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Chemical and Electrochemical Reactions in the Microchannel 

For this study, we assume the following chemical reactions take 

place in the aqueous Tris-HCl buffer. 

        (S1) 

         (S2) 

The chemical reactions modelled for the carbonate buffer are 

represented by the following equations: 

       (S3) 

        (S4) 

    (S5) 

       (S6) 

      (S7) 

The rate of each of the above reactions (eqs S1-S7) is 

represented by two reaction rate constants kf and kb, 

characterizing the rate of the forward and backward reactions, 

respectively. The values for the reaction rate constants used for 

computer simulations are given in Table S1. It should be noted 

that for this study the molar concentration of the water is 

assumed to be constant (55.5 M). The reaction terms in eq S1 can 

be represented by differential equations. For example, the 

reaction term for hydroxide ions (OH–), describing the rate of 

change in concentration in the carbonate buffer system due to the 

chemical reactions, can be written as: 
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 (S8) 

 

Apart from the bulk chemical reactions, the local 

concentration of species can also change due to electrochemical 

(faradaic) reactions at the surface of the BPE. For both the 

Tris-HCl and carbonate buffers, the following anodic and cathodic 

reactions (eqs S9 and S10, respectively) are assumed to occur: 

        (S9) 

       (S10) 

The rate of change in the surface activity of the species 

involved in the faradaic reactions (eqs S9 & S10) can be related 

to the current density magnitude (jBPE) across the electrode 

surface as follows:  

 

          (S11)  

 

for the anodic pole of the BPE, and:  

          

 (S12) 

 

for the cathodic pole. Here, we assume that the magnitude of the 

local current density across the BPE surface is not constant. 

Generally, the local current density can be determined with the 

Butler-Volmer equation taking into account that the local current 
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density due to a faradaic reaction depends on the electric 

potential difference between the floating potential of the BPE 

and the local potential of the surrounding electrolyte solution. 

For this study, we employed a simplified approach assuming a 

linear drop for jBPE(x) from its maxima (at the anodic and 

cathodic BPE edges) down to zero at the BPE center. This avoids a 

large increase in the required computational resources that would 

arise from calculating the floating potential of the BPE by an 

iterative numerical solution. Thus, the magnitude of the local 

faradaic current density was defined as:  

 

       (S13) 

 

where IBPE is the total electric current through the BPE and lelec 

is the length of the BPE. 

The above formal description was realized as a three-

dimensional numerical scheme allowing us to resolve eqs 6-8 (main 

text), S1-S7, and S8-S13. This scheme was based on discrete 

three-dimensional spatiotemporal algorithms optimized for 

parallel computations. Particularly, the kinetic D3Q19 lattice-

Boltzmann equation method (LBM)1 and the D3Q19 lattice-based 

approaches developed by Warren2 and by Capuani et al.3 were 

employed to resolve numerically the electrohydrodynamic (eq 8, 

main text), electrostatic (eq 7, main text), and mass/charge 



 S-5 

transport (eq 6, main text) problems, respectively. The D3Q19 

lattice is a projection of the four-dimensional face-centered 

hypercubic lattice onto three-dimensional space, where each 

lattice node is connected with 18 nearest and next-nearest 

neighbors. Such lattice connectivity is indispensable to achieve 

isotropic and Galilean-invariant transfer behavior of the modeled 

system. The body force was introduced into the LBM by the method 

of calculating the equilibrium distribution function with an 

altered velocity.4  

As the modeled system exhibits a wide range of relaxation 

times (mainly due to very different characteristic times and 

lengths), a non-uniform spatiotemporal grid was employed for the 

computer simulations. In particular, the elementary time step was 

varied from 10–5 s down to 10–8 s in proximity to the BPE surface, 

whereas the elementary space step was varied between 1 x 10–6 and 

5 × 10–8 m. All numerical schemes were realized as parallel codes 

in C language using the Message Passing Interface (MPI) standard. 

The developed computational model was implemented at a 

supercomputer (SGI Altix 4700) of the “Leibniz-Rechenzentrum der 

Bayerischen Akademie der Wissenschaften” (Garching, Germany). A 

typical simulation to analyze the temporal behavior of the system 

for 100 s required ∼8 h at 128 processor cores and around 20 GB 

of system memory. 
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Table S1. Reaction rate constants.5-8 

Reaction rate constant Value 

Eq S1, kf,S1
 1.0 × 1010 M–1s–1  

Eq S1, kb,S1 2.1 × 102 M–1s–1 

Eqs S2 and S7, kf,S2 1.4 × 10–3 Ms–1 

Eqs S2 and S7, kb,S2 1.4 × 1011 M–1s–1 

Eq S3, kf,S3 3.7 × 10–2 s–1 

Eq S3, kb,S3 8.7 × 103 M–1s–1 

Eq S4, kf,S4
 1.2 × 104 M–1s–1 

Eq S4, kb,S4 4.0 × 104 M–1s–1 

Eq S5, kf,S5 5.0 × 1010 M–1s–1 

Eq S5, kb,S5 2.8 M–1s–1 

Eq S6, kf,S6 6.0 × 109 M–1s–1 

Eq S6, kb,S6 1.1 × 106 M–1s–1 

 
Here, kf,S1 and kb,S1 denote the rate constants of the forward and 
backward reactions, respectively, presented by equation S1. The 
notation for the other rate constants follows this scheme. 
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Enrichment of [Ru(bpy)3]
2+ for an extended time period. Figure S1 

shows an experiment similar to that in Figure 3 (main text), 

except the initial [Ru(bpy)3]
2+ concentration was 1.0 µM instead 

of 10.0 µM. Also, the enrichment was allowed to proceed for 20 

min, 4 times longer than the experiments shown in the main text. 

These data demonstrate that, in the carbonate buffer, enrichment 

could be initiated with a lower initial concentration compared to 

the Tris system. They also show that the greater band stability 

in the carbonate system allows the enrichment to proceed for 

longer times than for the Tris system, resulting in greater 

enrichment factors, 274 in carbonate buffer vs. 141 in Tris. 

 
Figure S1. Fluorescence micrographs showing enrichment of 
[Ru(bpy)3]

2+ by applying Etot = 30.0 V to a 6 mm-long microchannel. 
The initial concentrations in the microchannel were 1.0 mM 
carbonate buffer (pH 10.0) and 1.0 µM [Ru(bpy)3]

2+, and the BPE 
had a length of 500 µm. The enrichment factors were 160 (600 s), 
and 274 (1200 s). 
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