Supporting Information

Pyridinium-based fluororeceptors as practical chemosensors for hydrogen pyrophosphate $\left(\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}\right)$ in semi aqueous and aqueous environments

Kumaresh Ghosh ${ }^{\text {a }}$, Avik Ranjan Sarkar ${ }^{\text {a }}$, Asmita Samadder ${ }^{\text {b }}$, Anisur Rahman Khuda-Bukhsh ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Kalyani, Kalyani-741235, India.
${ }^{\mathbf{b}}$ Department of Zoology, University of Kalyani, Kalyani-741235, India.

E-mail:ghosh k2003@vahoo.co.in
Table of Contents:

1. Synthesis Scheme and procedure of receptors 1 and 2 S2-S3
2. a) Spectral data for intermediate and receptor 1b) Fluorescence images and SEM images.S4-S8
3. a) Change in fluorescence of 1 with anions in $4: 1 \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ containing 10 mM Tris HCl buffer $\mathrm{pH}=6.5$ (Selected)
b) Bar plot for the change in fluorescence ratio for receptor 1 in $4: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ containing 0.1 mM Tris HCl buffer ($\mathbf{p H}=6.5$)
c) Bar plot for the change in fluorescence ratio for receptor $\mathbf{1}$ in $\mathbf{C H}_{3} \mathbf{C N}$
d) Change in absorbance of 1 with anions in $4: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ containing 10 mM Tris HCl buffer $\mathrm{pH}=6.5$(Selected)
\qquad S8-S124. Job plots of receptor 1 by fluorescence and UV-vis method in 4:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (v/v)S12
4. Binding constant curves from fluorescence and UV-vis for receptor 1 with anions (Selected), selectivity study S13-S14
5. Change in fluorescence ratio for 1 at different pHs in $\mathrm{CH}_{3} \mathbf{C N}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, 10 \mathrm{mM}$ TrisHCl buffer) S14
6. Change in fluorescence ratio for 1 with sodium salt of different anions and tetrabutylammonium hydrogenphosphate at 412 nm in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer) S15
7. Indicator displacement experiments on 1 in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer) from fluorescence UV-vis experiments, ${ }^{1} \mathrm{H}$ NMR study, DFT optimized geometry S15-S18
8. Indicator displacement experiments on 2 in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer)

\qquad

$$
\mathbf{S} 19-\mathbf{S} 21
$$

10. Change in absorption intensity upon gradual addition of 2 to the solution of Uranine dye in $\mathrm{H}_{2} \mathrm{O}$ ($\mathbf{p H}=6.5,10 \mathrm{mM}$ Tris HCl buffer) S21-S22
11. Experiments with serum S22-S23.

Experimental Section

1. Synthesis:

Scheme S1. (i) Nicotinoyl chloride, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$. (ii) 9 - chloromethyl anthracene in dry $\mathrm{CH}_{3} \mathrm{CN}$ and DMF mixture, reflux for 36 h (isolated yield: 22%), (iii). $\mathrm{NH}_{4} \mathrm{PF}_{6}$, aq. $\mathrm{CH}_{3} \mathrm{OH}$ (yield 57%), (iv) DMF, polystyrene resin, refluxing condition, (v) DMF , aq solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$.

N, N^{\prime}-(pyridine-2, 3-diyl) dinicotinamide (4):

The unsymmetrical hetero bis amide 4 was obtained by coupling of 2,3-diaminoaminopyridine ($1 \mathrm{~g}, 8.41 \mathrm{mmol}$) with pyridine - 3- carbonyl chloride ($3.57 \mathrm{~g}, 25.20 \mathrm{mmol}$) in 60 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by addition of triethylamine (1 mL) under nitrogen atmosphere. The reaction mixture was stirred overnight. After completion of the reaction, solvent was removed under vacuum. The residual mass was extracted with $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ mixture (3 x 30 mL). The organic layer was washed with NaHCO_{3} solution (3 x 15 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated under reduced pressure. The crude mass was purified by column chromatography over silica gel using ethyl acetate: hexane (7:3 v/v) to $2 \% \mathrm{CH}_{3} \mathrm{OH}$ in ethyl acetate as eluent to afford the desired diamide 3 in 64% yield (1.72 mg), mp $170{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO, 400 MHz): $\delta 10.95(\mathrm{~s}, 1 \mathrm{H}), 10.13(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.75-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.40$ $-8.30(\mathrm{~m}, 2 \mathrm{H}), 8.24(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (d $\left.{ }_{6} \mathrm{DMSO}, 75 \mathrm{MHz}\right): \delta 165.3,164.5,152.8,149.6,149.0,145.4,144.8,144.1,136.2,135.8,134.8,130.4,130.0$, $123.9,122.4,118.8,118.1$. FTIR ($\mathrm{KBr}, \mathrm{v} \mathrm{cm}^{-1}$): 3252, 1680, 1656, 1591, 1572, 1478, and 1306. Mass (LCMS): $320.2(\mathrm{M}+1)^{+}$.

