Supporting Information

Stereoselective Formation of Trisubstituted (Z)-Chloroalkenes Adjacent to Tertiary Carbon Stereogenic Centers by Organocuprate-Mediated Reduction/Alkylation

Tetsuo Narumi, Takuya Kobayakawa, Haruo Aikawa, Shunsuke Seike, and Hirokazu Tamamura*
Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
E-mail: tamamura.mr@tmd.ac.jp

Table of contents

I. General information S-2
II. Preparation of γ, γ-dichloro- α, β-enoyl sultam 1 and enoate 2 S-3
III. Experimental procedures of compounds 3, 4a-e, 5a-e, and 6a-d S-8
IV. Copper-catalyzed $\mathrm{S}_{N} 2^{\prime}$-type allylic alkylation S-19
V. Structural determination of the major isomer of allylic alkylation of enoate $\mathbf{2}$
V-I. Preparation of authentic sample $6 \mathbf{a}$ S-20
V-II. Comparison of NMR charts of compound $\mathbf{6 a}$ S-21
V-III. HPLC charts of compounds 6a-b S-22
V-IV. DFT calculation of reactive conformers of allylic alkylation of 2 S-24
VI. NMR spectraVI-I. NOESY Data of compound 3S-29
VI-II. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR charts of compounds $\mathbf{1 - 6}, \mathbf{S 4}, \mathbf{S 5}$ S-30
VII. HPLC charts of compounds 4a-d, and 5a-d S-51

I. General Information

General Methods. All reactions utilizing air- or moisture-sensitive reagents were performed in dried glassware under an atmosphere of nitrogen, using commercially supplied solvents and reagents unless otherwise noted. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2} and stored over molecular sieves. Thin-layer chromatography (TLC) was performed on Merck 60F 254 precoated silica gel plates and were visualized by fluorescence quenching under UV light and by staining with phosphomolybdic acid, p-anisaldehyde, or ninhydrin, respectively. Flash column chromatography was carried out using Wakogel C-200 (Wako Pure Chemical Industries, Ltd.) and silica gel 60 N (Kanto Chemical Co., Inc.).

Characterization data. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 or 500 MHz) and ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$) spectra were recorded using a Bruker Avance II spectrometer with a CryoProbe. Chemical shifts are reported in δ (ppm) relative to $\mathrm{Me}_{4} \mathrm{Si}$ (in CDCl_{3}) as internal standard. Infrared (IR) spectra were recorded on a SHIMADZU IR Prestige-21 FTIR-8400S and JASCO FT/IR 4100, and are reported as wavenumber (cm^{-1}). Low- and high-resolution mass spectra were recorded on a Brucker Daltonics microTOF (ESI-MS) spectrometers in the positive and negative detection mode. Optical rotations were measured on a JASCO DIP-370 polarimeter operating at the sodium D line with a 100 mm path length cell, and were reported as follows: $[\alpha]_{\mathrm{D}}{ }^{T}$ (concentration $(\mathrm{g} / 100 \mathrm{~mL})$, solvent).

HPLC condition. For chiral HPLC, a Daicel CHIRALPAK ID columns ($4.6 \times 250 \mathrm{~mm}$) was employed with 10% isocratic of isopropanol in Hexane at a flow rate of $0.4 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ on JASCO PU-2086 plus (JASCO corporation, Ltd., Tokyo, Japan), and eluting products were detected by UV at 230 nm . For analytical HPLC, a Cosmosil Cholester Packed column ($4.6 \times 250 \mathrm{~mm}$, Nacalai Tesque, Inc., Kyoto, Japan) was employed with a linear gradient of MeCN at a flow rate of $1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ on a LaChrom Elite HTA system (Hitachi High-Technologies corporation, Ltd., Tokyo, Japan) and JASCO PU-2086 plus (JASCO corporation, Ltd., Tokyo, Japan), and eluting products were detected by UV at 220 or 230 nm .

II. Preparation of γ, γ-dichloro- α, β-enoyl sultam $\underline{1}$ and enoate $\underline{2}$

According to the reported procedure, ${ }^{S 1}$ asymmetric Mukaiyama aldol reaction of benzaldehyde $\mathbf{S 1}$ with α, α-dichloroketene silyl acetal $\mathbf{S 2}$ in the presence of chiral oxazaborolidinone $\mathbf{S 3}^{\text {S2 }}$ followed by acidic removal of TMS group provided the α, α-dichloro- β-hidroxyester $\mathbf{S 4}$ with excellent enatioselectivity (97% ee), which was recrystallized from dichloromethane/hexane to give the optically pure S4. TBS protection of hydroxyl group, DIBALH reduction of the ester moiety, and Honer-Wadsworth-Emmons-type coupling with the corresponding phosphates S7 and S8 provided sultams 1 and enoate 2, respectively.

1a: $X=X_{R}$ 1b: $X=X_{S}$
S7a: $X=X_{R}$
S7b: $X=X_{S}$

s5 $\xrightarrow[\text { 2) } \mathrm{LiCl}, \text { DIPEA, } \mathrm{CH}_{3} \mathrm{CN}]{\text { 1) DIBALH, } \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}}$

S8

S1 Imashiro, R.; Kuroda, T. J. Org. Chem. 2003, 68, 974.
S2 Kiyooka, S.; Kaneko, Y.; Komura, M.; Matsuo, H., Nakano, M. J. Org. Chem. 1991, 56, 2276.

(3R)-Methyl 2,2-dichloro-3-hydroxy-3-phenylpropanoate (S4): This compound was prepared according to the reported procedure. ${ }^{\mathrm{S} 1}[\alpha]_{\mathrm{D}}{ }^{25}=-16.4$ (c 0.73, CHCl_{3}); IR (KBr) $\vee 3505(\mathrm{OH}), 1746$ (CO); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.25(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 5.43(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.38-7.40 (m, 3H), 7.52-7.53 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 54.6,78.8,85.8,127.8(2 \mathrm{C})$, 128.8 (2C), 129.2, 135.3, 166.5; Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$: C, 48.22; H, 4.05; N, 0.00. Found: C, 48.34; H, 3.90; N, 0.01; HRMS (FAB), m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 249.0085$, found 249.0094.

HPLC conditions: Daicel chiral ID colum ($4.6 \times 250 \mathrm{~mm}$) with $10 \%{ }^{i} \mathrm{PrOH}$ in Hexane at a flow rate $0.40 \mathrm{~mL} / \mathrm{min}$, detection at 230 nm .

(3R)-Methyl 3-[(tert-butyldimethylsilyl)oxy]-2,2-dichloro-3-phenylpropanoate (S5): To a solution of alcohol $\mathbf{S 4}(456.0 \mathrm{mg}, 1.82 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.64 \mathrm{~mL}), 2,6-l u t i d i n e(0.85 \mathrm{ml}, 7.28 \mathrm{mmol})$ and tertbutyldimethylsilyl trifluromethanesulfonate $(0.81 \mathrm{~mL}, 3.64 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen. After stirred at room temperature for 12 h , the mixture was diluted with EtOAc and washed with saturated aqueous NaHCO_{3} and brine, dried over MgSO_{4}. Concentration under reduced pressure followed by flash chromatography over silica gel with n-hexane-EtOAc (18:1) gave the title compound S5 as colorless oil ($564.4 \mathrm{mg}, 86 \%$): $[\alpha]_{\mathrm{D}}{ }^{25}=-36.9$ (c 1.07, CHCl_{3}); IR (KBr) v 1746 (CO); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.262(\mathrm{~s}, 3 \mathrm{H}), 0.049(\mathrm{~s}, 3 \mathrm{H}), 0.870(\mathrm{~s}, 9 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.36$ (m, 3H), 7.51-7.54 (m, 2H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.54,-4.48,18.0,25.5$ (3C), 54.4, 79.7, 87.0, 127.5 (2C), 129.0, 129.5 (2C), 136.5, 166.3; HRMS (ESI), m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NaO}_{3} \mathrm{Si}$ $\left[^{M}+\mathrm{Na}\right]^{+} 385.0769$, found 385.0764 .

