Supporting Information for:

Synthetic Applications and Inversion Dynamics of Configurationally Stable 2-Lithio-2-arylPyrrolidines and -Piperidines
 Timothy K. Beng, Jin Sun Woo, and Robert E. Gawley*
 Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
 bgawley@uark.edu

Contents:

1. Structures .. S3
2. General procedures .. S4
3. Arylation of N-Boc-2-lithiopiperidine: Synthesis of (R) - N-Boc-2-arylpiperidines........... S8
3.1. With bromobenzene.. S8
3.2. With 4-bromoveratrole.. S8
3.3. With para-bromobenzonitrile .. S9
3.4. With 1-bromonaphthalene ... S9
4. Lithiation-substitution of (R) - N-Boc-2-phenylpiperidine with several electrophiles........ S10
4.1. With methanol-d ${ }_{1}$... S10
4.2. With dimethyl sulfate... S12
4.3. With trimethylsilyl chloride .. S18
4.4. With ethyl chloroformate .. S22

4.6. With allyl bromide .. S28
4.7. With benzyl bromide... S30
5. Lithiation-substitution of other (R)-N-Boc-2-arylpiperidines... S34
5.1. (R)-N-Boc-2-(3,4-dimethoxyphenyl)piperidine S34
5.2. (R)-N-Boc-2-(4-tert-butylphenyl)piperidine S38
5.3. (R)- N-Boc-2-(4-cyanophenyl)piperidine S38
5.4. (R)-N-Boc-2-(1-naphthyl)piperidine S42
6. Synthesis of N -Boc-2-arylpyrrolidines S48
7. Lithiation-substitution of N-Boc-2-phenylpyrrolidine S49
8. Lithiation-substitution of other N -Boc-2-arylpyrrolidines S71
9. Kinetics of enantiomerization of $\mathbf{2 4}$ S83
10. Kinetics of enantiomerization of $\mathbf{8}$ S96
11. References S103

1. Structures

rac-1

S,S-2
S,R-2

$R-6 \cdot \mathrm{~d}_{1}$

R-16

$R-7 \cdot d_{1}$

R-17

2. Experimental Section

All experiments involving organolithium reagents were carried out under an inert atmosphere of argon or nitrogen and using freshly distilled solvents. $\mathrm{Et}_{2} \mathrm{O}$ and THF were distilled from sodium benzophenone ketyl. TMEDA and the conjugate acid of $(S, S)-\mathbf{2}$ was purified by Kugelrohr distillation from CaH_{2}. Solutions of $\mathrm{ZnCl}_{2}\left(1 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}\right.$ or THF$)$ were obtained from commercial sources. Solid $\mathrm{ZnCl}_{2}, \mathrm{CuCN}, \mathrm{LiCl}$ were flame-dried under vacuum prior to use. The concentration of commercial s-BuLi (solution in cyclohexane) and n-BuLi were determined prior to use by No-D NMR spectroscopy. ${ }^{1}$ All electrophiles that were not newly purchased were distilled immediately before use. Newly purchased electrophiles with less than 98.5% purity were also distilled immediately before use. Column chromatography was performed on silica gel (230-400 mesh). Thin-layer chromatography (TLC) was performed on silica plates. Visualization of the TLC plates was aided by UV irradiation at 254 nm or by KMnO_{4} staining. For enantiomer ratio (er) analyses, authentic racemic compounds were used to establish the method of separation of the enantiomers. The temperature was controlled by a thermostatted cooling coil and all reported temperatures were internal to a reaction vessel. The enantiomer ratios were determined by CSP-SFC. The following chiral columns were utilized; Regis Technologies Pirkle-Whelk-O-1 and Daicel Chiralcel OD-H. In some cases the enantiomer ratios were determined by CSP-GC on a β-cyclodextrin-permethylated 120 fused silica capillary column [$30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ i.d., 20% permethylated β-cyclodextrin in SPB-35 poly(35\% diphenyl/65\% dimethyl)siloxane. Unless otherwise indicated, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT-135, COSY 45, and HMQC NMR spectra were acquired using CDCl_{3} as solvent at ambient temperature. Chemical shifts are quoted in parts per million (ppm).
N-Boc-piperidine, the alcohol precursors to ligands (S, S)-2 and (S, R)-2 were synthesized according to previously reported methods. ${ }^{2,3}$

2.1. General Procedure A: Catalytic Dynamic Resolution (CDR) of 2-lithio-N-Bocpiperidine followed by Transmetalation and Palladium-catalyzed Arylation

In an oven-dried, septum-capped 25 mL round bottom flask equipped with a stir bar, freshly distilled N-Boc-piperidine ($1 \mathrm{mmol}, 1.0$ equiv) and freshly distilled TMEDA ($4 \mathrm{mmol}, 4.0$ equiv) were dissolved in freshly distilled $\mathrm{Et}_{2} \mathrm{O}$ under argon. The solution was cooled to $-80{ }^{\circ} \mathrm{C}$ and s BuLi ($1.2 \mathrm{mmol}, 1.2$ equiv) was added slowly by means of a syringe, down the side of the flask, over a ten minute period. The mixture was stirred for 3 h to effect deprotonation, affording rac1•TMEDA. The freshly distilled diamino alcohol, precursor of (S, S)-2 $(0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in $\mathrm{Et}_{2} \mathrm{O}$ was treated with $s-\mathrm{BuLi}(10 \mathrm{~mol} \%)$. After complete deprotonation of N-Boc-piperidine as noted by MS, the preformed alkoxide $(S, S)-\mathbf{2}$ was added and the flask was quickly transferred to a second thermostatted bath at $-45^{\circ} \mathrm{C}$, and allowed to stir for 5 h . The mixture was cooled to -80 ${ }^{\circ} \mathrm{C}$ and a solution of $\mathrm{ZnCl}_{2}\left(0.6 \mathrm{~mL}, 1.0 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}$, 0.6 equiv), was added slowly over a ten minute period and the mixture was stirred for 30 minutes followed by warming to room temperature. After 30 minutes, $\mathrm{Pd}(\mathrm{OAc})_{2}(0.04 \mathrm{mmol}, 4 \mathrm{~mol} \%), t-\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(0.08 \mathrm{mmol}, 8$ $\mathrm{mol} \%$) and the aryl bromide ($1.1 \mathrm{mmol}, 1.1$ equiv) were added sequentially. After stirring for 18 h at room temperature, $\mathrm{NH}_{4} \mathrm{OH}$ ($5 \mathrm{~mL}, 10 \%$ aqueous solution) was added dropwise and the mixture was stirred for 30 minutes. The resulting slurry was filtered through Celite and rinsed with $5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The filtrate was washed with $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$, then with water $(2 \times 5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to obtain the crude product. The er was determined before and after purification by column chromatography.