3,3'-(pyridine-2,3-diylbis(azanediyl))bis(oxomethylene)bis(1-(anthracen-9-ylmethyl)pyridinium)

hexafluorophosphate (V) (1):

To the solution of the diamide $4(0.07 \mathrm{~g}, 0.219 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ containing dry DMF (2 mL), 9chloromethyl anthracene $(0.149 \mathrm{~g}, 0.658 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ was added. The resulting solution was refluxed
with stirring for 3 days under nitrogen atmosphere. On cooling the reaction mixture, yellow precipitate appeared. The precipitate was filtered off and washed with hot $\mathrm{CH}_{3} \mathrm{CN}$ for several times and then with diethyl ether to have pure dichloride salt $5(0.108 \mathrm{~g}, 63 \%)$. The pure dichloride salt $5(0.108 \mathrm{~g}, 0.139 \mathrm{mmol})$ was dissolved in 5 mL hot $\mathrm{CH}_{3} \mathrm{OH}$ and the volume was reduced to 2 mL . Then aqueous solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.068 \mathrm{~g}, 0.412 \mathrm{mmol})$ was added in one portion to exchange Cl^{-}ions. After stirring the reaction mixture for 35 min , light yellow precipitate appeared. Filtration of the precipitate followed by thorough washing with diethyl ether afforded the receptor $\mathbf{1}$ in 90% yield (0.125 g); mp $184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO): $\delta 11.33(\mathrm{~s}, 1 \mathrm{H}$, amide NH), 10.56 ($\mathrm{s}, 1 \mathrm{H}$, amide NH), $9.38(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 8.97(\mathrm{brs}, 2 \mathrm{H}), 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz}), 8.40-8.35(\mathrm{~m}, 4 \mathrm{H}), 8.29-8.22$ $(\mathrm{m}, 5 \mathrm{H}), 8.15(\mathrm{brt}, 1 \mathrm{H}), 8.08(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.63-7.58(\mathrm{~m}, 9 \mathrm{H}), 7.41(\mathrm{brd}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, d_{6}-DMSO): $\delta 161.0,145.3,144.5,133.7,131.5,131.4,131.3,131.1,131.0,129.6,129.5,128.4$, $128.3,128.1,125.8,125.7,123.0,121.2,56.4$. FTIR ($\mathrm{KBr}, \mathrm{vcm}^{-1}$): 3431, 3337, 3090, 2917, 1690, 1629, 1591, 1583, 1531, and 1493. m/z (ES ${ }^{+}$: $700.6\left(\mathrm{M}_{-2} \mathrm{PF}_{6}{ }^{-}-1\right)^{+}$. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{52} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{P}_{2}: \mathrm{C}, 56.92 ; \mathrm{H}, 3.56 ; \mathrm{N}, 7.06$. Found: C, 56.96; H, 3.61; N, 7.11.

Synthesis of 2:

Compound $1(100 \mathrm{mg})$ was immobilized on chloromethyl polystyrene (called as Merrifield resin) by refluxing and stirring a DMF solution of 1 with chloromethyl polystyrene. Filtration of reaction mixture followed by thorough washing with DMF to remove the excess amount of $\mathbf{1}$ was done. Then $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added to the DMF solution of 6 to carry out the anion exchange reaction. After heating with stirring of the reaction mixture for 50 min. the beads were collected through filtration. Finally, the beads were washed properly with water and diethyl ether to have the desired Merrifield resin bound host 2. The beads were characterized by recording FTIR, fluorescence image and also SEM.

