulation 3) in the following way: 

( )( ) ( )( )2 2

, 1 sS PM3+COSMO 2 sS PM3+COSMO EVB,gas PM3,gasEVB EVB gasE E c E RS c E PS′ = + + −Γ +ΓQ Q  (S29) 

( )( ) ( )( )2 2

, 1 sS PM6+COSMO 2 sS PM6+COSMO EVB,gas PM6,gasEVB EVB gasE E c E RS c E PS′′ = + + −Γ +ΓQ Q  (S30) 

where EEVB,gas describes the intra-interactions within the solute of the EVB potential.  

Mulliken charges for the PM3+COSMO optimized RS: 
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 ClL C H H H ClA 

( )PM3+COSMO RSQ  -0.137 -0.067 0.066 0.066 0.066 -0.994 

( )PM3+COSMO PSQ  -0.994 -0.067 0.066 0.066 0.066 -0.137 

 

Mulliken charges for the PM6+COSMO optimized RS: 

 ClL C H H H ClA 

( )PM6+COSMO RSQ  -0.226 -0.319 0.181 0.181 0.181 -0.998 

( )PM6+COSMO PSQ  -0.998 -0.319 0.181 0.181 0.181 -0.226 

 

The EVB FEP/US calculations were performed  using the mapping potentials: 

( ) 1 2 EVB,gas PM3,gas1mE E Eλ λ= − + − Γ + Γ        (S31) 

and 

( ) 1 2 EVB,gas PM6,gas1mE E Eλ λ= − + − Γ + Γ        (S32) 

Each simulation involved 41  frames, run sequentially, for 50000 MD steps each (0.5 fs step size, 

300K, non-bonded pair list updated every 5 steps, 18 A simulation sphere of water). Before the 

first EVB frame we equilibrated the system for 10000 steps.  

For each frame we collected data (each 10 steps ,after the first 10000 steps ) to construct the free 

energy function using FEP/US approach (4000 points per frame). The data points were processed 

using Eq. S9 for Ei and Em given by Eq. S29 and S31, and for Ei and Em given by Eq. S30 and 

S32. The obtained free energy functions are reported in Figure 16 of the main text, where the 

comparison with the original EVB potential is also given.  

Additional notes 
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Typically there are about 800 solvent molecules within the distance of 18.0 A from the solute 

Parameters for water: 

water                                     !name of the first solvent 

0.9897                                    !density (gram/cm**3) 

0.99 0.99                                 !bond lenth for bond 1, bond 2 

375.0 375.0                               !force constant for bond 1, bond 2 

1.911                                     !angle between bond 1 and bond 2 

60.0                                      !force constant for angle 

00861.440  026.040  016.000               !VDW a,b and mass for OW 

00000.420  000.575  001.000               !VDW a,b and mass for W1 

00000.420  000.575  001.000               !VDW a,b and mass for W2 

-0.82 0.41 0.41                           !charges for the three united atoms 

Maple9.5 script to fit the PES with 3 Gaussian functions 

#input file format: RC Energy  

f := fopen( "PM3_PES.csv", READ ): 

t1:=readdata(f,[float,float]): 

fclose(f): 

#INPUT PARAMETERS 

npoints:=130;  #number of point in PES 

A0:=-3.8: print("A=",A0); #guess value for the height of Gaussians 

B0:=5.8: print("B=",B0); 

C0:=0:  

R1:=-1.0:  #values for the centers of Gaussians 

R2:=0: 

R3:=1.0: 

niter:=20: 

#THE END 
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temp:=C0: 

C0:=temp+A0: 

fvalue:=array(1..npoints+1): 

counter:=array(1..npoints+1): 

Eref:=array(1..npoints): 

Efit:=array(1..npoints): 

xi:=array(1..npoints): 

Eref:=array(1..npoints): 

print("PASS1"); 

for j from 1 to npoints by 1 do 

 xi[j]:=t1[j,1]; 

 Eref[j]:=t1[j,2]-t1[1,2]; 

end do: 

a0:=0.5: 

b0:=1.0: 

g0:=0.5: 

print("PASS2"); 