Note: The purity of reagents (especially the chiral ligand) is critical to achieving a resolution under either catalytic or stoichiometric conditions! We occasionally face this challenge as well.

2.2. General Procedure B: Lithiation of (R)- N-Boc-2-arylpiperidine or pyrrolidine followed by direct trapping with the electrophile

To an oven-dried, septum-capped round bottom flask equipped with a stir bar, was added freshly distilled TMEDA (4.0 equiv) and $\mathrm{Et}_{2} \mathrm{O}$ under argon. The solution was cooled to $-80{ }^{\circ} \mathrm{C}$ and a solution of s-BuLi in cyclohexane (1.0 equiv) was added (note 1). A precooled solution of the N -Boc-2-arylpiperidine (1.0 equiv) in $\mathrm{Et}_{2} \mathrm{O}$ was added to the flask containing the TMEDA/s- BuLi mixture. After 30 min at this temperature, the mixture was quenched with the electrophile (~ 1.1
to 1.5 equiv). After $2-16 \mathrm{~h}, \mathrm{MeOH}$ (note 2) was added and the mixture was stirred for 5 min . After warming to room temperature, 2 M HCl was added. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over MgSO_{4} and evaporated to obtain the crude product. The er was determined before and after purification by column chromatography.
Note 1: Cooling the s-BuLi before substrate addition obviates the need for slow addition. Using GC-MS analysis, we detect very small amounts (if any) of the byproducts formed by attack of s BuLi on the Boc-group.
Note 2: In some cases, MeOH was added after warming to room temperature.

2.3. General Procedure C: Lithiation of (R)-N-Boc-2-arylpiperidine followed by CopperMediated Allylation or Benzylation

To an oven-dried, septum-capped round bottom flask equipped with a stir bar, was added freshly distilled TMEDA (4.0 equiv) and $\mathrm{Et}_{2} \mathrm{O}$ under argon. The solution was cooled to $-80{ }^{\circ} \mathrm{C}$ and a solution of s-BuLi in cyclohexane (1.0 equiv) was added. A precooled solution of the N-Boc-2arylpiperidine (1.0 equiv) in $\mathrm{Et}_{2} \mathrm{O}$ was added to the flask containing the $\mathrm{TMEDA} / s-\mathrm{BuLi}$ mixture. After 30 min , a solution of ZnCl_{2} (1.3 equiv, 1.0 M in $\mathrm{Et}_{2} \mathrm{O}$ was added slowly. After 30 min, a solution of $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}$ [prepared from CuCN (1.2 equiv) and LiCl (2.5 equiv)] in THF was added. After 30 min , allyl bromide or benzyl bromide (1.1 equiv) was added. The mixture was allowed to stir for 10 h at this temperature prior to addition of MeOH and warming to room temperature. A solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give the crude product. The er was determined before and after purification by column chromatography.
2.4. General Procedure D: Lithiation of N-Boc-protected arylpiperidine with MeOD (or other electrophile): Screening reactions where only GC conversions are reported.

To an oven-dried, septum-capped 5 mL vial equipped with a stir bar, was added freshly distilled TMEDA ($0.5 \mathrm{~mL}, 0.24 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 4.0$ equiv), N-Boc-2-arylpiperidine ($0.5 \mathrm{~mL}, 0.06 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 1.0$ equiv) under argon. It was cooled to $-80{ }^{\circ} \mathrm{C}$ and a solution of s - BuLi in cyclohexane (1.0 equiv) was added slowly. After $30 \mathrm{~min}, 0.10 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{OD}$ (or the desired screening electrophile) was added. The mixture was diluted with freshly distilled $\mathrm{Et}_{2} \mathrm{O}$ (ca 1 $\mathrm{mL})$. The ethereal layer was filtered through Celite. The sample was placed in a GC vial and analyzed by GC-MS for deuterium incorporation using chemical ionization (in some cases
electron impact ionization was utilized due to technical difficulties with the CI source). When the deprotonation is complete, there is a noticeable shift of the protonated molecular ion peak from MH^{+}to $\mathrm{MH}^{+}+1$. In most cases, the base peak was utilized for analytical purposes. The sample was also analyzed by CSP-SFC for er evaluation.

2.5. General Procedure E: Preparation of N-Boc-(arylmethyl)-(3-chloro) propylamines. ${ }^{4}$

To a suspension of $\mathrm{NaH}(800 \mathrm{mg}, 60 \%$ dispersion in mineral oil), washed with three portions of hexane, in THF (40 mL) was added N-Boc-3-chloropropylamine ($2.06 \mathrm{~g}, 10 \mathrm{mmol} 1.0$ equiv) in THF (10 mL) and the arylmethyl bromide (15 mmol). The suspension was heated at reflux for 8 h. Water (20 mL) was added, and the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 40 \mathrm{~mL})$. The combined organic layers were washed with water (20 mL), dried over MgSO_{4}, and evaporated to give the crude product, which was purified by chromatography.

2.6. General Procedure F: Lithiation-cyclization of N-Boc-(arylmethyl)-(3-chloro)

 propylamines in the presence of (-)-sparteine: Synthesis of (S)- N-Boc-2-arylpyrrolidines. ${ }^{4}$ To an oven-dried, septum-capped round bottom flask equipped with a stir bar, was added freshly distilled (-)-sparteine (1.5 equiv) and freshly distilled toluene under argon. The solution was cooled to $-80{ }^{\circ} \mathrm{C}$ and a solution of $s-\mathrm{BuLi}$ in cyclohexane (1.5 equiv) was added. A precooled solution of the N-Boc-(arylmethyl)-(3-chloro) propylamine (1.0 equiv) in toluene was added to the flask containing the sparteine $/ s$ - BuLi mixture. After 7 h at this temperature, $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$ were added sequentially. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with $5 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ and with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and evaporated under reduced pressure to obtain the crude product. The er was determined before and after purification by column chromatography.Note: A similar procedure was used to synthesize racemic N-Boc-2-arylpyrrolidines for facilitation of er analysis by CSP-SFC. In such cases TMEDA was used in place of (-)-sparteine and the reaction time was shortened to 3 h .
2.7. General Procedure G: Lithiation-Substitution of N-Boc-protected arylpyrrolidine with MeOD: Screening reactions where only GC conversions are reported.