2a. Spectral data of compounds:

${ }^{1} \mathrm{H}$ NMR of $4\left(400 \mathrm{MHz}, \mathbf{d}_{\mathbf{6}}\right.$-DMSO):

${ }^{13}$ C NMR of 4 ($75 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO):

LCMS of 4:

4

XIC of +Q1: Exp 1, 319.5 to $320.5 \mathrm{amu} .$. Max. 1.7 e 7 cps . +Q1: Exp 1, 1.831 to 1.888 min from ... amu \quad Max. 3.5 e 6 c I

Betector A, Channel 2 from Sample 5 (CR...

${ }^{1} \mathrm{H}$ NMR of 1 ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{d}_{\mathbf{6}}$-DMSO):

${ }^{13} \mathrm{C}$ NMR of 1 ($100 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO):

[^0]
ESI mass of 1:

FTIR spectra of 1, Merrifield Resin and 2:

2b. Fluorescence images of (a) resin and (c) 2, irradiating the beads at 365 nm . SEM images of (b) resin and (d) 2.

Fluorescence images of (a) resin and (c) 2, irradiating the beads at 365 nm . SEM images of (b) resin and (d) 2.

3a. Selected fluorescence titration curves for receptor 1 in $\mathrm{CH}_{3} \mathbf{C N}: \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}) 10 \mathrm{mM}$ Tris/HCl buffer $\mathrm{pH}=6.5$

Figure S1: Fluorescence titration spectra of receptor $\mathbf{1}\left(\mathrm{c}=2.5 \times 10^{-5} \mathrm{M}\right)$ with the tetrabutylammonium (a) Acetate (b) ADP (Na-salt), (c) AMP (Na-salt), (d) ATP (Na-salt), (e) Bromide, (f) Chlorate, (g) Chloride, (h) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, (i) Fluoride, (j) Hydrogensulphate, (k) Iodide and (l) $\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$ in $4: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (v/v) 10 mM TrisHCl buffer $\mathrm{pH}=6.5$ [Concentration of all guests were $9.6 \times 10^{-4} \mathrm{M}$].

Figure S2. (a) Fluorescence ratio $\left[\Delta \mathrm{I} / \mathrm{I}_{0}\right]$ of $\mathbf{1}\left(\mathrm{c}=2.5 \times 10^{-5} \mathrm{M}\right)$ at 412 nm upon addition of 10 equiv. tetrabutylammonium and sodium salts of a particular anion in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, 0.1 \mathrm{mM}$ TrisHCl buffer, pH 6.5); (b) Change in emission of receptor $\mathbf{1}\left(\mathrm{c}=2.5 \times 10^{-5} \mathrm{M}\right)$ upon addition of $(\mathrm{TBA})_{3} \mathrm{HP}_{2} \mathrm{O}_{7}$ to the solution of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, 0.1 \mathrm{mM}$ TrisHCl buffer, pH 6.5$)$ containing sodium salts of ATP, ADP, AMP and pyrophosphate.

3c) Bar plot for the change in fluorescence ratio for receptor $\mathbf{1}$ in $\mathbf{C H}_{\mathbf{3}} \mathbf{C N}$

Figure S3a. Fluorescence ratio $\left[\left(\mathrm{I}-\mathrm{I}_{0}\right) / \mathrm{I}_{0}\right]$ of $\mathbf{1}\left(\mathrm{c}=2.5 \times 10^{-5} \mathrm{M}\right)$ at 412 nm upon addition of 10 equiv tetrabutylammonium salt of a particular anion in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S3b. Fluorescence titration spectra of receptor 1 ($\mathrm{c}=2.5 \times 10^{-5} \mathrm{M}$) with the tetrabutylammonium $\mathrm{HP}_{2} \mathrm{O}_{7}^{3-}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S3c. Fluorescence emission change of $1(c=2.5 \mathrm{x}$ $10^{-5} \mathrm{M}$) upon addition of various anions (10 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S4: UV-vis titration curves of receptor $\mathbf{1}\left(\mathrm{c}=2.5 \times 10^{-5} \mathrm{M}\right)$ with the tetrabutylammonium (a) $\mathrm{HP}_{2} \mathrm{O}_{7}^{3-}$, (b) Acetate (c) ADP (Na-salt), (d) AMP (Na-salt), (e) ATP (Na-salt), (f) Bromide, (g) Chlorate, (h) Chloride, (i) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, (j) Fluoride, (k) Hydrogensulphate and (l) Iodide in $4: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (v/v) 10 mM TrisHCl buffer $\mathrm{pH}=6.5$ [Concentration of all guests were $9.6 \times 10^{-4} \mathrm{M}$].
4. Job plots from Fluorescence and UV-vis for 1 in 4:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}) 10 \mathrm{mM}$ TrisHCl buffer $\mathrm{pH}=6.5$:

Figure S5a. Fluorescence Job plot of 1 with tetrabutylammonium salt of hydrogen pyrophosphate $\left([\mathrm{G}]=[\mathrm{H}]=4.8 \times 10^{-5} \mathrm{M}\right)$.

Figure S5b. UV Job plot of $\mathbf{1}$ with tetrabutylammonium salt of hydrogen pyrophosphate and hydrogensulphate $\left([G]=[\mathrm{H}]=4.8 \times 10^{-5} \mathrm{M}\right)$.

5a. Binding constant curve for receptor 1 with tetrabutylammonium hydrogen pyrophosphate in 4:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ $10 \mathbf{~ m M}$ TrisHCl buffer $\mathbf{p H}=6.5$ from fluorescence.

[G] M

Figure S6a: Binding constant curve of $\mathbf{1}\left(\mathrm{c}=2.5 \times 10^{-5} \mathrm{M}\right)$ with the tetrabutylammonium hydrogen pyrophosphate $(\mathrm{c}=9.6 \mathrm{x}$ $\left.10^{-4} \mathrm{M}\right)$ from fluorescence titration in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ Tris/ HCl buffer $)$. Working formula $\mathrm{y}=\mathrm{I}_{0}+((\mathrm{I}-$ $\left.\left.\mathrm{I}_{0}\right) /\left(2{ }^{*} \mathrm{x}_{-} 2\right)\right)^{*}\left(\mathrm{x}_{-} 1+\mathrm{x} _2+1 / \mathrm{K}-\left(\left(\mathrm{x}_{-} 1+\mathrm{x}_{-} 2+1 / \mathrm{K}\right)^{\wedge} 2-4 \mathrm{x}_{-} \mathrm{x}^{*} \mathrm{x}_{-} 2\right)^{\wedge} .5\right), \mathrm{x}_{-} 1=[\mathrm{G}], \mathrm{x} 2=[\mathrm{H}], \mathrm{y}=$ intensity.

5b. Binding constant curve for receptor 1 with tetrabutylammonium hydrogen pyrophosphate in 4:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ 10 mM TrisHCl buffer $\mathrm{pH}=6.5$ from UV-vis.

Figure S6b: Binding constant curve for receptor $\mathbf{1}\left(\mathrm{c}=2.5 \times 10^{-5} \mathrm{M}\right)$ with the tetrabutylammonium (a) hydrogen pyrophosphate $\left(\mathrm{c}=9.6 \times 10^{-4} \mathrm{M}\right)$ and (b) dihydrogenphosphate $\left(\mathrm{c}=9.6 \times 10^{-4} \mathrm{M}\right)$ from UV-vis titration in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (4:1 v/v, $\mathrm{pH}=6.5,10 \mathrm{mM}$ Tris/ HCl buffer). Working formula: $\mathrm{y}=\mathrm{A}_{0}+\left(\left(\mathrm{A}-\mathrm{A}_{0}\right) /\left(2 * \mathrm{x} _2\right)\right)^{*}\left(\mathrm{x} _1+\mathrm{x} _2+1 / \mathrm{K}-\right.$ $\left.\left(\left(x _1+x _2+1 / K\right)^{\wedge} 2-4 * x_{-} 1 * x_{-} 2\right)^{\wedge} .5\right), x_{-} 1=[G], x _2=[H], y=$ intensity, $Y=$ absorbance.

Table S1. Binding constant values for 1 with the guests in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer).

