Supporting Information

Isobutene protonation in H-FAU, H-MOR, H-ZSM-5 and H-ZSM-22

Cuong M. Nguyen, Bart A. De Moor, Marie-Françoise Reyniers*, Guy B. Marin

Laboratory for Chemical Technology, Ghent University, Krijgslaan 281 S5, B-9000 Gent, Belgium.

*: Corresponding author Tel: +32 (0)9 264 4516 Fax: +32 (0)9 264 4999 E-mail: <u>MarieFrancoise.Reyniers@ugent.be</u>

PW91+D//**PW91** *versus* **PBE-D**//**PBE-D energies. Table S1** summarizes optimized unit cell parameters of H-FAU, H-MOR, H-ZSM-5 and H-ZSM-5 using the PW91 method. **Tables S2 and S3** show the physisorption, activation and chemisorption electronic energies of isobutene in H-FAU, H-MOR, H-ZSM-5 and H-ZSM-22, obtained using PW91+D//PW91 and PBE-D//PBE-D. The DFT contributions are denoted as PW91//PW91 and PBE//PBE-D, while the dispersion contributions are denote as D//PW91 and D//PBE-D.

The DFT contributions, i.e. PW91//PW91 and PBE//PBE-D, in all physisorption, activation and chemisorption energies are very similar in the PW91 and PBE-D calculations, as maximum differences of only 7 kJ mol⁻¹ are noticed. Also the dispersion (D) contributions, i.e. D//PW91 and D//PBE-D, are nearly identical for the PW91 and PBE-D calculations. This results in total energies, respectively PW91+D//PW91 and PBE-D//PBE-D, that differ no more than 8 kJ mol⁻¹.

Based on this, it is concluded that the add on dispersion correction of PW91 energies with a dispersion term proposed by Grimme¹ for the PBE functional (PW91+D//PW91), yields practically the same physisorption, activation and chemisorption energies as PBE-D//PBE-D does.

Table S4 shows the criteria used to calculate the full or partial Hessian. In case the standard optimization settings led to a bad conditioned Hessian due to the presence of spurious frequencies, a re-optimization and subsequent frequency calculation was performed with

Supporting Information Isobutene protonation: Page 1 of 13

tighter settings for plane wave energy cutoff E_{cutoff} , the SCF loop convergence criterion ΔE_{SCF} or the maximum force.

Table S5 shows estimates for physisorption enthalpies of isobutene ($\Delta H^0_{phys, isobutene}$) in H-FAU and H-MOR.

$$\Delta H^{0}_{phys,isobutene} = \Delta H^{0}_{phys,isobu \tan e} + E_{\pi-H}$$
(1)

in which $\Delta H^0_{phys, isobutane}$ is the physisorption enthalpy of isobutane taken from early work by Eder et al.² and $E_{\pi-H}$, the interaction energy between the alkene double bond and the Brønsted acid site, was estimated to amount to 25 kJ mol⁻¹.^{3,4}

Table S6 shows the energy to enthalpy correction, which comprises ZPVE and thermal contributions (see text).

 Table S7 shows the standard physisorption, chemisorption, activation and protonation enthalpies.

Figure S1 shows $\ln(K_{phys})$ and $\ln(K_{chem})$ as function of the reciprocal of temperature; data are grouped per isobutene complex and on every plot the results for the different zeolites are presented. This allows to evaluate in which zeolite the formation of a given physisorption or chemisorption complex is thermodynamically most favored. The values for $\ln(K_{phys})$ and $\ln(K_{chem})$ are calculated according to:

$$\ln(K_{ads}) = -\frac{\Delta H_{ads}^0 - T\Delta S_{ads}^0}{RT}$$
(2)

in which "ads" may be "phys" or "chem". Based on this equation, it is clear that the contribution of ΔS_{ads}^0 to the value for the equilibrium coefficient becomes more important with increasing temperature. A higher value for K_{phys} or K_{chem} implies a higher stability of the physisorption or chemisorption complex.

For the physisorption of isobutene, $\ln(K_{phys})$ is calculated based on the values for ΔH_{phys}^0 and ΔS_{phys}^0 for respectively **I-p**, **I-t** and the average of both. The latter case is here discussed: at low temperatures the physisorption preference increases in the order: H-FAU < H-MOR < H-ZSM-5 < H-ZSM-22. This order results from the stronger adsorption in the zeolites with smaller pores, due to the higher van der Waals stabilization; in other words, the enthalpic

Supporting Information Isobutene protonation: Page 2 of 13

contribution is decisive at low temperatures. At higher temperatures, entropic contributions become more important, resulting in an inverse order: due to the lower entropy losses in H-FAU compared to H-MOR, H-ZSM-5 and H-ZSM-22, physisorption becomes most preferred in this zeolite.