To an oven-dried, septum-capped 5 mL vial equipped with a stir bar, was added freshly distilled TMEDA ($0.5 \mathrm{~mL}, 0.06 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 1.0$ equiv), the desired aryl pyrrolidine ($0.5 \mathrm{~mL}, 0.06$ M solution in $\mathrm{Et}_{2} \mathrm{O}$, 1.0 equiv) under argon. It was cooled to $-60^{\circ} \mathrm{C}$ and a pre-titrated (by No-D NMR) solution of n - BuLi in hexanes ($2.00 \mathrm{M}, 1.0$ equiv) was added down the side of the vial by
means of a microlitre syringe. After $3 \mathrm{~h}, 0.10 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{OD}$, stored over molecular sieves, was added. The mixture was diluted with freshly distilled $\mathrm{Et}_{2} \mathrm{O}$ (calmL). The ethereal layer was filtered through Celite, placed in a GC vial and analyzed by GC-MS for deuterium incorporation using chemical ionization (in some cases electron impact ionization was utilized due to technical difficulties with the CI source). The crude mixture was also analyzed by CSP-SFC for er evaluation. When the deprotonation is complete, there is a noticeable shift of the protonated molecular ion peak from MH^{+}to $\mathrm{MH}^{+}+1$. In most cases, the base peak was utilized for analytical purposes.

2.8. General Procedure H: Lithiation of (R)- N -Boc-2-arylpyrrolidine followed by direct trapping with the electrophile

To an oven-dried, septum-capped round bottom flask equipped with a stir bar, was added freshly distilled TMEDA (1.0 equiv) and $\mathrm{Et}_{2} \mathrm{O}$ under argon. The mixture was cooled to $-60{ }^{\circ} \mathrm{C}$ and a solution of n - BuLi in hexanes (1.0 equiv) was added. A precooled solution of the N-Boc-2arylpyrrolidine (1.0 equiv) in $\mathrm{Et}_{2} \mathrm{O}$ was added to the flask containing the $\mathrm{TMEDA} / n-\mathrm{BuLi}$ mixture. After 3 h at $-60^{\circ} \mathrm{C}$, the mixture was quenched with the electrophile (~ 1.1 to 1.5 equiv). After $2-16 \mathrm{~h}$, depending on the electrophile, MeOH was added and the mixture was stirred for 5 min. After warming to room temperature, 2 M HCl was added. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over MgSO_{4} and evaporated to obtain the crude product. The er was determined before and after column chromatography.

3. Synthesis of (\boldsymbol{R})- N -Boc-2-arylpiperidines

In the wake of recent publications from O'Brien et al ${ }^{5}$ and from Knochel and coworkers ${ }^{6}$, we have slightly modified the previously reported procedure for the enantioselective arylation of N -Boc-piperidine. The minor change is the decrease in the amounts of ZnCl_{2} and the aryl bromide.

3.1. (R)- N-Boc-2-phenylpiperidine

R-3
Using General Procedure A, N-Boc-piperidine ($3700 \mathrm{mg}, 20 \mathrm{mmol}$), TMEDA ($12 \mathrm{~mL}, 80.0$ $\mathrm{mmol}, 4.0$ equiv), $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL}), s-\operatorname{BuLi}(24 \mathrm{~mL}, 1.0 \mathrm{M}, 24 \mathrm{mmol}, 1.2$ equiv), the alcohol
precursor of $(S, S)-\mathbf{2}\left(214 \mathrm{mg}, 1.0 \mathrm{mmol}, 5 \mathrm{~mol} \%\right.$, in $4.0 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ pretreated with freshly titrated $s-\mathrm{BuLi}), \mathrm{ZnCl}_{2}\left(12 \mathrm{~mL}, 1 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 0.6$ equiv), phenyl bromide ($2.6 \mathrm{~mL}, 22 \mathrm{mmol}, 1.1$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(200 \mathrm{mg}, 0.8 \mathrm{mmol}, 4 \mathrm{~mol} \%)$ and $t-\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(460 \mathrm{mg}, 1.6 \mathrm{mmol}, 8 \mathrm{~mol} \%)$ gave the crude product as an oil. Purification by silica gel column chromatography eluting with hexane-EtOAc (94:6) afforded 3.7 g of the pure product as an oil in 71% yield and $96: 4 \mathrm{er}$; spectroscopic data as previously reported. ${ }^{3}$

3.2. (R)-N-Boc-2-(3,4-dimethoxy)phenylpiperidine

Using General Procedure A, N-Boc-piperidine ($740 \mathrm{mg}, 4 \mathrm{mmol}$), TMEDA ($2.4 \mathrm{~mL}, 16.0$ $\mathrm{mmol}, 4.0$ equiv), $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL}), s-\mathrm{BuLi}(3.4 \mathrm{~mL}, 1.4 \mathrm{M}, 4.8 \mathrm{mmol}, 1.2$ equiv), the alcohol precursor of $(S, S)-2\left(43 \mathrm{mg}, 0.2 \mathrm{mmol}, 5 \mathrm{~mol} \%\right.$, in $1.0 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ pretreated with freshly titrated s $\mathrm{BuLi}), \mathrm{ZnCl}_{2}$ ($2.4 \mathrm{~mL}, 1 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 0.6$ equiv), 4-bromoveratrole ($0.64 \mathrm{~mL}, 4.4 \mathrm{mmol}$, 1.1 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(40 \mathrm{mg}, 0.16 \mathrm{mmol}, 4 \mathrm{~mol} \%)$ and $t-\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(92 \mathrm{mg}, 0.32 \mathrm{mmol}, 8$ $\mathrm{mol} \%$) gave the crude product as an oil. Purification by silica gel column chromatography eluting with hexane-EtOAc (85:15) afforded 990 mg of the pure product as an oil in 73% yield and 97:3 er; spectroscopic data as previously reported. ${ }^{3}$

3.3. (R)- N-Boc-2-(4-cyano)phenylpiperidine

Using General Procedure A, N-Boc-piperidine ($740 \mathrm{mg}, 4 \mathrm{mmol}$), TMEDA ($2.4 \mathrm{~mL}, 16.0$ $\mathrm{mmol}, 4.0$ equiv), $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL}), s-\operatorname{BuLi}(4.0 \mathrm{~mL}, 1.2 \mathrm{M}, 4.8 \mathrm{mmol}, 1.2$ equiv), the alcohol precursor of $(S, S)-\mathbf{2}\left(43 \mathrm{mg}, 0.2 \mathrm{mmol}, 5 \mathrm{~mol} \%\right.$, in $1.0 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ pretreated with freshly titrated s $\mathrm{BuLi}), \mathrm{ZnCl}_{2}\left(2.4 \mathrm{~mL}, 1 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 0.6$ equiv), 4-bromobenzonitrile ($797 \mathrm{mg}, 4.4$ $\mathrm{mmol}, 1.1$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(40 \mathrm{mg}, 0.16 \mathrm{mmol}, 4 \mathrm{~mol} \%)$ and $t-\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(92 \mathrm{mg}, 0.32 \mathrm{mmol}$, $8 \mathrm{~mol} \%$) gave the crude product as an oil. Purification by silica gel column chromatography eluting with hexane-EtOAc (90:10) afforded 790 mg of the pure product as an oil in 69% yield and 91:9 er; spectroscopic data as previously reported. ${ }^{3}$