Guests	$\mathbf{K}_{\mathbf{a}}\left(\mathbf{M}^{-1}\right)^{\mathbf{a}}$	$\mathbf{K}_{\mathbf{a}}\left(\mathbf{M}^{-1} \mathbf{)}^{\mathbf{b}}\right.$
$\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$	$(9.59 \pm 1) \times 10^{4}$	$(1.96 \pm 0.5) \times 10^{5}$
$\mathrm{P}_{2} \mathrm{O}_{7}{ }^{4-}$	c	c
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	c	$(2.56 \pm 0.7) \times 10^{4}$
$\mathrm{HSO}_{4}{ }^{-}$	c	$(2.43 \pm 0.3) \times 10^{4}$
$\mathrm{ClO}_{4}{ }^{-}$	c	c
F^{-}	c	$(8.97 \pm 4) \times 10^{3}$
Cl^{-}	c	c
Br^{-}	c	c
I^{-}	c	c
Acetate	c	$(1.56 \pm 0.7) \times 10^{4}$

a: determined from fluorescence method; b: determined from UV
c: not determined due to irregular and minor changes.

5c. Selectivity study

Figure S6c. Change in fluorescence ratio $\left[\left(\left[-\mathrm{I}_{0}\right) / \mathrm{I}_{0}\right]\right.$ of $\mathbf{1}\left(6.27 \times 10^{-5} \mathrm{M}\right)$ at 412 nm upon addition of 5 equiv amounts of (TBA) $)_{3}\left(\mathrm{HP}_{2} \mathrm{O}_{7}\right)$ in the presence of other anions (5 equiv) in $\mathrm{CH}_{3} \mathrm{CN}^{-} \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, 10 \mathrm{mM}$ Tris HCl buffer, at pH 6.5$)$.

6. Change in fluorescence ratio for 1 at different pHs in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v})$

Figure S7. Fluorescence ratio $\left[\left(I-\mathrm{I}_{0}\right) / \mathrm{I}_{0}\right]$ of $\mathbf{1}\left(c=6.27 \times 10^{-5} \mathrm{M}\right)$ at 412 nm upon addition of 10 equiv amounts of a particular anion in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v} 10 \mathrm{mM}$ TrisHCl buffer $)$ at pHs 6.5 and 7.5 .
7. Change in fluorescence ratio for 1 with sodium salt of different anions and tetrabutylammonium hydrogenphosphate in at 412 nm in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer)

Figure S8. Fluorescence ratio $\left[\left(I-I_{0}\right) / I_{0}\right]$ of $\mathbf{1}\left(c=6.27 \times 10^{-5} \mathrm{M}\right)$ at 412 nm upon addition of 10 equiv amounts of sodium salt of a particular anion and tetrabutylammonium $\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$ in $\mathrm{CH}_{3} \mathrm{CN}$: $\mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH} 6.5,10 \mathrm{mM}$ Tris HCl buffer $)$.
8. Indicator displacement experiments on 1 with Uranine dye:

From UV-vis and Fluorescence study
8a. Change in absorption upon gradual addition of $\mathbf{1}$ to the solution of uranine dye:

Figure S9. (a) Change in absorbance of dye ($\mathrm{c}=8.5 \times 10^{-5} \mathrm{M}$) upon the addition of increasing amount of $\mathbf{1}$ (c $\left.=4.0 \times 10^{-4} \mathrm{M}\right)$, (b) gradual addition of $\mathrm{HP}_{2} \mathrm{O}_{7}^{3-}\left(\mathrm{c}=1.65 \times 10^{-3} \mathrm{M}\right)$ to the ensemble of dye dye/ $\mathbf{1}(1: 1)$. All titration are performed at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer).

8b. Dye displacement from the ensemble of $1 /$ dye using various anions as their sodium and tetrabutylammonium salts and the corresponding changes in emission intensity.

Figure S10. Change in emission intensity after addition of 1 equiv amount of different anions (G) to the ensemble of $\mathbf{1} /$ dye $(1: 1)\left([G]=4.62 \times 10^{-3} \mathrm{M},[\right.$ dye $\left.]=8.5 \times 10^{-5} \mathrm{M}\right)$. All titration are performed at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer).

8c. Job plots for receptor 1 with uranine dye from fluorescence and UV-vis.