For isobutoxy III-p, $\ln(K_{chem})$ increases in the order: H-FAU < H-MOR < H-ZSM-22 ≤ H-ZSM-5 in the whole temperature range; as variations of ΔS_{chem}^0 are relatively small in the various zeolites, this order accords to the variations in ΔH_{chem}^0 among the different zeolites. For t-butoxy III-t, $\ln(K_{chem})$ increases in the order: H-ZSM-22 < H-FAU ≈ H-MOR < H-ZSM-5. The lower stability of t-butoxy in H-ZSM-22 results from the presence of strong steric repulsion and is reflected in the value for ΔH_{chem}^0 . Also, the highest entropy loss is calculated for t-butoxy formation in H-ZSM-22.

The stability of the t-butyl carbonium ions **IV-t** is mainly determined by the variations for ΔH_{chem}^0 among the different zeolites. As such the stability increases in the order: H-MOR < H-ZSM-5 < H-ZSM-22 in the whole temperature range.

Figure S2 shows ΔG^0 versus T plots accounting for an ad hoc SIC error of 40 kJ mol⁻¹ for the t-butyl carbenium ion; this is discussed in the text.

Composite protonation rate coefficient account for the influence of the physisorption of gas phase isobutene:

$$k_{prot/comp} = k_{prot} \cdot K_{phys}$$

$$= \frac{k_B T}{h} \exp\left(\frac{\Delta S_{act}^0}{R}\right) \exp\left(-\frac{\Delta H_{act}^0}{RT}\right) \left[\exp\left(\frac{\Delta S_{phys}^0}{R}\right) \exp\left(-\frac{\Delta H_{phys}^0}{RT}\right)\right]$$
(3)
$$= A_{prot/comp} \exp\left(-\frac{E_{prot/comp}^{\#}}{R}\right)$$

in which composite pre-exponential factor and composite activation energy are:

$$E^{\#}_{\text{prot/comp}} = E^{\#}_{\text{prot}} + \Delta H^{0}_{\text{phys}}$$
⁽⁴⁾

$$\ln(A_{\text{prot/comp}}) = \ln(A_{\text{prot}}) + \frac{\Delta S_{\text{phys}}^0}{R}$$
(5)

The reverse deprotonation rate coefficient of chemisorbed III-t/IW-t can be expressed as:

Supporting Information Isobutene protonation: Page 3 of 13

$$k_{dep} = \frac{k_B T}{h} \exp\left(\frac{\Delta S_{act/dep}^0}{R}\right) \exp\left(-\frac{\Delta H_{act/dep}^0}{RT}\right)$$

= $A_{dep} \exp\left(-\frac{E^{\#}_{dep}}{R}\right)$ (6)

Activation entropy (X=S) and activation enthalpy (X=H) for the deprotonation of IIIt/IW-t are calculated as:

$$\Delta X^{0}_{act/dep} = X_{II-t} - X_{III-t/IV-t}$$
⁽⁷⁾

Hence, the composite protonation equilibrium coefficient is defined as:

$$K_{prot/comp} = \frac{k_{prot,comp}}{k_{dep}}$$
(8)

Table S1. Optimized unit cell parameters for H-FAU, H-MOR, H-ZSM-5 AND H-ZSM-22 from periodic DFT calculations using the pw91 functional. Also, deprotonation energies (ΔE_{DP} , kJ mol⁻¹) and entropies (ΔS_{DP} , J mol⁻¹ K⁻¹) obtained using the QM-POT program (MP2//B3LYP:GULP) are presented.

	H-FAU	H-MOR	H-ZSM-5	H-ZSM-22
<i>a</i> / pm	1740.05	1834.55	2047.22	1132.93
<i>b</i> / pm	1736.21	2041.26	2010.87	1130.77
<i>c</i> / pm	1742.39	1506.58	1357.58	1542.76
α/ο	59.88	89.99	89.97	90.14
β/°	59.82	89.90	89.88	90.07
γ/°	59.87	90.03	89.99	77.04
FD ^a / Tnm ⁻³	13.3	17.0	18.4	18.1
density				
ΔE_{DP}	1181	1211	1210	1210
ΔS_{DP}	95	93	85	84
	~ ~ ~			

^aFD: framework density values of zeolites taken from ref 1.

Table S2. PW91+D//PW91 physisorption, activation and chemisorption electronic energies for isobutene in H-FAU, H-MOR, H-ZSM-5 and H-ZSM-22. The separate contributions (x//PW91) to the total energy, i.e. the DFT and the dispersion contributions are also indicated.