3.4. (R)-N-Boc-2-(1-naphthyl)piperidine

Using General Procedure A, N-Boc-piperidine ($740 \mathrm{mg}, 4 \mathrm{mmol}$), TMEDA ($2.4 \mathrm{~mL}, 16.0$ $\mathrm{mmol}, 4.0$ equiv), $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL}), s-\operatorname{BuLi}(4.8 \mathrm{~mL}, 1.0 \mathrm{M}, 4.8 \mathrm{mmol}, 1.2$ equiv), the alcohol precursor of $(S, S)-2\left(43 \mathrm{mg}, 0.2 \mathrm{mmol}, 5 \mathrm{~mol} \%\right.$, in $1.0 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ pretreated with freshly titrated $s-$ $\mathrm{BuLi}), \mathrm{ZnCl}_{2}$ ($2.4 \mathrm{~mL}, 1 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 0.6$ equiv), 1-bromonaphthalene ($0.6 \mathrm{~mL}, 4.4 \mathrm{mmol}$, 1.1 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(40 \mathrm{mg}, 0.16 \mathrm{mmol}, 4 \mathrm{~mol} \%)$ and $t-\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(92 \mathrm{mg}, 0.32 \mathrm{mmol}, 8$ $\mathrm{mol} \%$) gave the crude product as an oil. Purification by silica gel column chromatography eluting with hexane-EtOAc (60:40) afforded 871 mg of the pure product as an amorphous solid in 70\% yield and 97:3 er; spectroscopic data as previously reported. ${ }^{3}$

4. Lithiation-substitution of (\boldsymbol{R}) - N -Boc-2-phenylpiperidine with several electrophiles

4.1. With MeOD

$R-3 \cdot d_{1}$
Using General Procedure D, R - $\mathbf{3}$ of $96: 4$ er and 0.1 mL MeOD showed complete deuteration. There is a noticeable shift of the protonated base peak from $\mathrm{m} / \mathrm{z} 206$ for $\mathbf{3}$ to $\mathrm{m} / \mathrm{z} 207$ for $\mathbf{3} \cdot \mathbf{d}_{\mathbf{1}}$.

Note 1: Although, we observed complete formation of organolithium $\mathbf{8}$ in the absence of a ligand after 60 min at $-80^{\circ} \mathrm{C}$, we add excess TMEDA to enhance the configurational stability of the benzylic organolithium (see Figure below) and to speed up the lithiation.
Note 2: It is absolutely necessary to minimize the amount of excess s - BuLi in order to avoid undesirable lithiation at C-6. The absence of a byproduct with $\mathrm{m} / \mathrm{z} 208$ clearly means that no simultaneous deuteration at C-2 and C-6 occurred under the reaction conditions.
Note 3: Lithiation at higher temperatures resulted in a complex mixture due to the possibility of attack on the Boc-group by s-BuLi and due to enhanced possibility of lithiation at C-6.
Note 4: The lithiation can be carried out using $n-\mathrm{BuLi}$ at $-80^{\circ} \mathrm{C}$ but longer reaction times ($>2 \mathrm{~h}$) or higher temperatures are required.

4.2. With $\mathrm{Me}_{2} \mathrm{SO}_{4}$

R-9
Using General Procedure B, R-3 of $96: 4$ er ($261 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.6 \mathrm{~mL}, 4.0 \mathrm{mmol}$, 4.0 equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), s-\operatorname{BuLi}\left(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0 \mathrm{M}, 1.0\right.$ equiv), $\mathrm{Me}_{2} \mathrm{SO}_{4}(0.15 \mathrm{~mL}, 1.5$ $\mathrm{mmol}, 1.5$ equiv) for 18 h prior to addition of 2 mL MeOH , gave the crude product as an oil. Purification by silica gel chromatography eluting with hexane-EtOAc (93:7) afforded 217 mg of $R-9$ as an oil in 79\% yield and 95:5 er. All other spectroscopic data as reported for rac-9. ${ }^{7}$ The enantiomer ratio was evaluated by CSP-SFC, monitoring at 210 nm , by comparison with an authentic racemic sample, under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=1.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=3.0 \% \mathrm{EtOH}$. The minor enantiomer elutes after $\sim 10.4 \mathrm{~min}$ and the major elutes after $\sim 12.4 \mathrm{~min}$.

Boc-deprotection

To a solution of $R-9$ ($138 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{SOCl}_{2}(0.1 \mathrm{~mL})$ dropwise. The mixture was stirred for 6 h and then concentrated under high vacuum to give the desired product as the hydrochloride salt. It was then basified to pH 12
with $2 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ($3 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give 83 g of the free amine in 94% yield, $[\alpha]_{\mathrm{D}}{ }^{22}-21\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit ${ }^{8}$. for enantiopure deprotected $R-9[\alpha]_{\mathrm{D}}{ }^{22}-18\left(c 0.33, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, all other data as reported. ${ }^{8}$

Spectral data for the free base:

4.3. With TMSCl

Using General Procedure B, R - $\mathbf{3}$ of $96: 4 \mathrm{er}(261 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.6 \mathrm{~mL}, 4.0 \mathrm{mmol}$, 4.0 equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), s-\mathrm{BuLi}\left(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0 \mathrm{M}, 1.0\right.$ equiv), $\mathrm{Me}_{3} \mathrm{SiCl}(144 \mathrm{mg}, 1.2$ mmol, 1.2 equiv) for 4 h prior to addition of 2 mL MeOH and warming to rt, gave the crude product as an oil. Purification by silica gel chromatography eluting with hexane-EtOAc (90:10) afforded 293 mg of $S \mathbf{- 1 0}$ as an oil in 88% yield and $96: 4$ er. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-$ $7.05(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.95(1 \mathrm{H}, \mathrm{br}, \mathrm{NCH}), 2.77-2.45(3 \mathrm{H}, \mathrm{m}), 1.95-1.22(13 \mathrm{H}, \mathrm{m}), 0.21(9 \mathrm{H}, \mathrm{s}, 3 \mathrm{x}$ $\left.\mathrm{CH}_{3}\right){ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=156.3(\mathrm{C}=\mathrm{O}), 142.1(\mathrm{C}), 128.0(\mathrm{CH}), 127.1(\mathrm{CH}), 124.7$ $(\mathrm{CH}), 79.3(\mathrm{C}), 57.0(\mathrm{C}), 41.9\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 28.5\left(3 \mathrm{x} \mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{2}\right), 20.0\left(\mathrm{CH}_{2}\right)$ and 0.9 ($3 \mathrm{x} \mathrm{CH}_{3}$). The enantiomer ratio was evaluated by CSP-SFC, monitoring at 210 nm , by comparison with an authentic racemic sample, under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=1.5 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=1.5 \% \mathrm{EtOH}$. The minor enantiomer elutes after $\sim 7.3 \mathrm{~min}$ and the major elutes after $\sim 8.2 \mathrm{~min}$.