(5R,2E)-5-[(tert-Butyldimethylsilyl)oxy]-4,4-dichloro-5-phenylpent-3-enoyl-(R)-sultam (1a): To а solution of ester $\mathbf{S 5}(795.4 \mathrm{mg}, 2.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21.9 \mathrm{~mL})$ was added dropwise a solution of DIBALH in toluene $(1.01 \mathrm{M}, 4.34 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under nitrogen, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with saturated Rochelle salt and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine and dried over MgSO_{4}. Concentration under reduced pressure gave an oily aldehyde, which was used immediately in the next step without purification. To a stirred solution of (R) -D- N -diethoxyphosphonoacetylcamphorsultam ($1092 \mathrm{mg}, 2.78 \mathrm{mmol}$) in $\mathrm{MeCN}(14.9 \mathrm{~mL})$ were added $\mathrm{LiCl}(466.4 \mathrm{mg}, 11.0 \mathrm{mmol})$ and DIPEA $(1.92 \mathrm{~mL}, 11.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under nitrogen. After stirred for 30 min , a solution of the above aldehyde in $\mathrm{MeCN}(7.0 \mathrm{~mL})$ was added to the mixture, and the mixture
was stirred for 12 h at room temperature. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq and extracted with EtOAc. The extract was washed with brine and dried over MgSO_{4}. Concentration under reduced pressure followed by flash chromatography over silica gel with n-hexane-EtOAc (9:1) gave the title compound as a semisolid ($959 \mathrm{mg}, 77 \%$): $[\alpha]_{D}{ }^{25}=-103.9\left(c 1.23, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v 1686(\mathrm{CO}), 1334\left(\mathrm{NHSO}_{2}\right), 1165\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.212(\mathrm{~s}, 3 \mathrm{H}), 0.107(\mathrm{~s}$, $3 \mathrm{H}), 0.871(\mathrm{~s}, 9 \mathrm{H}), 0.974(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 2 \mathrm{H}), 1.89-1.91(\mathrm{~m}, 3 \mathrm{H}), 2.09-2.11(\mathrm{~m}, 2 \mathrm{H}), 3.42-$ $3.25(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-$ $7.31(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.39(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.17,-4.81,18.1,19.9,20.8,25.6$ (3C), 26.5, 32.8, 38.4, 44.6, 47.8, 48.7, 53.0, 65.0, 83.3, 90.0, 123.4, 127.6 (2C), 128.7, 129.0 (2C), 137.6, 145.1, 162.7; HRMS (ESI), m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$594.1644, found 594.1638.

S5

S7b

1b
(5R,2E)-5-(tert-Butyldimethylsilyl)oxy-4,4-dichloro-5-phenylpent-3-enoyl-(S)-sultam (1b): By use of a procedure similar to that described for the preparation of (R)-sultam derivative 1a, ester $\mathbf{S 5}(1.730 \mathrm{~g}$, $4.77 \mathrm{mmol})$ was converted into the title compound $\mathbf{1 b}(2.006 \mathrm{~g}, 74 \%$ yield $)$ as a semisolid: $[\alpha]_{\mathrm{D}}{ }^{25}=$ +3.94 (c 1.03, $\left.\mathrm{CHCl}_{3}\right)$; IR (KBr) v $1683(\mathrm{CO}), 1334\left(\mathrm{NHSO}_{2}\right), 1136\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-0.208(\mathrm{~s}, 3 \mathrm{H}), 0.092(\mathrm{~s}, 3 \mathrm{H}), 0.865(\mathrm{~s}, 9 \mathrm{H}), 0.977(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.47(\mathrm{~m}, 2 \mathrm{H})$, $1.84-1.98(\mathrm{~m}, 3 \mathrm{H}), 2.05-2.17(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.21,-4.83,18.1,19.9,20.8,25.6$ (3C), 26.5, 32.8, 38.4, 44.7, 47.8, 48.7, 53.0, 65.0, 82.9, 89.8, 123.4, 127.5 (2C), 128.7, 129.1 (2C), 137.5, 145.2, 162.8; HRMS (ESI), m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$594.1644, found 594.1638.

(5R,2Z)-Ethyl 5-[(tert-butyldimethylsilyl)oxy]-4,4-dichloro-5-phenylpent-2-enoate (2): By use of a procedure similar to that described for the preparation of (R)-sultam derivative 1a, ester $\mathbf{S 5}$ was converted into the title compound $2\left(1.32 \mathrm{~g}, 93 \%\right.$ yield) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}=-73.5\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right)$; IR (KBr) v $1718(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.207(\mathrm{~s}, 3 \mathrm{H}), 0.105(\mathrm{~s}, 3 \mathrm{H}), 0.884(\mathrm{~s}, 9 \mathrm{H}), 1.30$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.23(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=15.0$, $1 \mathrm{H}), 7.31-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.39(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.23,-4.78,14.2,18.1,25.6$ (3C), 60.9, 83.0, 89.9, 124.2, 127.5 (2C), 128.8, 129.0 (2C), 137.6, 144.2, 165.3; HRMS (ESI), m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 425.1078$, found 425.1077.

III. Experimental procedures of compounds $\underline{3} \underline{4 a-e} \underline{5 a-e}$, and $\underline{6 a-d}$

(5R,3Z)-5-[(tert-Butyldimethylsilyl)oxy]-4-chloro-5-phenylpent-3-enoyl-(R)-sultam (3): To a suspension of $\mathrm{CuCN}(35.9 \mathrm{mg}, 0.401 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ was added dropwise a solution of MeLi \cdot LiBr complex in $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{M}, 0.64 \mathrm{~mL}, 0.960 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under argon, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . To the solution of the above organocuprate was added dropwise a solution of the N enoyl sultam $\mathbf{1 a}(57.2 \mathrm{mg}, 0.100 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , the reaction was quenched by addition of a $3: 2$ saturated $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{3}$ aqueous solution with additional stirring at room temperature for 30 min . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with brine and dried over MgSO_{4}. Concentration under reduced pressure followed by flash chromatography over silica gel with n-hexane-EtOAc (19:1) gave the title compound ($53.3 \mathrm{mg}, 99 \%$ yield) as a white solid: $[\alpha]_{\mathrm{D}}{ }^{25}=-69.5\left(c 0.630, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}) \vee 1700(\mathrm{CO}), 1333\left(\mathrm{NHSO}_{2}\right), 1135$ $\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.019(\mathrm{~s}, 3 \mathrm{H}),-0.097(\mathrm{~s}, 3 \mathrm{H}), 0.902(\mathrm{~s}, 9 \mathrm{H}), 0.971(\mathrm{~s}, 3 \mathrm{H})$, $1.16(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.96(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.18(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.75(\mathrm{~m}$, $2 \mathrm{H}), 3.87-3.89(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.40(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta-5.07,-4.89,18.3,19.9,20.8,25.7$ (3C), 26.4, 32.8, 35.0, 38.4, 44.6, 47.8, 48.6, 52.9, 65.3, 77.6, 117.3, 126.7 (2C), 127.7, 128.1 (2C), 139.9, 141.1, 168.6; HRMS (ESI), m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{ClNNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 560.2028$, found 560.2026.

(2R,5R,3Z)-5-[(tert-Butyldimethylsilyl)oxy]-4-chloro-2-methyl-5-phenylpent-3-enoyl-(R)-sultam
(4a): To a suspension of $\mathrm{CuI}(114.7 \mathrm{mg}, 0.60 \mathrm{mmol})$ in THF $(4.0 \mathrm{~mL})$ was added dropwise a solution of $\mathrm{MeLi} \cdot \mathrm{LiBr}$ complex in $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{M}, 0.960 \mathrm{~mL}, 1.44 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under argon, and the mixture was
stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . To the solution of the above organocuprate was added dropwise a solution of the N-enoyl sultam 1a ($85.9 \mathrm{mg}, 0.150 \mathrm{mmol}$) in THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and HMPA ($417.6 \mu \mathrm{~L}, 2.40 \mathrm{mmol}$) was added dropwise to the mixture. After stirring at $-78^{\circ} \mathrm{C}$ for 30 min , a solution of triphenyltin chloride ($115.5 \mathrm{mg}, 0.30 \mathrm{mmol}$) in THF (2.0 mL) was added dropwise, and the mixture was then stirred at $-40^{\circ} \mathrm{C}$ for 30 min and methyl iodide $(75.0 \mu \mathrm{~L}, 1.20$ mmol) was added dropwise. The mixture was stirred at $-40^{\circ} \mathrm{C}$ for 20 h . The reaction was quenched by addition of a $3: 2$ saturated $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \quad \mathrm{NH}_{3}$ aqueous solution with additional stirring at room temperature for 30 min . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with brine and dried over MgSO_{4}. Concentration under reduced pressure followed by flash chromatography over silica gel with n-hexane-EtOAc (19:1) gave the title compound ($47.8 \mathrm{mg}, 58 \%$ yield) as a white solid; $[\alpha]_{\mathrm{D}}{ }^{25}=$ -78.6 (c 1.02, $\left.\mathrm{CHCl}_{3}\right)$; IR (KBr) v $1695(\mathrm{CO}), 1335\left(\mathrm{NHSO}_{2}\right), 1134.1\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-0.018(\mathrm{~s}, 3 \mathrm{H}),-0.090(\mathrm{~s}, 3 \mathrm{H}), 0.899(\mathrm{~s}, 9 \mathrm{H}), 0.972(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.47(\mathrm{~m}, 2 \mathrm{H})$, $1.36(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.88-1.92(\mathrm{~m}, 3 \mathrm{H}), 2.06-2.07(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.91(\mathrm{~m}, 1 \mathrm{H})$, 4.19-4.31 (m, 1H), $5.20(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.37(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-5.08,-4.89,18.3,19.1,19.9,20.8,25.7$ (3C), 26.4, 32.8, 38.3, 40.1, 44.6, 47.8, 48.4, 53.0, 65.0, 77.6, 124.2, 126.7 (2C), 127.6, 128.0 (2C), 137.7, 141.1, 173.6; HRMS (ESI), m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{ClNNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 574.2185$, found 574.2185 .

(2R,5R,3Z)-2-Benzyl-5-[(tert-butyldimethylsilyl)oxy]-4-chloro-5-phenylpent-3-enoyl-(R)-sultam
(4b): By use of a procedure similar to that described for the preparation of (R)-methyl derivative $\mathbf{4 a}$, the
(R)-sultam derivative $1 \mathbf{1 a}(86.3 \mathrm{mg}, 0.151 \mathrm{mmol})$ was converted into the title compound $\mathbf{4 b}$ (79.1 mg , 83% yield $)$ as a semisolid: $[\alpha]_{\mathrm{D}}{ }^{25}=-58.9\left(\mathrm{c} 2.61, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) \vee 1692(\mathrm{CO}), 1335\left(\mathrm{NHSO}_{2}\right), 1134$ $\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.043(\mathrm{~s}, 3 \mathrm{H}), 0.072(\mathrm{~s}, 3 \mathrm{H}), 0.772(\mathrm{~s}, 3 \mathrm{H}), 0.881(\mathrm{~s}, 3 \mathrm{H})$, $0.891(\mathrm{~s}, 9 \mathrm{H}), 1.25-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.97-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.89(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.21$ $(\mathrm{m}, 1 \mathrm{H}), 3.35-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{br}, 1 \mathrm{H}), 4.57(\mathrm{br}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.31$ (m, 10H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.11,-4.88,18.2,19.8,20.5,25.8$ (3C), 26.4, 32.7, 38.3, $39.8,44.6,47.2,47.6,48.2,53.0,64.9,77.5,122.8,126.7,126.7$ (2C), 127.5, 128.0 (2C), 128.3 (2C), 129.5 (2C), 137.3, 139.0, 141.0, 172.4; HRMS (ESI), m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{ClNNaO}_{4} \mathrm{SSi} \quad[\mathrm{M}+\mathrm{Na}]^{+}$ 650.2498 , found 650.2498 .

(2R,5R,3Z)-2-(2-tert-Butoxy-2-oxoethyl)-5-[(tert-butyldimethylsilyl)oxy]-4-chloro-5-phenylpent-3-

 enoyl-(R)-sultam (4c): By use of a procedure similar to that described for the preparation of (R)-methyl derivative 4a, the (R)-sultam derivative $\mathbf{1 a}(86.0 \mathrm{mg}, 0.150 \mathrm{mmol})$ was converted into the title compound $\mathbf{4 c}(88.3 \mathrm{mg}, 90 \%$ yield $)$ as pale yellow crystals: $[\alpha]_{\mathrm{D}}{ }^{25}=-64.8\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr})$ $v 1728(\mathrm{CO}), 1692(\mathrm{CO}), 1337\left(\mathrm{NHSO}_{2}\right) 1136\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.031(\mathrm{~s}, 3 \mathrm{H})$, $0.110(\mathrm{~s}, 3 \mathrm{H}), 0.922(\mathrm{~s}, 9 \mathrm{H}), 0.994(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.87-1.92(\mathrm{~m}$, $3 \mathrm{H}), 2.04-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.66(\mathrm{dd}, \quad J=5.6,16 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.89(\mathrm{dd}, J=16,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-$ $3.52(\mathrm{~m}, 2 \mathrm{H}), 3.98-4.01(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 6.15-6.19(\mathrm{dd}, J=8.8,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-$ $7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.08,-4.90,18.2,19.9,20.6,25.7$ (3C), 26.5, 28.0 (3C), $32.7,38.0,38.3,41.9,44.7,47.8,48.552 .9,64.9,77.5,81.2,121.8,126.8$ (2C), 127.7, 128.1 (2C),139.5, 140.9, 169.8, 171.8; HRMS (ESI), m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{ClNNaO}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$674.2709, found 674.2694.

(2R,5R,3Z)-2-Allyl-5-[(tert-butyldimethylsilyl)oxy]-4-chloro-5-phenylpent-3-enoyl-(R)-sultam (4d): By use of a procedure similar to that described for the preparation of (R)-methyl derivative $\mathbf{4 a}$, the (R) sultam derivative 1a ($86.3 \mathrm{mg}, 0.151 \mathrm{mmol}$) was converted into the title compound $\mathbf{4 d}(70.6 \mathrm{mg}, 81 \%$ yield) as a semisolid: $[\alpha]^{25}{ }_{\mathrm{D}}=-57.7\left(\mathrm{c} 2.59, \mathrm{CHCl}_{3}\right)$; IR (ATR) v $1695(\mathrm{CO}), 1337\left(\mathrm{NHSO}_{2}\right) 1134$ $\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-0.026(\mathrm{~s}, 3 \mathrm{H}), 0.088(\mathrm{~s}, 3 \mathrm{H}), 0.896(\mathrm{~s}, 9 \mathrm{H}), 0.966(\mathrm{~s}, 3 \mathrm{H})$, $1.17(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.99-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.63(\mathrm{~m}$, $1 \mathrm{H}), 3.40-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.93(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.00-5.05(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.11(\mathrm{~m}, 1 \mathrm{H})$, $5.21(\mathrm{~s}, 1 \mathrm{H}), 5.73-5.81(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=8.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.09$, $-4.89,18.3,19.9,20.8,25.7$ (3C), 26.4, 32.8, 38.2, 38.4, 44.6, 44.8, 47.7, 48.3, 53.1, 65.1, 77.6, 118.0, 122.5, 126.8 (2C), 127.6, 128.0 (2C), 133.9, 138.6, 141.1, 172.3; HRMS (ESI), m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{ClNNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 600.2341$, found 600.2348 .

(2R,5R,3Z)-5-[(tert-Butyldimethylsilyl)oxy]-4-chloro-5-phenyl-2-(prop-2-yn-1-yl)pent-3-enoyl-(R)sultam (4e): By use of a procedure similar to that described for the preparation of (R)-methyl derivative

4a, the (R)-sultam derivative $\mathbf{1 a}(100.0 \mathrm{mg}, 0.175 \mathrm{mmol})$ was converted into the title compound $\mathbf{4 e}(82.8$ $\mathrm{mg}, 82 \%$ yield $)$ as a brown oil: $[\alpha]_{\mathrm{D}}{ }^{25}=-57.3\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$; IR (ATR) v $3310(\mathrm{HC} \equiv \mathrm{C}), 1697(\mathrm{CO})$, $1336\left(\mathrm{NHSO}_{2}\right), 1135\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.018(\mathrm{~s}, 3 \mathrm{H}), 0.112(\mathrm{~s}, 3 \mathrm{H}), 0.913(\mathrm{~s}$, $9 \mathrm{H}), 0.974(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.98-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.18(\mathrm{~m}$, 2H), 2.67 (ddd, $\quad J=16.8,6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, J=16.8,5.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.52(\mathrm{~m}, 2 \mathrm{H})$, 3.91-3.95 (m, 1H), 4.34-4.39 (m, 1H), $5.26(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=0.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.41(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.10,-4.91,18.3,19.9,20.7,23.0,25.7$ (3C), 26.5, 32.7, 38.3, 43.8, $44.6,47.8,48.5,53.0,65.1,71.2,77.5,79.5,121.4,126.8$ (2C), 127.7, 128.1 (2C), 139.3, 140.9, 170.9; HRMS (ESI), m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{ClNNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 598.2185$, found 598.2180.

(2S,5R,3Z)-5-(tert-Butyldimethylsilyl)oxy-4-chloro-2-methyl-5-phenylpent-3-enoyl-(S)-sultam (5a):
By use of a procedure similar to that described for the preparation of (R)-methyl derivative $\mathbf{4 a}$, the (R) sultam derivative 1b ($85.8 \mathrm{mg}, 0.150 \mathrm{mmol}$) was converted into the title compound $\mathbf{5 a}(49.6 \mathrm{mg}, 60 \%$ yield) as a white solid: $[\alpha]^{25}{ }_{\mathrm{D}}=+72.8\left(\mathrm{c} 0.87, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}) v 1694(\mathrm{CO}), 1335\left(\mathrm{NHSO}_{2}\right), 1134$ $\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.026(\mathrm{~s}, 3 \mathrm{H}), 0.028(\mathrm{~s}, 3 \mathrm{H}), 0.940(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 1.19$ $(\mathrm{s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.93(\mathrm{~m}, 3 \mathrm{H}), 2.09-2.11(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H})$, 3.92-3.94 (m, 1H), 4.24-4.27 (m, 1H), $5.26(\mathrm{~s}, 1 \mathrm{H}), 6.33-6.35(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 3 \mathrm{H})$, 7.38-7.40 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.07,-4.76,18.3,19.0,19.9,20.8,25.7$ (3C), 26.4, $32.8,38.3,40.1,44.6,47.8,48.4,53.0,65.0,77.6,124.2,126.6$ (2C), 127.6, 128.0 (2C), 137.7, 141.1, 173.6; HRMS (ESI), m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{ClNNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$574.2185, found 574.2179.

(2S,5R,3Z)-2-Benzyl-5-[(tert-butyldimethylsilyl)oxy]-4-chloro-5-phenylpent-3-enoyl-(S)-sultam
$\mathbf{(5 b)}$: By use of a procedure similar to that described for the preparation of (R)-methyl derivative $\mathbf{4 a}$, the (S)-sultam derivative $\mathbf{1 b}(88.9 \mathrm{mg}, 0.156 \mathrm{mmol})$ was converted into the title compound $\mathbf{5 b}(83.6 \mathrm{mg}$, 86% yield $)$ as a pale yellow oil: $[\alpha]_{\mathrm{D}}{ }^{25}=+48.6\left(c 2.79, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}) \vee 1694(\mathrm{CO}), 1337\left(\mathrm{NHSO}_{2}\right)$, $1134\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.028(\mathrm{~s}, 3 \mathrm{H}), 0.054(\mathrm{~s}, 3 \mathrm{H}), 0.714(\mathrm{~s}, 3 \mathrm{H}), 0.880(\mathrm{~s}$, $3 \mathrm{H}), 0.892(\mathrm{~s}, 9 \mathrm{H}), 1.25-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.96-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.14-$ $3.18(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}), 4.57-4.58(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15-7.28 (m, 10H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CHCl}_{3}\right) \delta-5.13,-4.78,18.2,19.8,20.5,25.8$ (3C), 26.4, 32.8, $38.3,39.7,44.6,47.2,47.6,48.2,53.0,64.9,77.5,122.7,126.7$ (2C), 126.7, 127.5, 128.0 (2C), 128.3 (2C), 129.5 (2C), 137.2, 138.8, 141.0, 172.4; HRMS (ESI), m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{ClNNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$ 650.2498 , found 650.2506 .

(2S,5R,3Z)-5-(tert-Butyldimethylsilyl)oxy-4-chloro-2-(2-tert-buthoxy-2-oxoethyl)-5-phenylpent-3-enoyl-(S)-sultam (5c): By use of a procedure similar to that described for the preparation of (R)-methyl derivative $\mathbf{4 a}$, the (R)-sultam derivative $\mathbf{1 b}(57.2 \mathrm{mg}, 0.100 \mathrm{mmol})$ was converted into the title compound 5c (37.2 mg, 57\% yield) as a white solid: $[\alpha]_{\mathrm{D}}=+38.1\left(\mathrm{c} 1.20, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr})$ v 1728
(CO), $1692(\mathrm{CO}), 1335\left(\mathrm{NHSO}_{2}\right) 1134\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.007(\mathrm{~s}, 3 \mathrm{H}), 0.088$ $(\mathrm{s}, 3 \mathrm{H}), 0.894(\mathrm{~s}, 9 \mathrm{H}), 0.964(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.80-1.95(\mathrm{~m}, 3 \mathrm{H})$, $2.00-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.87(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.90-$ $3.99(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{br}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.12,-4.74,18.2,19.9,20.6,25.7$ (3C), 26.5, 28.0 (3C), 32.8, 37.9, 38.1, 41.9, 44.7, $47.8,48.6,52.9,65.0,77.5,81.2,121.8,126.6$ (2C), 127.6, 128.0 (2C), 139.4, 140.9, 169.9, 171.7; HRMS (ESI), m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{ClNNaO}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 674.2709$, found 674.2680.

(2S,5R,3Z)-2-Allyl-5-[(tert-butyldimethylsilyl)oxy]-4-chloro-5-phenylpent-3-enoyl-(S)-sultam (5d):
By use of a procedure similar to that described for the preparation of (R)-methyl derivative $\mathbf{4 a}$, the (R) sultam derivative 1a ($85.8 \mathrm{mg}, 0.150 \mathrm{mmol}$) was converted into the title compound $\mathbf{5 d}(61.0 \mathrm{mg}, 70 \%$ yield) as a pale yellow oil: $[\alpha]_{\mathrm{D}}{ }^{25}=+35.8\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{ATR}) \vee 1695(\mathrm{CO}), 1337\left(\mathrm{NHSO}_{2}\right) 1135$ $\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.029(\mathrm{~s}, 3 \mathrm{H}), 0.071(\mathrm{~s}, 3 \mathrm{H}), 0.881(\mathrm{~s}, 9 \mathrm{H}), 0.994(\mathrm{~s}, 3 \mathrm{H})$, $1.15(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.96-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.62(\mathrm{~m}$, $1 \mathrm{H}), 3.40-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.89(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.99-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.69-$ $5.79(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=9.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.07$, $-4.76,18.3,19.9,20.8,25.7$ (3C), 26.4, 32.8, 38.1, 38.4, 44.6, 44.8, 47.7, 48.3, 53.1, 65.2, 77.6, 118.0, 122.6, 126.7 (2C), 127.6, 128.0 (2C), 133.6, 138.6, 141.1, 172.3; HRMS (ESI), m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{ClNNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+} 600.2341$, found 600.2333 .

(2S,5R,3Z)-5-[(tert-Buthyldimethylsilyl)oxy]-4-chloro-5-phenyl-2-(prop-2-yn-1-yl)pent-3-enoyl-(S)sultam (5e): By use of a procedure similar to that described for the preparation of (R)-methyl derivative 4a, the (R)-sultam derivative $\mathbf{1 b}(71.4 \mathrm{mg}, 0.125 \mathrm{mmol}$) was converted into the title compound $\mathbf{5 e}$ (33.0 $\mathrm{mg}, 46 \%$ yield $)$ as a brawn oil: $[\alpha]_{\mathrm{D}}=+40.3\left(\mathrm{c} 1.10, \mathrm{CHCl}_{3}\right) ;$ IR (KBr) v $3300(\mathrm{CCH}), 1701(\mathrm{CO}), 1327$ $\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.041(\mathrm{~s}, 3 \mathrm{H}), 0.134(\mathrm{~s}, 3 \mathrm{H}), 0.929(\mathrm{~s}, 9 \mathrm{H}), 0.935(\mathrm{~s}, 3 \mathrm{H})$, $0.999(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.93(\mathrm{~m}, 3 \mathrm{H}), 2.02-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.14(\mathrm{~m}$, $2 H), 2.67-2.84(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.97(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.41(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{dd}$, $J=9.0,0.5, \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.47(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.10,-4.78,18.3,19.9,20.7$, $22.9,25.7$ (3C), $26.5,32.7,38.3,43.8,44.6,47.8,48.5,53.0,65.1,71.3,77.5,79.5,121.7,126.6$ (2C), 127.6, 128.0 (2C), 139.6, 140.9, 170.9; HRMS (ESI), m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{ClNNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$ 598.2185, found 598.2181.

(5R,3Z)-Ethyl 5-[(tert-butyldimethylsilyl)oxy]-4-chloro-2-methyl-5-phenylpent-3-enoate (6a): То а suspension of $\mathrm{CuCN}(71.6 \mathrm{mg}, 0.80 \mathrm{mmol})$ and $\mathrm{LiCl}(67.8 \mathrm{mg}, 1.60 \mathrm{mmol})$ in THF (1.00 mL) was added a solution of $\mathrm{MeLi} \cdot \mathrm{LiBr}$ in $\mathrm{Et}_{2} \mathrm{O}(1.14 \mathrm{M}, 0.702 \mathrm{~mL}, 0.800 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under argon, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . To the solution of organocuprate was added dropwise a solution of ester $2(82.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min
and quenched by addition of $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{3}$ aqueous solution with additional stirring at room temperature for 30 min . The mixture was extracted with EtOAc and the extract was washed with brine and dried over MgSO_{4}. Concentration under reduced pressure followed by flash chromatography over silica gel with n-hexane-EtOAc (19:1) gave the title compound $\mathbf{6 a}(74.9 \mathrm{mg}, 98 \%$ yield) as a colorless oil: IR (KBr) $\vee 1736(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers) $\delta 0.009(\mathrm{~s}, 3 \mathrm{H})$, $0.102(\mathrm{~s}, 3 \mathrm{H}), 0.893-0.934(\mathrm{~m}, 9 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.56-3.65(\mathrm{~m}, 1 \mathrm{H})$, 4.11-4.19 (m, 2H), 5.22 (s, 1H), 6.10-6.20(m, 2H), 7.24-7.39 (m, 5H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}, mixture of diastereomers, [minor isomer]) $\delta-5.05$ [-5.07], -4.89 [-4.92], 14.2, 17.1 [17.1], 18.3, 25.7 (3C), 39.2, 60.8 [60.8], $77.5,124.8$ [125.1], 126.6 [126.6] (2C) , 127.7, 128.1 (2C), 137.8 [137.9], 141.1 [141.1], 174.0 [173.9]; HRMS (ESI), m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{ClNaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$405.1623, found 405.1623.

(Z)-Ethyl 5-[(tert-butyldimethylsilyl)oxy]-4-chloro-2-ethyl-5-phenylpent-3-enoate (6b): By use of a procedure similar to that described for the preparation of compound $\mathbf{6 a}$, ester $\mathbf{2}(82.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ was converted into the title compound $\mathbf{6 b}(76.1 \mathrm{mg}, 96 \%$ yield) as a colorless oil: $\mathrm{IR}(\mathrm{KBr})$ v 1737 (CO) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers) $\delta-0.004-0.020(\mathrm{~m}, 3 \mathrm{H}), 0.091-0.119(\mathrm{~m}$, $3 \mathrm{H}), 0.867-0.955(\mathrm{~m}, 3 \mathrm{H}), 0.922(\mathrm{~s}, 9 \mathrm{H}), 1.24-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.90(\mathrm{~m}, 1 \mathrm{H}), 3.44-$ $3.52(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.21(\mathrm{~m}, 2 \mathrm{H}), 5.21-5.26(\mathrm{~m}, 1 \mathrm{H}), 6.08-6.18(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers, [minor isomer]) $\delta-5.05,-4.94,11.4,14.2$ [14.2], 18.3, 25.7 [25.7] (3C), 46.2 [46.3], 60.7, 77.6, 123.5 [123.8], 126.6 [126.6] (2C), 127.7, 128.1 (2C), 138.5,
[138.7], 141.2 [141.2], 173.3, [173.4]; HRMS (ESI), m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{ClNaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$419.1780, found 419.1774.

(5R,3Z)-Ethyl 2-benzyl-5-[(tert-butyldimethylsilyl)oxy]-4-chloro-5-phenylpent-3-enoate (6c): By use of a procedure similar to that described for the preparation of compound $\mathbf{6 a}$, ester $2(82.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ was converted into the title compound $\mathbf{6 c}\left(64.1 \mathrm{mg}, 70 \%\right.$ yield) as a colorless oil: IR (KBr) v 1732 (CO); ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers) $\delta-0.071-0.022(\mathrm{~m}, 3 \mathrm{H}), 0.023-0.065(\mathrm{~m}, 2 \mathrm{H}), 0.863-0.923(\mathrm{~m}, 9 \mathrm{H}), 1.14-$ $1.21(\mathrm{~m}, 3 \mathrm{H}), 2.88-2.97(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.92(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.15(\mathrm{~m}, 2 \mathrm{H}), 5.10-5.19(\mathrm{~m}, 1 \mathrm{H}), 6.02-$ $6.17(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.32(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers, [minor isomer]) $\delta-5.09,-4.97,14.1,18.2,25.7$ (3C), 38.2 [38.1], 46.6, [46.5], 60.8, [60.9], 77.5, 122.8 [123.4], 126.5 [126.5], 126.7 (2C), 127.7, 128.0 [128.0], 128.3 [128.4], 129.1, 138.0, 138.9 [139.3], 141.0 [140.9], 172.7 [172.6]; HRMS (ESI), m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{ClNaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 481.1937$, found 481.1936.

(5R,3Z)-Ethyl 5-[(tert-butyldimethylsilyl)oxy]-4-chloro-2-isobutyl-5-phenylpent-3-enoate (6d): By use of a procedure similar to that described for the preparation of compound $\mathbf{6 a}$, ester $\mathbf{2}(82.0 \mathrm{mg}, 0.20$ mmol) was converted into the title compound $\mathbf{6 d}(80.3 \mathrm{mg}, 95 \%$ yield) as a colorless oil: IR (ATR) $v 1737(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers) $\delta 0.000-0.002(\mathrm{~m}, 3 \mathrm{H}), 0.089-$ $0.095(\mathrm{~m}, 3 \mathrm{H}), 0.878-0.950(\mathrm{~m}, 6 \mathrm{H}), 0.912(\mathrm{~s}, 9 \mathrm{H}), 1.23-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.61(\mathrm{~m}$, $1 \mathrm{H}), 1.68-1.72(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.65(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.18(\mathrm{~m}, 2 \mathrm{H}), 5.19-5.23(\mathrm{~m}, 1 \mathrm{H}), 6.03-6.10(\mathrm{~m}, 1 \mathrm{H})$, 6.06-6.11 (m, 0.6 H), 7.24-7.38 (m, 5H) , ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers, [minor
isomer]) $\delta-5.04,-4.96,14.2,18.3,22.3$ [22.3], 22.6 [22.6], 25.7 (3C), 25.9 [25.9], 41.3 [41.4], 43.3, 60.7, 77.6 [77.6], 124.1 [124.4], 126.5 [126.6] (2C), 127.7, 128.1 (2C), 138.2 [138.4], 141.1 [141.2], 173.6 [173.6]; HRMS (ESI), m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{ClKNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+} 463.1832$, found 463.1827 .

IV. Copper-catalyzed $\mathrm{S}_{\mathrm{N}} \mathbf{2}^{\prime}$-type allylic alkylation

According to Feringa's report ${ }^{53}$, we attempted Cu-catalyzed $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-type allylic alkylation with the enoate 2. However, the reaction with EtMgBr in the presence of a catalytic amount of CuTC and phosphoroamidite ligands [A (SSS) and B (SRR)] provided none of α-alkylated products with recovering the starting material. Unfortunately, a similar result was obtained even with increasing the catalyst loading from 5 to $20 \mathrm{~mol} \%$, possibly due to the lower reactivity of internal allylic system and/or the steric hindrance to prevent the interaction of copper complex with a Cl group.

[^0]
V. Structural determination of the major isomer of allylic alkylation of enoate $\underline{2}$

V-I. Preparation of an authentic sample 6a

The preference of the stereochemical outcome of allylic alkylaiton in Table 3 was assigned by the chemical correlation with an authentic sample 6a, prepared from (S)-sultam-derived 5a. Hydrolysis of 5 a under basic conditions followed by O-alkylation with EtI and KHCO_{3} provided the corresponding (2S)-ester 6a. Others were determined by the retention time of HPLC.

5a

74% in 2 steps

6a
(2S,5R,3Z)-Ethyl 5-[(tert-butyldimethylsilyl)oxy]-4-chloro-2-methyl-5-phenylpent-3-enoate (6a): To a solution of the sultam $\mathbf{5 a}(55.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(5: 1,3 \mathrm{~mL})$ was added dropwise $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aq. ($34.0 \mu \mathrm{~L}, 0.300 \mathrm{mmol}$) and 1 M LiOH aq. ($0.300 \mathrm{~mL}, 0.300 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 1.5 hour and at room temperature for 30 min , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. After dried over MgSO_{4}, concentration under reduced pressure gave an oily carboxylic acid, which was used in the next step without further purification. To a solution of the above carboxylic acid in DMF (3.0 mL) was added KHCO_{3} ($50.1 \mathrm{mg}, 0.500 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After being stirred for 10 min , ethyl iodide ($39.5 \mu \mathrm{~L}, 0.500 \mathrm{mmol}$) was added dropwise. The mixture was stirred at room temperature for 1 h . After being diluted with $\mathrm{Et}_{2} \mathrm{O}$, the reaction mixture was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and brine, and dried over MgSO_{4}. Concentration under reduced pressure followed by flash chromatography over silica gel with n-hexane-AcOEt (20:1) gave the title compound $\mathbf{6 a}\left(28.5 \mathrm{mg}, 74 \%\right.$ yield): $[\alpha]_{\mathrm{D}}{ }^{25}=+15.8$ (c $1.43, \mathrm{CHCl}_{3}$); IR (ATR): 1735.6 (CO); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.010(\mathrm{~s}, 3 \mathrm{H}), 0.104(\mathrm{~s}, 3 \mathrm{H}), 0.918$ (s, 9H), 1.26 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.61(\mathrm{dq}, J=9.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), $5.22(\mathrm{~s}, 1 \mathrm{H}), 6.18$ (dd, $J=9.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -$5.05,-4.88,14.2,17.1,18.3,25.7$ (3C), 39.2, 60.8, 77.5, 124.8, 126.6 (2C), 127.7, 128.1 (2C), 137.8, 141.1, 174.0; HRMS (FAB), m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{ClNaO}_{3} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 405.1623$, found 405.1622.

V-II. Comparison of NMR charts of compound 6a

V-III. HPLC charts of compounds $\underline{\mathbf{6 a}-\mathbf{6 d}}$

HPLC conditions: Cosmosil Cholester Packed column ($4.6 \times 250 \mathrm{~mm}$) with 75\%MeCN in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm .

Retention time: $t_{\mathrm{r}} \mathbf{6 a}(2 S, 5 R)=33.8 \mathrm{~min}, t_{\mathrm{r}}$ epi-6a $(2 R, 5 R)=35.4 \mathrm{~min}$

HPLC conditions: Cosmosil Cholester Packed column ($4.6 \times 250 \mathrm{~mm}$) with $75 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm .

Retention time: $t_{\mathrm{r}} \mathbf{6 b}(2 S, 5 R)=43.3 \mathrm{~min}, t_{\mathrm{r}}$ epi-6b $(2 R, 5 R)=45.4 \mathrm{~min}$

HPLC conditions: Cosmosil Cholester Packed column (4.6 x 250 mm) with 78\%MeCN in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 230 nm .

Retention time: $t_{\mathrm{r}} \mathbf{6 c}(2 S, 5 R)=42.1 \mathrm{~min}, t_{\mathrm{r}}$ epi- $6 \mathbf{c}(2 R, 5 R)=44.0 \mathrm{~min}$

HPLC conditions: Cosmosil Cholester Packed column ($4.6 \times 250 \mathrm{~mm}$) with $78 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 230 nm .

Retention time: $t_{\mathrm{r}} \mathbf{6 d}(2 S, 5 R)=53.6 \mathrm{~min}, t_{\mathrm{r}}$ epi- $\mathbf{6 d}(2 R, 5 R)=55.4 \mathrm{~min}$

V-IV. DFT calculation of reactive conformers of allylic alkylation of $\underline{\mathbf{2}}$

Although the observed diastereoselectivity was not rationalized at the present stage, a possible pathway to the preferable formation of $(2 S)$-isomer over $(2 R)$-isomer is depicted in Figure S1. It has been well documented that the stereochemical outcome of organocopper-mediated allylic alkylation depends on the nature of the leaving group. ${ }^{54}$ The reaction with allylic halides usually takes place with anti-stereochemistry with respect to the leaving group. ${ }^{55}$ Taking account of these reports, two reactive conformers \mathbf{A} and \mathbf{B} can be considered to afford the allylic alkylation products. Conformer \mathbf{A}, which would lead to the $(2 R)$-isomer, may be destabilized in comparison with conformer \mathbf{B} possibly due to the steric interactions between the olefinic proton $\left(\mathrm{H}^{\beta}\right)$ and the Ph group at δ-position. In fact, DFT calculations of methyl enoate suggested that the conformer \mathbf{B} is favored by $4.42 \mathrm{~kJ} / \mathrm{mol}$ over the conformer A. Accordingly, conformer B is more likely reacted with organocuprates to lead to the preferential formation of $(2 S)$-isomer 6 .

Figure S1. Possible Pathway to the Preferable Formation of 6.

[^1]The optimized geometries calculated by AM1 Semi-Empirical method with the Spartan'10 program (version 1.1.0: Wavefunction Inc., Irvine, California) were used as starting geometries for DFT calculations. DFT calculations were carried out with the same program. The geometries were fully optimized in vacuo by using the B3LYP/6-31(d) level of theory.

Conformer A

Cartesian Coordinates (Angstroms)			
Atom	X	Y	Z
1 C C4	0.4215699	-0.5573128	0.8
2 O	0.8739950	0.4965078	0.0328823
3 C C5	-1.0299522	-0.1749332	1.3167977
4 Cl Cl 1	-1.6563651	-1.5176576	2.4036757
$5 \mathrm{Cl} \mathrm{Cl2}$	-0.9212128	1.3245804	2.3413603
6 C C6	-2.0075611	-0.0158386	0.1930154
7 H H 12	-1.8572138	-0.6988196	-0.6378069
8 C C7	-3.0724778	0.7887551	0.1625835
9 H H 13	-3.3083519	1.4851509	0.9588807
10 C C10	-3.9767545	0.7518908	-1.0126750
11 O O1	-3.8354873	0.0530191	-1.9969973
12 O 0	-5.0045666	1.6148264	-0.8465316
13 C C8	-5.9490760	1.6535193	-1.9278889
14 H H 14	-6.6971777	2.3912175	-1.6391531
15 H H 15	-6.4098411	0.6727794	-2.0702053
16 Si Si 2	2.2200762	1.5120833	0.2364894
17 C C11	3.5117748	1.0782316	-1.1078830
18 C C12	4.7228726	2.0297254	-0.9830896
19 H H 11	5.2211182	1.9395858	-0.0110034
20 H H20	4.4404659	3.0798730	-1.1185993
21 H H21	5.4691325	1.7925902	-1.7531280
22 C C13	3.9996204	-0.3771182	-0.9457242
23 H H19	3.1798293	-1.0948166	-1.0488153
24 H H 22	4.4769122	-0.5463757	0.026415

25 H H23	4.7450931	-0.6149892	-1.7169493
26 C C14	2.8876992	1.2433826	-2.5097669
27 H H18	2.0275172	0.5812152	-2.6510654
28 H H24	3.6250404	0.9983079	-3.2864382
29 H H25	2.5543168	2.2710776	-2.6909799
30 H H26	-5.4561394	1.9477883	-2.8577842
31 C C9	2.9407262	1.2895269	1.9677067
32 H H9	2.2042732	1.5431008	2.7363683
33 H H16	3.7976896	1.9586063	2.1015454
34 H H17	3.2910954	0.2703538	2.1602739
35 C C15	1.5835495	3.2700491	0.0128540
36 H H27	2.3980034	4.0013711	0.0456648
37 H H28	0.8748845	3.5202294	0.8078765
38 H H29	1.0633419	3.3900914	-0.9425304
39 H H32	1.0090386	-0.6398400	1.7687804
40 C C1	0.5059490	-1.8821930	0.0960130
41 C C2	0.7191378	-4.3179630	-1.2859471
42 C C3	0.3111210	-1.9335593	-1.2910775
43 C C16	0.8313852	-3.0613998	0.7764997
44 C C17	0.9348262	-4.2722622	0.0918557
45 C C18	0.4106251	-3.1446847	-1.9757778
46 H H2	0.1030825	-1.0182965	-1.8344754
47 H H6	1.0027395	-3.0325335	1.8484985
48 H H5	1.1887284	-5.1776804	0.6350803
49 H H3	0.2522673	-3.1685997	-3.0498665
50 H H4	0.8001707	-5.2599641	-1.8203341

Total electronic energy: - $5611290.76 \mathrm{~kJ} / \mathrm{mol}$
Zero-point energy: +1066.27
Sum of electronic and thermal Enhtalpies: -2136.79545
Sum of electronic and thermal Free energies: -2136.86964

B

Conformer B

Cartesian Coordinates (Angstroms)			
Atom	X	Y	Z
1 C C4	0.3994957	-0.4761683	0.908
2 O 3	0.9850176	0.4951677	0.0763837
3 C C5	-0.9900914	0.0875269	1.3607730
4 Cl Cl 1	-1.7973068	-1.1415205	2.4296716
$5 \mathrm{Cl} \mathrm{Cl2}$	-0.7104445	1.5777531	2.4059313
6 C C6	-1.8641551	0.5043606	0.2171840
7 H H12	-1.3160462	0.9374813	-0.6149186
$8 \mathrm{C} \mathrm{C7}$	-3.1982988	0.4893559	0.1737079
9 H H 13	-3.8102068	0.0996976	0.9789612
10 C C10	-3.8897616	1.0006058	-1.0352600
11 O 01	-3.3485456	1.4341249	-2.0336130
12 O 02	-5.2310414	0.9171018	-0.8857774
13 C C8	-5.9994362	1.3821043	-2.0068124
14 H H 14	-7.0430388	1.2376110	-1.7289439
15 H H15	-5.7563118	0.8069621	-2.9036621
16 Si Si 2	2.4810182	1.2875488	0.2070775
17 C C11	3.5681212	0.7208320	-1.2630126
18 C C12	4.8588527	1.5673278	-1.2995199
19 H H11	5.4509750	1.4578542	-0.3832701
20 H H20	4.6479856	2.6336393	-1.4361560
21 H H21	5.4986338	1.2532866	-2.1355415
22 C C13	3.9434093	-0.7685297	-1.1113582
23 H H19	3.0563289	-1.4099106	-1.0873961
24 H H22	4.5203973	-0.9544029	-0.1983607
25 H H23	4.5609062	-1.0949682	-1.9591655
26 C C14	2.7955947	0.9118220	-2.5851315
27 H H18	1.8714041	0.3264989	-2.5943479
28 H H24	3.4074626	0.5843104	-3.4366120

29 H H25	2.5308120	1.9606174	-2.7595255
30 H H26	-5.7953067	2.4379934	-2.2009531
31 C C9	3.2737231	0.8760617	1.8694187
32 H H9	2.6335944	1.2042921	2.6950353
33 H H16	4.2303855	1.4004019	1.9690185
34 H H17	3.4733538	-0.1925718	1.9985323
35 C C15	2.1112240	3.1307906	0.1049025
36 H H27	3.0285391	3.7274274	0.1567868
37 H H28	1.4642431	3.4341399	0.9334576
38 H H29	1.5977338	3.3889734	-0.8267593
39 H H32	0.9714712	-0.6216528	1.8319896
40 C C1	0.2939666	-1.8139348	0.1866331
41 C C2	0.1614717	-4.2884760	-1.1305590
42 C C3	-0.0921825	-1.8817795	-1.1588744
43 C C16	0.6238819	-2.9966325	0.8577981
44 C C17	0.5568980	-4.2279370	0.2057777
45 C C18	-0.1603395	-3.1125020	-1.8108814
46 H H2	-0.3231683	-0.9713155	-1.7005417
47 H H6	0.9320496	-2.9545109	1.8988711
48 H H5	0.8176100	-5.1364035	0.7406280
49 H H3	-0.4605188	-3.1519839	-2.8538786
50 H H4	0.1105404	-5.2452249	-1.6419815

Total electronic energy: - $5611295.18 \mathrm{~kJ} / \mathrm{mol}$
Zero-point energy: +1066.55
Sum of electronic and thermal Enhtalpies: -2136.79705
Sum of electronic and thermal Free energies: -2136.87111

VI. NMR Spectra

VI-I. NOESY Data of compound $\underline{3}$

VII-II. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR charts of compounds $\underline{1-6} \underline{\underline{S 4}}$, and $\underline{5}$

IBB-nmr Analysis

IBB-nmr Analysis

IBB-nmr Analysis

IBB-mmr Analysis

IBB-nmr Analysis

IBB-nmr Analysis

S4

VII-III. HPLC charts of compounds $\mathbf{4 a - d}$, and $\underline{5 a-d}$

HPLC conditions: Cosmosil Cholester Packed column ($4.6 \times 250 \mathrm{~mm}$) with $80 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm .

Retention time: $t_{\mathrm{r}} \mathbf{4 a}(2 R, 5 R)=31.1 \mathrm{~min}, t_{\mathrm{r}}$ epi-4a $(2 S, 5 R)=33.9 \mathrm{~min}$

HPLC conditions: Cosmosil Cholester Packed column ($4.6 \times 250 \mathrm{~mm}$) with $80 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm .

Retention time: $t_{\mathrm{r}} \mathbf{4 b}(2 R, 5 R)=45.4 \mathrm{~min}, t_{\mathrm{r}}$ epi-4b $(2 S, 5 R)=48.5 \mathrm{~min}$

HPLC conditions: Cosmosil Cholester Packed column ($4.6 \times 250 \mathrm{~mm}$) with a liner gradient of MeCN ($80-85 \%$ over 60 min) in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate $0.6 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm .

Retention time: $t_{\mathrm{r}} \mathbf{4 c}(2 R, 5 R)=53.5 \mathrm{~min}, t_{\mathrm{r}}$ epi-4c $(2 S, 5 R)=55.7 \mathrm{~min}$

$4 \mathrm{~d}, \mathrm{X}=\mathrm{X}_{\mathrm{R}}$
HPLC conditions: Cosmosil Cholester Packed column ($4.6 \times 250 \mathrm{~mm}$) with a liner gradient of MeCN ($80-85 \%$ over 60 min) in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate $0.6 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm .

Retention time: $t_{\mathrm{r}} \mathbf{4 d}(2 R, 5 R)=48.7 \mathrm{~min}, t_{\mathrm{r}}$ epi-4d $(2 S, 5 R)=51.0 \mathrm{~min}$

5a, $X=X_{S}$
HPLC conditions: Cosmosil Cholester Packed column ($4.6 \times 250 \mathrm{~mm}$) with $80 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm .

Retention time: $t_{\mathrm{r}} \mathbf{5 a}(2 S, 5 R)=33.0 \mathrm{~min}, t_{\mathrm{r}}$ epi-5a $(2 R, 5 R)=30.0 \mathrm{~min}$

5b, $X=X_{S}$

HPLC conditions: Cosmosil Cholester Packed column ($4.6 \times 250 \mathrm{~mm}$) with $85 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm .

Retention time: $t_{\mathrm{r}} \mathbf{5 b}(2 S, 5 R)=31.0 \mathrm{~min}, t_{\mathrm{r}}$ epi-5b $(2 R, 5 R)=29.6 \mathrm{~min}$

HPLC conditions: Cosmosil Cholester Packed column ($4.6 \times 250 \mathrm{~mm}$) with $80 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm .

Retention time: $t_{\mathrm{r}} \mathbf{5 c}(2 S, 5 R)=44.9 \mathrm{~min}, t_{\mathrm{r}}$ epi-5c $(2 R, 5 R)=43.4 \mathrm{~min}$

HPLC conditions: Cosmosil Cholester Packed column ($4.6 \times 250 \mathrm{~mm}$) with $80 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate $0.6 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm .

Retention time: $t_{\mathrm{r}} \mathbf{5 d}(2 S, 5 R)=63.5 \mathrm{~min}, t_{\mathrm{r}}$ epi- $\mathbf{5 d}(2 R, 5 R)=58.9 \mathrm{~min}$

[^0]: ${ }^{\text {S3 }}$ Giannerini, M.; Fañanás-Mastral, M.; Feringa, B. L. J. Am. Chem. Soc. 2012, 134, 4108.

[^1]: ${ }^{\text {S4 (a) Magid, R. M. Tetrahedron 1980, 36, 1901. (b) Marshall, J. A. Chem. Rev. 1989, 89, 1503. (c) Lipshutz, B. H. }}$ Synlett, 1990, 119. (d) Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135.
 5 (a) Nakamura, E.; Sekiya, K.; Arai, M.; Aoki, S. J. Am. Chem. Soc. 1989, 111, 3091. (b) Arai, M.; Nakamura, E.; Lipshuz, B. H. J. Org. Chem. 1991, 56, 5489.