[kJ mol ⁻¹]		H-MOR			H-ZSM	H-ZSM-5			H-ZSM-22			
x//PW91 ⁽¹⁾	PW91	D	PW91+D	PW91	D	PW91+D	PW91	D	PW91+D	PW91	D	PW91+D
$\Delta E_{phys,I-p}$	-34	-40	-75	-37	-53	-89	-34	-54	-88	-17	-76	-94
$\Delta E_{phys,I\text{-}t}$	-40	-36	-76	-30	-50	-80	-31	-60	-91	-27	-72	-100
$\Delta E_{act,II-p}$	104	-3	101	119	-9	110	111	-6	105	88	0	88
$\Delta E_{act,II-t}$	40	-9	31	23	2	24	35	-5	30	15	1	15
$\Delta E_{chem,III-p}$	-28	-44	-72	-26	-54	-80	-43	-60	-103	-22	-78	-101
$\Delta E_{chem,III-t}$	-16	-60	-76	-11	-69	-80	-19	-76	-95	15	-91	-77
$\Delta E_{chem,IV-p}$	(2)	(2)	(2)	-11	-48	-59	-15	-57	-72	-20	-72	-92

(1) x is equal to "PW91", "D" or "PW91+D"

(2) not stable

Supporting Information Isobutene protonation: Page 6 of 13

[kJ mol ⁻¹]	H-FAU	J		H-MO	H-MOR			H-ZSM-5			H-ZSM-22		
x//PBE-D ⁽¹⁾	PBE	D	PBE-D	PBE	D	PBE-D	PBE	D	PBE-D	PBE	D	PBE-D	
$\Delta E_{phys,I-p}$	-27	-47	-73	-32	-57	-88	-29	-57	-87	-12	-79	-91	
$\Delta E_{phys,I-t}$	-36	-41	-77	-24	-53	-77	-24	-64	-88	-24	-73	-97	
$\Delta E_{act,II-p}$	104	1	105	118	-4	114	111	-2	110	93	3	96	
$\Delta E_{act,II-t}$	41	-3	38	26	5	30	32	3	34	16	3	19	
$\Delta E_{chem,III-p}$	-24	-47	-70	-23	-57	-80	-43	-63	-106	-17	-81	-98	
$\Delta E_{chem,III-t}$	-12	-62	-74	-6	-71	-78	-13	-76	-89	20	-93	-73	
$\Delta E_{chem,IV-p}$	(2)	(2)	(2)	-5	-55	-60	-9	-63	-72	-15	-75	-90	

Table S3. PBE-D//PBE-D physisorption, activation and chemisorption electronic energies for isobutene in H-FAU, H-MOR, H-ZSM-5 and H-ZSM-22. The separate contributions (x//PBE-D) to the total energy, i.e. the DFT and the dispersion contributions are indicated.

(1) x is equal to "PBE", "D" or "PBE-D"

(2) not stable

Supporting Information Isobutene protonation: Page 7 of 13

	H-FAU			H-MO	H-MOR			H-ZSM-5			H-ZSM-22		
	E_{cutoff}	ΔE_{SCF}	Max force	Ecutoff	ΔE_{SCF}	Max force	E_{cutoff}	ΔE_{SCF}	Max force	Ecutoff	ΔE_{SCF}	Max force	
	[eV]	[eV]	[eV/Å]	[eV]	[eV]	[eV/Å]	[eV]	[eV]	[eV/Å]	[eV]	[eV]	[eV/Å]	
zeolite	400	10^{-8}	0.010	400	10^{-8}	0.010	400	10^{-8}	0.010	400	10-8	0.010	
Phys I-p	400	10^{-8}	0.015	400	10^{-8}	0.020	400	10^{-8}	0.020	600	10^{-10}	0.015	
Phys I-t	600	10^{-8}	0.015	400	10^{-8}	0.015	400	10^{-8}	0.020	600	10-8	0.020	
TS II-p	400	10^{-10}	0.040	400	10^{-8}	0.040	400	10^{-8}	0.040	400	10 ⁻⁸	0.040	
TS II-t	400	10^{-8}	0.040	400	10^{-8}	0.040	400	10^{-8}	0.040	400	10^{-8}	0.040	
Chem III-p	400	10^{-10}	0.010	400	10^{-8}	0.020	400	10^{-8}	0.020	400	10^{-8}	0.020	
Chem III-t	400	10^{-8}	0.015	400	10^{-8}	0.020	400	10^{-8}	0.020	400	10^{-8}	0.020	
Chem IV-t	-	-	-	400	10 ⁻⁸	0.020	400	10 ⁻⁸	0.015	400	10 ⁻⁸	0.015	

Table S4. Criteria used for the frequency calculations on investigated isobutene complexes in H-FAU, H-MOR, H-ZSM-5 and H-ZSM-22. The plane wave energy cutoff E_{cutoff} , the SCF loop convergence criterion ΔE_{SCF} , and the maximum force on the atoms are mentioned.