ESHMS

TMSCI quench

4.4. With EtOCOCl

Using General Procedure B, R - $\mathbf{3}$ of $96: 4$ er ($261 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.6 \mathrm{~mL}, 4.0 \mathrm{mmol}$, 4.0 equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), s-\operatorname{BuLi}(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0 \mathrm{M}, 1.0$ equiv), $\mathrm{EtOCOCl}(0.13 \mathrm{~mL}, 1.5$ mmol, 1.5 equiv) for 2 h prior to addition of 2 mL MeOH and warming to rt , gave the crude product as an oil. Purification by silica gel chromatography eluting with hexane-EtOAc (85:15) afforded 283 mg of $R-\mathbf{1 1}$ as an oil in 85% yield and $96: 4$ er. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-$ $7.21(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.27-4.03\left(2 \mathrm{H}\right.$, quartet, $\left.\mathrm{CH}_{2}\right), 3.86(1 \mathrm{H}, \mathrm{br}, \mathrm{NCH}), 3.44(1 \mathrm{H}, \mathrm{br}, \mathrm{NCH}), 1.72-$ $0.96(18 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.2(\mathrm{C}=\mathrm{O}$ of ester), $156.3(\mathrm{C}=\mathrm{O}), 142.1(\mathrm{C})$, $127.8(\mathrm{CH}), 125.1(\mathrm{CH}), 126.8(\mathrm{CH}), 80.5(\mathrm{C}), 67.5(\mathrm{C}), 61.1\left(\mathrm{CH}_{2}\right), 44.7\left(\mathrm{CH}_{2}\right), 44.5\left(\mathrm{CH}_{2}\right)$, $28.1\left(3 \mathrm{x} \mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{2}\right), 18.8\left(\mathrm{CH}_{2}\right)$ and $14.1\left(\mathrm{CH}_{3}\right)$. The enantiomer ratio was evaluated by CSP-SFC, monitoring at 210 nm , by comparison with an authentic racemic sample, under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=1.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=3.0 \%$ EtOH. The minor enantiomer elutes after $\sim 10.7 \mathrm{~min}$ and the major elutes after $\sim 11.9 \mathrm{~min}$.

EtOCOCI quench after

30 mln of lithlation

4.5. With acetone- d_{6}

Using General Procedure B, R - 3 of $96: 4$ er ($261 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.6 \mathrm{~mL}, 4.0 \mathrm{mmol}$, 4.0 equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), s-\operatorname{BuLi}\left(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0 \mathrm{M}, 1.0\right.$ equiv), $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(96 \mathrm{mg}, 1.5$ $\mathrm{mmol}, 1.5$ equiv) for 2 h prior to warming to rt and addition of 2 mL MeOH gave the crude product as an oil. Purification by silica gel chromatography eluting with hexane-EtOAc (60:40) afforded 229 mg of the oxazolidinone $R \mathbf{- 1 2}$ as an amorphous solid in 90% yield and $95: 5$ er. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.55-7.15(5 \mathrm{H}, \mathrm{m}), 3.96(1 \mathrm{H}, \mathrm{dd}), 3.05(1 \mathrm{H}, \mathrm{dt}), 2.35(1 \mathrm{H}, \mathrm{dd})$, 2.22-1.31 (5H and 6D, m). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=158.2(\mathrm{C}=\mathrm{O}), 136.6(\mathrm{C}), 128.7$ $(\mathrm{CH}), 127.7(\mathrm{CH}), 126.0(\mathrm{CH}), 77.2(\mathrm{C}), 69.4(\mathrm{C}), 40.4\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 28.3\left(2 \times \mathrm{CD}_{3}\right), 24.2$ $\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{2}\right)$. The enantiomer ratio was evaluated by CSP-SFC, under the following
column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=1.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=$ $10 \% \mathrm{EtOH}$. The minor enantiomer elutes after $\sim 3.9 \mathrm{~min}$ and the major elutes after $\sim 4.2 \mathrm{~min}$.

4.6. With allyl bromide

S-13
Using General Procedure C, R - 3 of $96: 4 \mathrm{er}(261 \mathrm{mg}, 1.0 \mathrm{mmol})$, TMEDA ($0.6 \mathrm{~mL}, 4.0 \mathrm{mmol}$, 4.0 equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), s-\operatorname{BuLi}\left(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0 \mathrm{M}, 1.0\right.$ equiv), $\mathrm{ZnCl}_{2}(0.6 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 0.6$ equiv), $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}$ [prepared from CuCN ($107 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{LiCl}(107 \mathrm{mg}, 2.5 \mathrm{mmol}, 2.5$ equiv)], allyl bromide ($0.13 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.5$ equiv) for 10 h prior to addition of 2 mL MeOH and warming to rt , gave the crude product as an oil. Purification by silica gel chromatography eluting with hexane-EtOAc (95:5) afforded $198 \mathbf{m g}$ of S - $\mathbf{1 3}$ as an oil in 66% yield and 92:8 er. All other spectroscopic data as reported ${ }^{7}$ for rac-13. The enantiomer ratio was evaluated by CSP-SFC, under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=1.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=3 \% \mathrm{EtOH}$. The minor enantiomer elutes after $\sim 10.1 \mathrm{~min}$ and the major elutes after $\sim 13.1 \mathrm{~min}$.