Figure S11. Job plots for 1 with dye from (a) Fluorescence at 525 nm and (b) UV-vis at $502 \mathrm{~nm}\left([\mathrm{G}]=[\mathrm{H}]=8.5 \times 10^{-5} \mathrm{M}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}$ $=6.5,10 \mathrm{mM}$ Tris HCl buffer).

8d. Dye displacement from the ensemble of $1 /$ dye using various anions as their sodium and tetrabutylammonium salts and the corresponding changes in absorption intensity.

Figure S12. Change in absorption after addition of 1 equiv amount of different anions (G) to the ensemble of $\mathbf{1} /$ dye $(1: 1)\left([G]=4.62 \times 10^{-3} \mathrm{M}\right.$, [dye] $\left.=8.5 \times 10^{-5} \mathrm{M}\right)$. All titration are performed at $25{ }^{0} \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer $)$.

8e. Binding constant for receptor 1 with Uranine dye in $\mathrm{CH}_{3} \mathbf{C N}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ Tris/ HCl buffer) from UV-vis.

[G] M

Figure S13. Binding constant at $\lambda_{\max }=502 \mathrm{~nm}$. of uranine dye $\left(\mathrm{c}=8.5 \times 10^{-5} \mathrm{M}\right)$ with $\mathbf{1}\left(\mathrm{c}=4.0 \times 10^{-3} \mathrm{M}\right)$ at $25^{0} \mathrm{C}$ [working formula: $y=\mathrm{A}_{0}+\left(\left(\mathrm{A}-\mathrm{A}_{0}\right) /\left(2 * x_{-} 2\right)\right)^{*}\left(\mathrm{x}_{-} 1+\mathrm{x} _2+1 / \mathrm{K}-\left(\left(\mathrm{x} _1+\mathrm{x}_{-} 2+1 / \mathrm{K}\right)^{\wedge} 2-4 \mathrm{x}_{-} 1 * \mathrm{x}_{-} 2\right)^{\wedge} .5\right), \mathrm{x} _1=[\mathrm{G}], \mathrm{x} _2=[\mathrm{H}], \mathrm{y}=$ absorbance $]$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ Tris HCl buffer).

8f. Binding constant for receptor 1 with uranine dye in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ Tris/HCl buffer) from fluorescence.

Figure S14. Binding constant at $\lambda_{\max }=525 \mathrm{~nm}$. of uranine dye $\left(\mathrm{c}=8.5 \times 10^{-5} \mathrm{M}\right)$ with $\mathbf{1}\left(\mathrm{c}=4.0 \times 10^{-3} \mathrm{M}\right)$ at $25^{0} \mathrm{C}$ [working formula: $\mathrm{y}=\mathrm{I}_{0}+\left(\left(\mathrm{I}-\mathrm{I}_{0}\right) /\left(2 * \mathrm{x} _2\right)\right)^{*}\left(\mathrm{x} _1+\mathrm{x} _2+1 / \mathrm{K}-\left(\left(\mathrm{x} _1+\mathrm{x} _2+1 / \mathrm{K}\right)^{\wedge} 2-4{ }^{*} \mathrm{x}_{-} 1 * \mathrm{x}_{-} 2\right)^{\wedge} .5\right)$, $\mathrm{x} _1=[\mathrm{G}], \mathrm{x} _2=[\mathrm{H}]$, $\mathrm{y}=$ intensity $]$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ Tris HCl buffer).

8g. ${ }^{1}$ H study

Figure S15. Partial ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) of (a) $1\left(\mathrm{c}=1.86 \times 10^{-3} \mathrm{M}\right.$ itself and (b) in the presence of equivalent amount of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{3} \mathrm{HP}_{2} \mathrm{O}_{7}$.

8h. DFT optimized structure. ${ }^{1}$

Figure S16. DFT optimized structure of the complex 1. $\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$ (H -bond distances are in \AA; shortest distance between two anthracenes: $5.85 \AA$).
9. Indicator displacement experiments on 2 with uranine dye:

From Fluorescence and UV-vis study
9a. Change in absorption and emission spectra upon gradual addition of 2 to the solution of dye $\mathbf{3}$ and then on addition of $\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$:

Figure S17. (a) Change in absorption intensity of dye $3\left(c=8.5 \times 10^{-5} \mathrm{M}\right)$ upon addition of $\mathbf{2}(5 \mathrm{mg})$ and (b) retrieval of absorption upon increasing addition of $(\mathrm{TBA})_{3} \mathrm{HP}_{2} \mathrm{O}_{7}$ to the ensemble $2 /$ dye $\mathbf{3}$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ Tris HCl buffer).