Ef := proc( x, alpha, beta, gamma , A1, B1, C1) 

 description "evaluate _PDMTD"; 

 A1*exp(-alpha*(x-R1)^2)+B1*exp(-beta*(x-R2)^2)+C1*exp(-gamma*(x-R3)^2) 

end proc: 

 

print("TROUBLE? npoints=",npoints,"i2=",i2); 

F:=sum((Eref[i2]-Ef(xi[i2],a,b,g,A,B,C))^2,i2=1..npoints); 

subs(a=a0, b=b0, g=g0, A=A0, B=B0, C=C0, F): 

evalf(%); 

dFa:=diff(F,a): 

dFb:=diff(F,b): 

dFg:=diff(F,g): 

dFA:=diff(F,A): 

dFB:=diff(F,B): 
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dFC:=diff(F,C): 

 

print("PASS3"); 

counter[1]:=1: 

fvalue[1]:=subs(a=a0, b=b0, g=g0, F): 

for iter from 1 to niter do 

 F_old:=subs(A=A0, B=B0, C=C0, a=a0, b=b0, g=g0, F): 

 Gr_a:=subs(A=A0, B=B0, C=C0, a=a0, b=b0, g=g0, dFa): 

 Gr_b:=subs(A=A0, B=B0, C=C0, a=a0, b=b0, g=g0, dFb): 

 Gr_g:=subs(A=A0, B=B0, C=C0, a=a0, b=b0, g=g0, dFg): 

 Gr_A:=subs(A=A0, B=B0, C=C0, a=a0, b=b0, g=g0, dFA): 

 Gr_B:=subs(A=A0, B=B0, C=C0, a=a0, b=b0, g=g0, dFB): 

 Gr_C:=subs(A=A0, B=B0, C=C0, a=a0, b=b0, g=g0, dFC): 

 temp_a:=a0: temp_b:=b0; temp_g:=g0: temp_A:=A0: temp_B:=B0: temp_C:=C0: 

 

 ss:=1.0e-7: 

# F_new:=F_old+10: 

 for k from 1 to 7 while (k < 2 or F_new < F_old) do 

  if (k > 1) then  

   F_old:=subs(A=A0, B=B0, C=C0, a=a0, b=b0, g=g0, F):  

   temp_a:=a0: temp_b:=b0; temp_g:=g0: temp_A:=A0: temp_B:=B0: temp_C:=C0: 

  end if: 

  temp_ss:=ss: 

  ss:=temp_ss*10: 

  a0:=temp_a - ss* Gr_a: 

  b0:=temp_b - ss* Gr_b: 

  g0:=temp_g - ss* Gr_g: 

  A0:=temp_A - ss* Gr_A: 

  B0:=temp_B - ss* Gr_B: 

  C0:=temp_C - ss* Gr_C: 

  F_new:=subs(A=A0, B=B0, C=C0, a=a0, b=b0, g=g0, F): 
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  print("k",k,"F_old",F_old,"Fnew",F_new); 

 end do: 

 a0:=temp_a: b0:=temp_b; g0:=temp_g: A0:=temp_A: B0:=temp_B: C0:=temp_C: 

  

 print("iter",iter,"ss",ss,"F",F_old,"alpha",a0,"beta",b0,"gamma",g0,"A",A0,"B",B0,"C",C0); 

 counter[iter+1]:=iter: 

 fvalue[iter+1]:=F_old: 

end do: 

print("PASS4"); 

xylist := zip ( (x,y) -> [x,y], counter, fvalue): 

plot(xylist,style=point,symbol=cross,color=black,title="STEEPEST DESCENT MINIMIZATION CURVE"); 

print("PASS5"); 

for i2 from 1 to npoints do 

 Efit[i2]:=Ef(xi[i2],a0,b0,g0,A0,B0, C0): 

end do: 

xylist2 := zip ( (x,y) -> [x,y], xi, Efit); 

xylist3 := zip ( (x,y) -> [x,y], xi, Eref); 

G0:=plot(xylist2,style=point,symbol=cross,color=green,title="PDMTD"): 

G1:=plot(xylist3,style=point,symbol=cross,color=red,style=point): 

 

with(plots): 

display({G0,G1}); 
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