4.7. With benzyl bromide

S-14
Using General Procedure C, $R-3$ of $96: 4$ er ($261 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.6 \mathrm{~mL}, 4.0 \mathrm{mmol}$, 4.0 equiv), $\mathrm{Et}_{2} \mathrm{O}$ (10 mL), s - $\mathrm{BuLi}\left(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0 \mathrm{M}, 1.0\right.$ equiv), $\mathrm{ZnCl}_{2}(0.6 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 0.6$ equiv), $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}$ [prepared from $\mathrm{CuCN}(107 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{LiCl}(107 \mathrm{mg}, 2.5 \mathrm{mmol}, 2.5$ equiv)], benzyl bromide ($150 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv) for 10 h prior to addition of 2 mL MeOH and warming to rt , gave the crude product as an oil. Purification by silica gel chromatography eluting with hexane-EtOAc (95:5) afforded 259 mg of S-14 as an oil in 71% yield and 94:6 er. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.50-7.18(10 \mathrm{H}, \mathrm{m})$, $4.21-3.48(3 \mathrm{H}, \mathrm{m}), 3.25(1 \mathrm{H}, \mathrm{dd}), 2.45-1.40(6 \mathrm{H}, \mathrm{m}), 1.35(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=155.5(\mathrm{C}=\mathrm{O}), 138.6(\mathrm{C}), 137.8(\mathrm{C}), 128.5(\mathrm{CH}), 128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 126.4$ $(\mathrm{CH}), 125.8(\mathrm{CH}), 125.3(\mathrm{CH}), 79.7(\mathrm{C}), 63.3(\mathrm{C}), 43.8\left(\mathrm{CH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 40.0\left(\mathrm{CH}_{2}\right), 28.3(3 \mathrm{x}$ $\left.\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{2}\right), 14.8\left(\mathrm{CH}_{2}\right)$. The enantiomer ratio was evaluated by CSP-SFC, monitoring at

210 nm , by comparison a racemic sample, under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=1.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=5.0 \% \mathrm{EtOH}$. The minor enantiomer elutes after $\sim 6 \mathrm{~min}$ and the major elutes after $\sim 7 \mathrm{~min}$.

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30
20	10	ppm												

5. Lithiation-substitution of other (\boldsymbol{R}) - N-Boc-2-arylpiperidines with several electrophiles
5.1. (R)- N-Boc-2-(3,4-dimethoxy)phenylpiperidine:

5.1.1. With MeOD

Using General Procedure D, $R-\mathbf{4}$ of $97: 3$ er and 0.1 mL MeOD showed complete deuteration after 30 min . There is a noticeable shift of the protonated base peak from $\mathrm{m} / \mathrm{z} 222$ for $\mathbf{4}$ to m / z 223 for $\mathbf{4} \cdot \mathbf{d}_{\mathbf{1}}$.

5.1.3. With acetone- d_{6}

Using General Procedure B, $R-\mathbf{4}$ of $97: 3$ er ($321 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.6 \mathrm{~mL}, 4.0 \mathrm{mmol}$, 4.0 equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), s-\mathrm{BuLi}\left(0.8 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.2 \mathrm{M}, 1.0\right.$ equiv), $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(96 \mathrm{mg}, 1.5$ $\mathrm{mmol}, 1.5$ equiv) for 2 h prior to warming to rt and addition of 2 mL MeOH gave the crude product as an oil. Purification by silica gel chromatography eluting with hexane-EtOAc (30:70) afforded $289 \mathbf{m g}$ of the oxazolidinone $R \mathbf{- 1 5}$ as an amorphous solid in 93% yield and 97:3 er. 1H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.95-6.65(3 \mathrm{H}, \mathrm{m}), 4.10-3.68(7 \mathrm{H}, \mathrm{m}), 3.31-2.95(1 \mathrm{H}, \mathrm{m}), 2.25$ $(1 \mathrm{H}, \mathrm{m}), 2.22-1.31(5 \mathrm{H}$ and $6 \mathrm{D}, \mathrm{m}){ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=158.2$ and $158.1(\mathrm{C}=\mathrm{O})$, $156.0(\mathrm{C}), 149.3,149.1$, and $148.4(\mathrm{C}), 118.0(\mathrm{CH}), 111.5$ and $111.4(\mathrm{CH}), 109.0(\mathrm{CH}), 78.9(\mathrm{C})$, $69.1(\mathrm{C}), 56.9,56.1,56.0,55.9(\mathrm{OMe}), 40.6$ and $40.3\left(\mathrm{CH}_{2}\right), 30.2,30.0\left(\mathrm{CH}_{2}\right), 28.4\left(2 \mathrm{x} \mathrm{CD}_{3}\right)$, $24.1\left(\mathrm{CH}_{2}\right)$, $20.4\left(\mathrm{CH}_{2}\right)$. The enantiomer ratio was evaluated by CSP-SFC, under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=2.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=$ $10 \% \mathrm{EtOH}$. The minor enantiomer elutes after ~ 14. min and the major elutes after $\sim 15.4 \mathrm{~min}$.

5.2. (R)-N-Boc-2-(4-tert-butyl)phenylpiperidine:

5.2.1. With MeOD

Using General Procedure D, $R-5$ of $90: 10$ er and 0.1 mL MeOD showed complete deuteration after 30 min .

5.3. (R)- N-Boc-2-(4-cyano)phenylpiperidine:

5.3.1. With MeOD

Using General Procedure D, $R-6$ of $91: 9$ er and 0.1 mL MeOD showed complete deuteration after 30 min and $\mathbf{6} \cdot \mathbf{d}_{\mathbf{1}}$ was obtained with no loss of er. There is a noticeable shift of the protonated base peak from $\mathrm{m} / \mathrm{z} 287$ for $\mathbf{6}$ to $\mathrm{m} / \mathrm{z} 288$ for $\mathbf{6} \cdot \mathbf{d}_{\mathbf{1}}$.

5.3.2. With $\mathrm{Me}_{2} \mathrm{SO}_{4}$

Using General Procedure B, $R-6$ of $90: 10$ er ($286 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.6 \mathrm{~mL}, 4.0 \mathrm{mmol}$, 4.0 equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), s-\operatorname{BuLi}\left(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0 \mathrm{M}, 1.0\right.$ equiv), $\mathrm{Me}_{2} \mathrm{SO}_{4}(0.15 \mathrm{~mL}, 1.5$
mmol, 1.5 equiv) for 18 h prior to addition of 2 mL MeOH , gave the crude product as an oil. Purification by silica gel chromatography eluting with hexane-EtOAc (90:10) afforded 213 mg of $R-16$ as an oil in 71% yield and 90:10 er. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, 2 \mathrm{H}), 7.45(\mathrm{~d}$, $2 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.51(\mathrm{~m}, 9 \mathrm{H}) 1.12(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $156.2(\mathrm{C}=\mathrm{O}), 155.6(\mathrm{C}), 131.9(\mathrm{CH}), 125.2(\mathrm{CH}), 119.2(\mathrm{C}), 109.2$ (C of nitrile), $80.0(\mathrm{C}), 59.8$ (C), $41.4\left(\mathrm{CH}_{2}\right), 41.2\left(\mathrm{CH}_{2}\right), 28.1\left(3 \mathrm{xCH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{2}\right)$.

