Supporting Information File

Figure 1S: Powder X-ray diffraction (XRD) patterns of the Al_2O_3 samples used in this study. XRD were collected by using a continuous scan mode from $2\theta = 10^{\circ}$ to 90° with a step size 0.01.

Figure 2S: Potential energy scan of the C-OH bond breaking under singlet and triplet spin states (electronic energies). All the curves are referenced to the corresponding alcohol ground state (E=0). The values in blue (appear also in Table 3 of the manuscript) are the enthalpies when the dissociated compounds are separated to infinity and fully relaxed ($C_nH_{2n+1} + OH$).

Figure 3S. DFT calculated paths considered for the dehydration of ethanol to ethylene on Al_8O_{12} . The E1 type mechanism through the alkoxy-intermediate exhibits a high barrier (290.3 kJ/mol) compared to the concerted dehydration mechanism (134.7 and 153.0 kJ/mol involving a 2- and 3-coordinated O atom, respectively).

Figure 4S. Scheme of 1-propanol dehydration reaction involving a tri-coordinated Al Lewis-acid site and a two-coordinated O of γ -Al₂O₃ as presented in Figure 5 (b) of the manuscript. The steps are: 1) adsorption, 2) dehydration TS, 3) Alkene formation, 4) Alkene desorption, 5) water formation TS, 6) water formation, and 7) water desorption.

Alcohol	Distance (Angstroms)			Total charge on C _n H _{2n+1} and (OH) group (e-)		
	Non-	Adsorbed	Transition	Non-adsorbed	adsorbed	Transition
	adsorbed		State			State
Ethanol	R1=1.43	R1=1.49	R1=2.12	+0.29	+0.44	+0.57
	R2=1.09	R2=1.09	R2=1.28	(OH:-0.29)	(OH:-0.29)	(OH:-0.56)
1-Propanol	R1=1.42	R1=1.49	R1=2.20	+0.29	+0.40	+0.63
	R2=1.09	R2=1.09	R2=1.26	(OH:-0.29)	(OH:-0.21)	(OH:-0.57)
2-Propanol	R1=1.43	R1=1.50	R1=2.39	+0.30	+0.45	+0.71
	R2=1.09	R2=1.09	R2=1.21	(OH:-0.30)	(OH:-0.31)	(OH:-0.61)
2-methyl-2-	R1=1.44	R1=1.52	R1=2.64	+0.31	+0.50	+0.80
Propanol	R2=1.09	R2=1.09	R2=1.16	(OH:-0.31)	(OH:-0.33)	(OH:-0.65)

Table 1S. Structural and natural bond orbital (NBO) charge analysis of the alcohols in the gasphase (non-adsorbed), adsorbed on the Al_8O_{12} cluster and at the transition state. R1 and R2 are the distances of C-OH and C-H, respectively, as they appear in Figure 5 (c) of the manuscript. R1 of all the alcohols is profoundly increased whereas R2 is much less at the transition state. This C-OH elongation induces a charge separation, giving carbenium ion characteristics to the transition state.

Figure 5S. Transition state of ethanol dehydration involving O_{cn3} , when the O_{cn2} sites of the cluster interact with Na^+ . As it can be seen from the inset table, the alcohol dehydration barriers shift to higher energies with decreasing strength of the basic-center (O_{cn3} vs. O_{cn3}) and increasing Na^+ content (O_{cn3} on undoped vs. Na^+ doped Al_8O_{12}).

Figure 6S. FTIR spectra recorded at 30°C. All samples were treated in flowing dry air to 500°C in flowing dry air prior to degassing under vacuum $(4.0 *10^{-2} \text{ torr})$ for 1h.

- (a) γ -Al₂O₃
- (b) Pyridine (3 torr) was dosed at 30° C for 0.5h and the sample was subsequently degassed to $4.0 * 10^{-2}$ torr to remove physisorbed pyridine.
- (c) The sample was exposed to water vapor (8.0 torr) at 300°C for 0.3h.
- (d) Pyridine (2 torr) was dosed to the sample in (c) at 30° C for 0.5h, the sample was subsequently degassed to $4.0 * 10^{-2}$ torr to remove physisorbed pyridine.