Figure S18. (a) Change in emission intensity of dye $3\left(\mathrm{c}=8.5 \times 10^{-5} \mathrm{M}\right)$ upon addition of $2(5 \mathrm{mg})$ and (b) retrieval of emission upon increasing addition of $\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$ to the ensemble 2/dye in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1, \mathrm{v} / \mathrm{v}, \mathrm{pH}$ $6.5,10 \mathrm{mM}$ Tris/ HCl buffer) after 30 min .

9b. Dye displacement from the ensemble of $2 /$ dye using various tetrabutylammonium salts and the corresponding changes in emission intensity.

Figure S19. Change in emission intensity after addition of 1 equiv amount of different tetrabutylammonium anions (G) to the ensemble of $\mathbf{2} / \mathbf{d y e}\left(5 \mathrm{mg}\right.$ in 2.5 mL dye solution) ($[\mathrm{G}]=1.65 \times 10^{-3} \mathrm{M},[\mathbf{3}]=8.5 \times 10^{-5} \mathrm{M}$). All titration are performed at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer).

9c. Dye displacement from the ensemble of $2 /$ dye using various tetrabutylammonium salts and the corresponding changes in absorption intensity.

Figure S21. (1) dye, (2) $[$ dye + 2] = A, (3) [A + all anions (except hydrogen pyrophosphate)] $=\mathrm{B}$, (4) $\mathrm{B}+$ hydrogen pyrophosphate in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer).

Figure S20. Change in absorption intensity after addition of 1 equiv amount of different tetrabutylammonium anions (G) to the ensemble of $\mathbf{2} /$ dye (5 mg in 2.5 mL dye solution) ($[\mathrm{G}]=1.65 \times 10^{-3}$ $\left.\mathrm{M},[\mathbf{3}]=8.5 \times 10^{-5} \mathrm{M}\right)$. All titration are performed at $25{ }^{0} \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer).

9d. Dye displacement from the ensemble of $2 /$ dye using various sodium salts, tetrabutylammonium hydroxide, tetrabutylammonium hydrogen pyrophosphate and the corresponding changes in absorption intensity.

Figure S22. Change in absorption intensity after addition of 1 equiv amount of different sodium salt, tetrabutylammonium $\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$ and tetrabutylammonium hydroxide to the ensemble of $\mathbf{2} / \mathbf{d y e}(5 \mathrm{mg}$ in 2.5 mL dye solution) ($[\mathrm{G}]=1.65 \times 10^{-3} \mathrm{M},[3]=8.5 \times 10^{-5} \mathrm{M}$). All titration are performed at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5$, 10 mM TrisHCl buffer).

Figure S23. (1) dye, (2) $[$ dye + 2] $=\mathrm{A}$, (3) [A + all anions Na salt of ATP, ADP, AMP, $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \quad \mathrm{HPO}_{4}^{-}, \quad \mathrm{P}_{2} \mathrm{O}_{7}^{4-}, \quad \mathrm{PO}_{4}^{3-} \quad$ and tetrabutylammonium hydroxide (except TBA hydrogen pyrophosphate)] $=\mathrm{B}$, (4) $\mathrm{B}+$ hydrogen pyrophosphate in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (4:1 $\mathrm{v} / \mathrm{v}, \mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer)..

9e. Absoption spectra, emission spectra and SEM images of 2 in the solid state before and after exploitation in IDA experiment.

Figure S24. Comparative view of indicator displacement experiment of $\mathbf{2}$ from (a) UV-vis and (b) fluorescence ($\lambda_{\mathrm{ex}}=370 \mathrm{~nm}$) in solid state.

Figure S25. SEM images of (a) 2, (b) 5 mg of $\mathbf{2}$ incubated in 2.3 mL dye solution $\left(\mathrm{c}=8.5 \times 10^{-5} \mathrm{M}\right)$ and (c) $\mathbf{2}$ when $\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{4-}$ was added into the solution of $2 /$ dye ensemble.
10. Change in absorption intensity upon gradual addition of 2 to the solution of dye 3 in $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH}=6.5,10 \mathrm{mM}$ Tris $\mathbf{H C l}$ buffer):

Figure S26. Change in absorbance of dye 3 ($c=2.0 \times 10^{-5} \mathrm{M}$) on addition of $2(5 \mathrm{mg})$.