Supporting Information Isobutene protonation: Page 8 of 13

Table S5. Estimates of physisorption enthalpies are compared with PW91//PW91-D physisorption energies of isobutene in H-FAU and H-MOR.

type	Si/Al	$\frac{\Delta H^0_{phys / isobutane}}{kJ mol^{-1}}$	$\frac{\Delta H^0_{\ phys / \ isobutene}}{kJ \ mol^{-1}}$
sim	95		-76
exp	3	-40	-65
1			
sim	95		-80
exp	10	-52	-77
	type sim exp sim exp	type Si/Al sim 95 exp 3 sim 95 exp 10	type Si/Al $\Delta H_{phys/isobutane}^{0}$ kJ mol ⁻¹ sim 95 exp 3 -40 sim 95 exp 10 -52

Table S6. Sum of the ZPVE and thermal contributions to the enthalpy (Δ (E \rightarrow H)), at 300 K.

[kJ mol ⁻¹]	H-FAU	H-MOR	H-ZSM-5	H-ZSM-22
$\Delta(E \rightarrow H)_{phys,I-p}$	0	1	0	1
$\Delta(E \rightarrow H)_{phys,I-t}$	1	1	0	-1
$\Delta(E \rightarrow H)_{act,II-p}$	-2	-2	-3	-4
$\Delta(E \rightarrow H)_{act,II-t}$	-3	-8	-2	-9
$\Delta(E \rightarrow H)_{\text{chem,III-p}}$	13	13	12	12
$\Delta(E \rightarrow H)_{\text{chem,III-t}}$	9	9	8	8
$\Delta(E \rightarrow H)_{\text{chem,IV-p}}$	(1)	-6	-6	-7

(1) not stable

	[kJ mol ⁻¹]	$\Delta H^{0}_{\mathrm{chem,III-p}}$	$\Delta H^{0}_{ m act,II-p}$	$\Delta H^0_{ m phys,I-p}$	$\Delta H^{0}_{ m phys,I-t}$	$\Delta H^0_{\rm act,II-t}$	$\Delta H^{0}_{\mathrm{chem,III-t}}$	$\Delta H^{0}_{\rm chem, IV-t}$	$\Delta H^{0}_{\mathrm{prot,III-t}}$	$\Delta H^{0}_{\mathrm{prot,IV-t}}$
-	H-FAU	-60	99	-74	-76	28	-67	(1)	9	(1)
	H-MOR	-67	108	-89	-79	16	-71	-65	8	14
	H-ZSM-5	-90	101	-88	-90	27	-87	-78	3	12
	H-ZSM-22	-89	84	-93	-101	6	-69	-99	32	2
(1) no	t stable									

Table S7. Physisorption (I-p and I-t), activation (II-p and II-t), chemisorption (III-p, III-t and IV-t) and protonation enthalpies at 300 K.

Supporting Information Isobutene protonation: Page 11 of 13

Figure S1. ln(K) vs. T^{-1} grouped per isobutene complex, i.e. I-p, I-t, the average of I-p and I-t, III-p, III-t and IV-t. This allows the evaluation of the zeolite topology influence on the stability of the studied isobutene complexes.

Supporting Information Isobutene protonation: Page 12 of 13

Figure S2. Gibbs free energy corresponding to physisorbed isobutene (I-p and I-t), isobutoxy (III-p), t-butoxy (III-t) and t-butyl carbenium ion (IV-t) in H-MOR, H-ZSM-5 and H-ZSM-22. The Gibbs free chemisorption energy of the t-butyl carbenium ion, $\Delta G_{\text{chem},\text{IV-t}}$ has been corrected for an a posteriori assumed SIC error of 40 kJ mol⁻¹.

References

- (1) International Zeolite Association: Structural Databases. http://www.iza structure.org/databases (accessed April 19, 2012).
- (2) Eder, F.; Stockenhuber, M.; Lercher, J. A. J. Phys. Chem. B 1997, 101, 5414.
- (3) De Moor, B. A.; Reyniers, M. F.; Gobin, O. C.; Lercher, J. A.; Marin, G. B. J. Phys. Chem. C 2011, 115, 1204.
- (4) Nguyen, C. M.; De Moor, B. A.; Reyniers, M. F.; Marin, G. B. J. Phys. Chem. C 2011, 115, 23831.

Supporting Information Isobutene protonation: Page 13 of 13