Supplementary Material

E versus Z Diazeniumdiolation of Acetoacetate-Derived Carbanions

Navamoney Arulsamy,^{*a} D. Scott Bohle,^{*b} Carla L. Holman,^a and Inna Perepichika.^b

^aDepartment of Chemistry, University of Wyoming, Department 3838, 1000 E. University Avenue,

Laramie, WY 82072-2000, U. S. A.

^bDepartment of Chemistry, Department of Chemistry, McGill University, 801 Sherbrooke Street W,

Montreal PQ H3A 2EK6, Canada

email: <u>arulsamy@uwyo.edu; scott.bohle@mcgill.ca</u>

Title

Figure S1. IR spectrum for $CH_3COC_2N_2O_3K$ (K1).	3
Figure S2. IR spectrum for $CH_2(N_2O_2K)CO_2K \cdot H_2O(K_22 \cdot H_2O)$.	4
Figure S3. IR spectrum for MeC(OK)C(N_2O_2K)CO ₂ Me (K ₂ 3).	5
Figure S4. IR spectrum for $MeC(ONa)C(N_2O_2Na)CO_2Me(Na_23)$.	6
Figure S5. IR spectrum for MeC(OLi)C(N ₂ O ₂ Li)CO ₂ Me ($Li_23\cdot^2/_3MeOH\cdot^1/_3H_2O$).	7
Figure S6. IR spectrum for $[NMe_4]_2[MeC(O^-)C(N_2O_2^-)CO_2Me]$ ($[NMe_4]_23$).	8
Figure S7. IR spectrum for $MeC(OK)C(N_2O_2K)CO_2Et$ (K ₂ 4).	9
Figure S8. IR spectrum for MeC(ONa)C(N ₂ O ₂ Na)CO ₂ Et (Na₂4).	10
Figure S9. ¹ H NMR spectrum for $CH_3COC_2N_2O_3K$ (K1) in D_2O .	11
Figure S10. Proton decoupled ¹³ C NMR spectrum for $CH_3COC_2N_2O_3K$ (K1) in D_2O .	12
Figure S11. Proton coupled ¹³ C NMR spectrum for $CH_3COC_2N_2O_3K$ (K1) in D_2O .	13
Figure S11b , Proton coupled ¹³ C NMR spectrum for $CH_3COC_2N_2O_3K$ (K1) in D_2O	14.
Figure S12. 'H NMR spectrum for $CH_2(N_2O_2K)CO_2K \cdot H_2O$ ($K_22 \cdot H_2O$)in D_2O .	15
Figure S13. Proton decoupled ¹³ C NMR spectrum for CH ₂ (N ₂ O ₂ K)CO ₂ K·H ₂ O (K ₂ 2·H ₂ O) in D ₂ O.	16
Figure S14. Proton coupled ¹³ C NMR spectrum for $CH_2(N_2O_2K)CO_2K \cdot H_2O$ (K ₂ 2 · H ₂ O) in D ₂ O.	17
Figure S15. ¹ H NMR spectrum for MeC(OK)C(N_2O_2K)CO ₂ Me (K ₂ 3) in D ₂ O.	18
Figure S16. Proton decoupled ¹³ C NMR spectrum for MeC(OK)C(N ₂ O ₂ K)CO ₂ Me (K_2 3) in D ₂ O.	19
Figure S17. Proton coupled ¹³ C NMR spectrum for MeC(OK)C(N ₂ O ₂ K)CO ₂ Me (K_23) in D ₂ O.	20
Figure S18. ¹ H NMR spectrum for MeC(ONa)C(N_2O_2Na)CO ₂ Me (Na₂3) in D ₂ O.	20
Figure S19. Proton decoupled ¹³ ₂ C NMR spectrum for MeC(ONa)C(N ₂ O ₂ Na)CO ₂ Me (Na ₂ 3) in D	₂ O. 21
Figure S20. Proton decoupled ¹³ C NMR spectrum for MeC(ONa)C(N ₂ O ₂ Na)CO ₂ Me (Na ₂ 3) in D	₂ O. 22
Figure S21. ¹ H NMR spectrum for MeC(OLi)C(N ₂ O ₂ Li)CO ₂ Me ($Li_23\cdot^3_3MeOH\cdot^1_3H_2O$) in D ₂ O.	23
Figure S22. Proton decoupled ¹³ C NMR spectrum for MeC(OLi)C(N ₂ O ₂ Li)CO ₂ Me	24
(Li₂3·²₃MeOH·¹₃H₂O) in D₂O.	
	05
Figure S23. Proton coupled "C NMR spectrum for MeC(OLI)C(N_2O_2LI)CO ₂ Me	25
$(Ll_23)^{\prime} 3MeUH^{\prime} 3H_2U) \text{ in } D_2U.$	
Figure S24. H NMR spectrum for [NMe ₄] ₂ [MeC(O)C(N ₂ O ₂)CO ₂ Me] ([NMe ₄] ₂ 3) in D ₂ O.	26
Figure 525. Proton decoupled TC NMR spectrum for $[NMe_4]_2[MeC(U)C(N_2O_2)CO_2Me]$	27
([NIME4]23) IN D2O.	

Figure S26. Proton coupled ¹³ C NMR spectrum for $[NMe_4]_2[MeC(O^{-})C(N_2O_2^{-})CO_2Me]$ ($[NMe_4]_23$)	28
Figure S27. ¹ H NMR spectrum for MeC(OK)C(N ₂ O ₂ K)CO ₂ Et (K_24) in 0.1 N KOD (D ₂ O) Figure S28. Proton decoupled ¹³ C NMR spectrum for MeC(OK)C(N ₂ O ₂ K)CO ₂ Et (K_24)	29 30
in 0.1 N KOD (D_2O). Figure S29. Proton coupled ¹³ C NMR spectrum for MeC(OK)C(N_2O_2K)CO ₂ Et (K_24) in 0.1 N KOD (D_2O).	31
Figure S30. ¹ H NMR spectrum for MeC(ONa)C(N ₂ O ₂ Na)CO ₂ Et (Na₂4) in 0.1 N KOD (D ₂ O). Figure S31. Proton decoupled ¹³ C NMR for MeC(ONa)C(N ₂ O ₂ Na)CO ₂ Et (Na₂4) in 0.1 N KOD (D ₂ O)	32 33
Figure S32. Proton decoupled ¹³ C NMR for MeC(ONa)C(N ₂ O ₂ Na)CO ₂ Et (Na ₂ 4) in 0.1 N KOD (D ₂ O).	34
Figure S33. DSC and TGA plots for $CH_3COC_2N_2O_3K$ (K1). Figure S34. DSC and TGA plots for $CH_2(N_2O_2K)CO_2K \cdot H_2O$ (K22·H2O). Figure S25. DSC and TCA plots for $Mac(OK)C(N_1O_1K)CO_2Mac(K_2)$.	35 36 27
Figure S35. DSC and TGA plots for MeC(OK)C(N ₂ O ₂ K)CO ₂ Me (R_2 5). Figure S36. DSC and TGA plots for MeC(ONa)C(N ₂ O ₂ Na)CO ₂ Me (Na_2 3). Figure S37. DSC and TGA plots for MeC(OLi)C(N ₂ O ₂ Li)CO ₂ Me (Li_2 3·3/3MeOH·1/3H ₂ O).	37 38 39
Figure S38. DSC and TGA plots for MeC(OK)C(N_2O_2K)CO ₂ Et (K ₂ 4). Figure S39. DSC and TGA plots for MeC(OK)C(N_2O_2K)CO ₂ Et (K ₂ 4). Figure S40. DSC and TGA plots for MeC(ONa)C(N_2O_2Na)CO ₂ Et (Na ₂ 4).	40 41 42
Figure S41 Infrared Cell for detection of Nitrous Oxide	43

Figure S1. IR spectrum for $CH_3COC_2N_2O_3K$ (**K1**).

Figure S2. IR spectrum for $CH_2(N_2O_2K)CO_2K \cdot H_2O(K_22 \cdot H_2O)$.

Figure S3. IR spectrum for $MeC(OK)C(N_2O_2K)CO_2Me(K_23)$.

Figure S4. IR spectrum for $MeC(ONa)C(N_2O_2Na)CO_2Me$ (Na₂3).

Figure S5. IR spectrum for MeC(OLi)C(N₂O₂Li)CO₂Me ($Li_23\cdot^2MeOH\cdot^1_3H_2O$).

Figure S6. IR spectrum for $[NMe_4]_2[MeC(O^-)C(N_2O_2^-)CO_2Me]$ ($[NMe_4]_23$).

Figure S7. IR spectrum for $MeC(OK)C(N_2O_2K)CO_2Et$ (K₂4).

Figure S8. IR spectrum for MeC(ONa)C(N₂O₂Na)CO₂Et (Na₂4).

Figure S9. ¹H NMR spectrum for $CH_3COC_2N_2O_3K$ (K1) in D_2O .

Figure S10. Proton decoupled ¹³C NMR spectrum for $CH_3COC_2N_2O_3K$ (K1) in D_2O .

Figure S11b. Proton coupled ¹³C NMR spectrum for $CH_3COC_2N_2O_3K$ (**K1**) in D_2O .

Figure S12. ¹H NMR spectrum for $CH_2(N_2O_2K)CO_2K \cdot H_2O$ ($K_22 \cdot H_2O$)in D_2O .

Figure S13. Proton decoupled ¹³C NMR spectrum for $CH_2(N_2O_2K)CO_2K \cdot H_2O(K_22 \cdot H_2O)$ in D_2O .

Figure S14. Proton coupled ¹³C NMR spectrum for $CH_2(N_2O_2K)CO_2K \cdot H_2O(K_22 \cdot H_2O)$ in D_2O .

Figure S15. ¹H NMR spectrum for MeC(OK)C(N₂O₂K)CO₂Me (K_2 3) in D₂O.

Figure S16. Proton decoupled ¹³C NMR spectrum for MeC(OK)C(N₂O₂K)CO₂Me (K_23) in D₂O.

Figure S17. Proton coupled ¹³C NMR spectrum for MeC(OK)C(N₂O₂K)CO₂Me (K_2 3) in D₂O.

Figure S18. ¹H NMR spectrum for MeC(ONa)C(N₂O₂Na)CO₂Me (Na₂3) in D₂O.

Figure S19. Proton decoupled ¹³C NMR spectrum for MeC(ONa)C(N₂O₂Na)CO₂Me (**Na₂3**) in D₂O.

Figure S20. Proton decoupled ¹³C NMR spectrum for MeC(ONa)C(N₂O₂Na)CO₂Me (**Na₂3**) in D₂O.

Figure S21. ¹H NMR spectrum for MeC(OLi)C(N₂O₂Li)CO₂Me ($Li_23\cdot^2$ ₃MeOH· 1_3H_2O) in D₂O.

Figure S22. Proton decoupled ¹³C NMR spectrum for MeC(OLi)C(N₂O₂Li)CO₂Me ($Li_23\cdot^3MeOH\cdot^1_3H_2O$) in D₂O.

Figure S23. Proton coupled ¹³C NMR spectrum for MeC(OLi)C(N₂O₂Li)CO₂Me ($Li_23\cdot_3MeOH\cdot_3H_2O$) in D₂O.

Figure S24. ¹H NMR spectrum for $[NMe_4]_2[MeC(O^-)C(N_2O_2^-)CO_2Me]$ (**[NMe_4]_23**) in D₂O.

Figure S25. Proton decoupled ¹³C NMR spectrum for $[NMe_4]_2[MeC(O^-)C(N_2O_2^-)CO_2Me]$ (**[NMe_4]_23**) in D₂O.

Figure S26. Proton coupled ¹³C NMR spectrum for $[NMe_4]_2[MeC(O^-)C(N_2O_2^-)CO_2Me]$ (**[NMe_4]_23**) in D₂O.

Figure S27. ¹H NMR spectrum for MeC(OK)C(N₂O₂K)CO₂Et (K_24) in 0.1 N KOD (D₂O).

Figure S28. Proton decoupled ¹³C NMR spectrum for MeC(OK)C(N₂O₂K)CO₂Et (K₂4) in 0.1 N KOD (D₂O).

Figure S29. Proton coupled ¹³C NMR spectrum for MeC(OK)C(N₂O₂K)CO₂Et (K_24) in 0.1 N KOD (D₂O).

Figure S30. ¹H NMR spectrum for MeC(ONa)C(N₂O₂Na)CO₂Et (Na₂4) in 0.1 N KOD (D₂O).

Figure S31. Proton decoupled ¹³C NMR for MeC(ONa)C(N₂O₂Na)CO₂Et (Na₂4) in 0.1 N KOD (D₂O).

Figure S32. Proton decoupled ¹³C NMR for MeC(ONa)C(N₂O₂Na)CO₂Et (Na₂4) in 0.1 N KOD (D₂O).

Figure S33. DSC and TGA plots for CH₃COC₂N₂O₃K (K1).

Figure S34. DSC and TGA plots for $CH_2(N_2O_2K)CO_2K \cdot H_2O$ ($K_22 \cdot H_2O$).

Figure S35. DSC and TGA plots for $MeC(OK)C(N_2O_2K)CO_2Me$ (K₂3).

Figure S36. DSC and TGA plots for MeC(ONa)C(N₂O₂Na)CO₂Me (Na₂3).

Figure S37. DSC and TGA plots for MeC(OLi)C(N₂O₂Li)CO₂Me ($Li_23\cdot_3MeOH\cdot_3H_2O$).

Figure S38. DSC and TGA plots for $MeC(OK)C(N_2O_2K)CO_2Et$ (K₂4).

Figure S39. DSC and TGA plots for $MeC(OK)C(N_2O_2K)CO_2Et$ (K₂4).

Figure S40. DSC and TGA plots for MeC(ONa)C(N₂O₂Na)CO₂Et (Na₂4).

Gas phase IR cell

Figure S41 Sketch and picture of Gas Cell used from detection of Nitrous oxide.