Figure S27. Change in absorption 1 equiv amount of different tetrab salts (G) to the ensemble of $\mathbf{2} / \mathbf{d y}$ solution) ([G] $=1.65 \times 10^{-3} \mathrm{M}$, titration are performed at $25^{\circ} \mathrm{C}$ i TrisHCl buffer).

Figure S28. (1) dye, (2) $[$ dye +2$]=\mathrm{A}$, (3) $\left[\mathrm{A}+\mathrm{Na}\right.$ salt of ATP, ADP, AMP, $\mathrm{HPO}_{4}{ }^{-}, \mathrm{P}_{2} \mathrm{O}_{4}{ }^{4-}, \mathrm{PO}_{4}{ }^{3-}$ and tetrabutylammonium hydroxide, $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, Acetate, F^{-}, $\mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{HSO}_{4}^{-}$(except TBA hydrogen pyrophosphate) $]=\mathrm{B},(4) \mathrm{A}+$ hydrogen pyrophosphate and (5) $\mathrm{B}+$ hydrogen pyrophosphate in $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH}=6.5,10 \mathrm{mM}$ TrisHCl buffer $)$.

Figure S29. Change in absorption intensity $\left(\lambda_{\max }=502 \mathrm{~nm}\right)$ for ensemble 2/dye (5 mg in 2.5 mL dye solution; [dye] $=8.5 \times 10^{-5} \mathrm{M}$) with increasing amount of tetrabutylammonium hydrogenpyrophosphate in $4: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ at pH 6.5 using 10 mM Tris HCl buffer.

11. Experiments with serum

Materials and method

Animals

We randomly selected healthy inbred strain of Swiss albino mice (Mus musculus) ($6 / 8$ weeks: 25 g), housed for at least 14 days in an environmentally controlled room (temperature, $24-26 \pm 2^{\circ} \mathrm{C}$; humidity, $55 \pm 5 \%, 12-\mathrm{h}$ light/dark cycle) with access to food and water ad libitum as the materials for the present study. We followed the guidelines approved by the Animal Ethics Committee, University of Kalyani, and conducted the experiments under the supervision of the Animal Welfare Committee, University of Kalyani (Vide: Certificate for Proposal No. KU/IAEC/Z-1 1/07, dated 18.5.2007).

Collection of blood serum

Three mice were sacrificed and blood was collected after cardiac puncture. The blood samples were allowed to stand for 10 min after which it was centrifuged at 2000 g for 5 min and serum was collected for the further experimental purpose.

Figure S30. dye $/ \mathbf{2}$ ensemble in serum contaminated with different concentrations of tetrabutylammonium hydrogen pyrophosphate: (a) $10^{-3} \mathrm{M}$, (b) $10^{-4} \mathrm{M}$, (c) $10^{-5} \mathrm{M}$ and (d) $10^{-6} \mathrm{M}$.

Figure S31. dye/2 ensemble in serum contaminated with sodium salt of (a) ADP, (b) ATP, (c) $\mathrm{HPO}_{4}{ }^{-2}$ and (d) PO_{4}^{-3} in neutral medium (concentrations of all guests were $1.65 \times 10^{-3} \mathrm{M}$).

Figure S32. dye/2 ensemble in serum contaminated with sodium salt of pyrophosphate. (a) concentration of pyrophosphate 10^{-} ${ }^{4} \mathrm{M}$ in neutral medium (b) concentration of pyrophosphate $10^{-4} \mathrm{M}$ in acidic medium $\mathrm{pH}=6.5$, (c) concentration of pyrophosphate $10^{-5} \mathrm{M}$ in neutral medium and (d) concentration of pyrophosphate $10^{-5} \mathrm{M}$ in acidic medium $\mathrm{pH}=6.5$.

Reference

1. Gaussian 03, Revision C.01, Frisch M. J. et al., Gaussian, Inc., Wallingford CT, 2004.

[^0]:

