Supporting Information

Fluorinated alcohols as promoters for the metal-free direct substitution reaction of allylic alcohols with nitrogen, silyl and carbon nucleophiles

Paz Trillo, Alejandro Baeza* and Carmen Nájera*

Departamento de Química Orgánica, Facultad de Ciencias, and Instituto de Síntesis Orgánica (ISO),

Universidad de Alicante, Apdo 99, 03080 Alicante, Spain

Fax: +34 96 5903549

alex.baeza@ua.es, cnajera@ua.es

Table of Contents

General Remarks	2
¹ H and ¹³ C NMR of new compounds	3
¹ H NMR of known compounds	11
CC MS of compound 3do	11

General Remarks

All the solvents and reagents were purchased from commercial sources and used without further purification. Substrates which were not commercially available were synthesized according to known literature procedures. Commercially available HFIP and TFE were used. Melting points are uncorrected. For IR only the structurally most relevant peaks are listed. NMR spectra were performed on 300 or 400 MHz apparatus using CDCl₃ as solvent and TMS as internal standard unless otherwise stated. Conversions and compound purities were determined by GC analyses. Low-resolution electron impact (EI) mass spectra were obtained at 70eV and only the structurally most relevant fragmentations are reported. Analytical TLC was performed on pre-coated commercially available silica gel plates and the spots visualized with UV light at 254 nm. Flash chromatography employed prepackaged columns (12 mm $\varnothing \times 7.5$ or 15 cm) using silica gel 60 (0.040-0.063 mm) and a chromatography pump. Enantiomeric excesses were determined by HPLC analyses with the corresponding chiral column, using mixtures of n-hexane/isopropyl alcohol as mobile phase.

3am ¹H NMR

3an ¹H NMR

3ga ¹H NMR

3ga ¹³C NMR

3aa ¹H NMR

3ac ¹H NMR

3ad ¹H NMR

3ae ¹H NMR

3af ¹H NMR

3ag ¹H NMR

3ah ¹H NMR

3aj ¹H NMR

3ak ¹H NMR

3al ¹H NMR

3an' ¹H NMR

3ao ¹H NMR

3ap ¹H NMR

3aq ¹H NMR

3ar ¹H NMR

3as ¹H NMR

3at ¹H NMR

3ba ¹H NMR

3da ¹H NMR

3ea ¹H NMR

3fa' ¹H NMR

3bj ¹H NMR

3bl ¹H NMR

3bl + 3bl' ¹H NMR

3bo + 3bo' ¹H NMR

3br + **3br**' ¹H NMR

3dj' ¹H NMR

3dj + 3dj" ¹H NMR

3do GC-MS