The enantiomer ratio was evaluated by CSP-SFC, monitoring at 210 nm , by comparison with an authentic racemic sample, under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=2.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=3.0 \% \mathrm{EtOH}$. The minor enantiomer elutes after $\sim 4.5 \mathrm{~min}$ and the major elutes after $\sim 5.4 \mathrm{~min}$.

From rac-6

5.4. (R)- N-Boc-2-(1-naphthyl)piperidine:

5.4.1. With MeOD

Using General Procedure D, R-7 of $97: 3$ er and 0.1 mL MeOD showed complete deuteration after 30 min and $R-\mathbf{7} \cdot \mathbf{d}_{\mathbf{1}}$ was obtained with no loss of er. There is a noticeable shift of the protonated base peak from $\mathrm{m} / \mathrm{z} 128$ for $\mathbf{7}$ to $\mathrm{m} / \mathrm{z} 129$ for $\mathbf{7 \cdot} \cdot \mathbf{d}_{\mathbf{1}}$.

5.4.2. With $\mathrm{Me}_{2} \mathrm{SO}_{4}$

Using General Procedure B, $R-7$ of $97: 3 \mathrm{er}(311 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.6 \mathrm{~mL}, 4.0 \mathrm{mmol}$, 4.0 equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), s-\mathrm{BuLi}\left(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0 \mathrm{M}, 1.0\right.$ equiv), $\mathrm{Me}_{2} \mathrm{SO}_{4}(0.15 \mathrm{~mL}, 1.5$ mmol, 1.5 equiv) for 18 h prior to addition of 2 mL MeOH , gave the crude product as an oil.

Purification by silica gel chromatography eluting with hexane-EtOAc (95:5) afforded 240 mg of $R-\mathbf{1 7}$ as an oil in 74% yield and $93: 7$ er. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.34-7.37(\mathrm{~m}, 6 \mathrm{H})$, $4.35(\mathrm{dd}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.51(\mathrm{~m}, 17 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=155.4(\mathrm{C}=\mathrm{O}), 139.1(\mathrm{C}), 134.0(\mathrm{C}) 131.5(\mathrm{C}), 128.9(\mathrm{CH}), 127.3(\mathrm{CH}), 125.8(\mathrm{CH}), 125.4$ $(\mathrm{CH}), 124.9(\mathrm{CH}), 123.5(\mathrm{CH}), 123.2(\mathrm{CH}) 79.5,60.4(\mathrm{C}), 41.6\left(\mathrm{CH}_{2}\right), 41.2\left(\mathrm{CH}_{2}\right), 28.3(3 \mathrm{x}$ $\left.\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{2}\right)$. The enantiomer ratio was evaluated by CSP-SFC, monitoring at 210 nm , by comparison with an authentic racemic sample, under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=1.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=$ $3.0 \% \mathrm{EtOH}$. The minor enantiomer elutes after $\sim 15.6 \mathrm{~min}$ and the major elutes after $\sim 17.3 \mathrm{~min}$.

From R-7 of 97:3 er

6. Synthesis of \boldsymbol{N}-Boc-2-arylpyrrolidine

R-18 (96:4 er) was synthesized using the Campos procedure ${ }^{9}$. Subsequent syntheses of $(R)-N$ -Boc-2-arylpyrrolidines were accomplished using the two-ligand catalytic asymmetric deprotonation-transmetalation-Negishi coupling method reported by O'Brien and Campos. ${ }^{5}$

(S)-N-Boc-2-phenylpyrrolidine of 96:4 er was synthesized using Beak's lithiation-cyclization procedure ${ }^{4}$ with $(-)$-sparteine. When $(-)$-sparteine was replaced by TMEDA, the racemic $2-$ arylpyrrolidines, (for er evaluation purposes on CSP-SFC) were prepared in 10 mg scale.

Note: The racemic lithiation of N-Boc-pyrrolidine in the presence of TMEDA proceeds in very low yield under the Campos conditions. ${ }^{5}$ In some cases the racemic arylation was accomplished using the diamine-free route reported by O'Brien and coworkers. ${ }^{10}$

7. Lithiation-substitution of (R)- N-Boc-2-phenylpyrrolidine

7.1. Lithiation-substitution with MeOD

Using General Procedure G, R - $\mathbf{1 8}$ of $96: 4$ er and 0.1 mL MeOD showed complete deuteration after 3 h and $R \mathbf{- 1 8} \cdot \mathbf{d}_{\mathbf{1}}$ was obtained with no loss of er. There is a noticeable shift of the protonated base peak from m/z 192 for $\mathbf{1 8}$ to $\mathrm{m} / \mathrm{z} 193$ for $R-\mathbf{1 8} \cdot \mathbf{d}_{\mathbf{1}}$.
S-18 of 96:4 er also gave the same results.

GC-MS traces from chemical ionization

7.2. Lithiation-substitution with $\mathrm{Me}_{2} \mathrm{SO}_{4}$

R-25
Using General Procedure H, R - 18 of $96: 4$ er ($247 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.15 \mathrm{~mL}, 1.0$ $\mathrm{mmol}, 1.0$ equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), n-\mathrm{BuLi}\left(0.5 \mathrm{~mL}, 1.0 \mathrm{mmol}, 2.0 \mathrm{M}, 1.0\right.$ equiv), $\mathrm{Me}_{2} \mathrm{SO}_{4}$ (0.15 $\mathrm{mL}, 1.5 \mathrm{mmol}, 1.5$ equiv) for 8 h at $-60^{\circ} \mathrm{C}$ prior to addition of 2 mL MeOH , gave the crude product as an oil. Purification by silica gel chromatography eluting with hexane-EtOAc (95:5) afforded 224 mg of $R \mathbf{- 2 5}$ as an oil in 86% yield and $94: 6$ er. All other spectroscopic data as reported for $\mathrm{rac-25} .{ }^{7}$ The enantiomer ratio was evaluated by CSP-SFC, monitoring at 210 nm , by comparison with an authentic racemic sample, under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=2.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=2.0 \% \mathrm{EtOH}$. The minor enantiomer elutes after $\sim 5.6 \mathrm{~min}$ and the major elutes after $\sim 7.6 \mathrm{~min}$.

CSP-SFC trace

Pirkle-Whelk-0-1, Flow $=\mathbf{2 . 0}$, $\operatorname{Mod} \%=\mathbf{2 \%} \mathrm{MeOH}$
$\mathrm{Me}_{2} \mathrm{SO}_{4}$ quench after 3 h of lithiation at $-60^{\circ} \mathrm{C}$ in ether

7.3. Lithiation-substitution with dimethyl formamide

R-26
Using General Procedure B, R - $\mathbf{1 8}$ of $96: 4$ er ($247 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.15 \mathrm{~mL}, 1.0$ $\mathrm{mmol}, 1.0$ equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), s-\mathrm{BuLi}(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0 \mathrm{M}, 1.0$ equiv), dimethyl formamide ($0.12 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.5$ equiv) for 8 h at $-80^{\circ} \mathrm{C}$ prior to addition of 2 mL MeOH , gave the crude product as an oil in 96:4 er. Purification by silica gel chromatography eluting with hexane-EtOAc (80:20) afforded 228 mg of $R-\mathbf{2 6}$ as an oil in 83% yield (note 3) and $>99: 1 \mathrm{er} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), mixture of rotomers, $\delta 9.8-9.6(1 \mathrm{H}, \mathrm{s}, \mathrm{H}$ of CHO$), 7.55-7.10(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 3.72(2 \mathrm{H}, \mathrm{br}, \mathrm{NCH}), 2.44(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}), 2.02(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}), 1.92-1.15(11 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=198.2$ and $197.5(\mathrm{C}=\mathrm{O}$ of aldehyde), $153.7(\mathrm{C}=\mathrm{O}), 138.8(\mathrm{C}), 128.3$ $(\mathrm{CH}), 128.0(\mathrm{CH}), 127.3(\mathrm{CH})$ and $126.3(\mathrm{CH}), 81.2$ and $80.6(\mathrm{C}), 74.3(\mathrm{C}), 47.9\left(\mathrm{CH}_{2}\right), 39.3$ and $38.3\left(\mathrm{CH}_{2}\right), 28.4$ and $28.0\left(3 \mathrm{xCH}_{3}\right), 23.4$ and $22.4\left(\mathrm{CH}_{2}\right)$. The enantiomer ratio was evaluated by CSP-SFC, monitoring at 210 nm , by comparison with an authentic racemic sample, under the
following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=1.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=5.0 \%$ EtOH. The major enantiomer elutes after $\sim 7.8 \mathrm{~min}$ and the minor elutes after ~9.6 min.

Note 3: The total yield includes some amount of the C-5 aldehyde obtained due to competitive lithiation at C-5 under the reaction conditions. Spectral data are based on a carefully rechromatographed sample.
The experiment was repeated using General Procedure H but only the GC yield (88%) was obtained and the product wasn't purified further.

ESI-MS

7.4. With EtOCOCl

R-27
Using General Procedure H, R - $\mathbf{1 8}$ of $96: 4$ er ($247 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.15 \mathrm{~mL}, 1.0$ mmol, 1.0 equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), s-\mathrm{BuLi}(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0 \mathrm{M}, 1.0$ equiv), $\mathrm{EtOCOCl}(0.13$ $\mathrm{mL}, 1.5 \mathrm{mmol}, 1.5$ equiv) for 2 h (note 4) prior to addition of 2 mL MeOH and warming to rt , gave the crude product as an oil. Purification by silica gel chromatography eluting with hexaneEtOAc (75:25) afforded 283 mg of $R-27$ as an oil in 70% yield (note 5) and 94:6 er. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), mixture of rotomers, $\delta 7.48-7.15(5 \mathrm{H}, \mathrm{m}), 4.40-4.11(2 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{m})$, $3.41(1 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{m}), 1.97-1.15(14 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $172.2(\mathrm{C}=\mathrm{O}$ of ester), $154.3(\mathrm{C}=\mathrm{O}), 140.1(\mathrm{C}), 127.8(\mathrm{CH}), 125.1(\mathrm{CH}), 126.8(\mathrm{CH}), 79.5(\mathrm{C})$, $72.5(\mathrm{C}), 61.6\left(\mathrm{CH}_{2}\right), 48.1\left(\mathrm{CH}_{2}\right), 44.5\left(\mathrm{CH}_{2}\right)$, $28.1\left(3 \mathrm{xCH}_{3}\right)$, $23.7\left(\mathrm{CH}_{2}\right)$, and $14.1\left(\mathrm{CH}_{3}\right)$. The enantiomer ratio was evaluated by CSP-SFC, monitoring at 210 nm , by comparison with an
authentic racemic sample, under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=1.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=2.0 \% \mathrm{MeOH}$. The minor enantiomer elutes after $\sim 16.2 \mathrm{~min}$ and the major elutes after $\sim 19.7 \mathrm{~min}$.

Note 4: The electrophilic quench was carried out for 2 h after lithiating for 3 h .
Note 5: The total yield includes some amount of the C-5 ester obtained due to competitive lithiation at $\mathrm{C}-5$ under the reaction conditions. Spectral data are based on a carefully rechromatographed sample.

The experiment was repeated using General Procedure H but only the GC yield (79\%) was obtained and the product wasn't purified further.

Pirkle-Whelk-0-1, Flow = 1.0, Mod $\%=2 \%$ MeOH

7.5. Lithiation-substitution with acetone- d_{6}

R-28
Using General Procedure B, R - $\mathbf{1 8}$ of $96: 4$ er ($247 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.15 \mathrm{~mL}, 1.0$ $\mathrm{mmol}, 1.0$ equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), s-\mathrm{BuLi}\left(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0 \mathrm{M}, 1.0\right.$ equiv), $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(96$ $\mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv) for 2 h (note 6) prior to warming to rt and addition of 2 mL MeOH gave the crude product as an oil. Purification by silica gel chromatography eluting with hexaneEtOAc (60:40) afforded 201 mg of the oxazolidinone $R-28$ as an amorphous solid in 85% yield (note 7) and 94:6 er. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.55-7.15(5 \mathrm{H}, \mathrm{m}), 3.86(1 \mathrm{H}, \mathrm{m}), 3.15(1 \mathrm{H}$, m), $2.15(1 \mathrm{H}, \mathrm{m}), 2.10-1.15(3 \mathrm{H}$ and $6 \mathrm{D}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=161.9(\mathrm{C}=\mathrm{O})$, $138.1(\mathrm{C}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 127.9(\mathrm{CH}), 82.2(\mathrm{C}), 78.2(\mathrm{C}), 45.5\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 28.5$ $\left(2 \mathrm{x} \mathrm{CD}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right)$. The enantiomer ratio was evaluated by CSP-SFC, under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=1.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=$ $2 \% \mathrm{EtOH}$. The minor enantiomer elutes after $\sim 12.8 \mathrm{~min}$ and the major elutes after $\sim 18.8 \mathrm{~min}$.

Note 6: The electrophilic quench was carried out for 2 h after lithiating for 3 h .
Note 7: The total yield includes some amount of the C-5 oxazolidinone obtained due to competitive lithiation at C-5 under the reaction conditions. Spectral data are based on a carefully recolumned sample.

The experiment was repeated using General Procedure H but only the GC yield (92\%) was obtained and the product wasn't purified further.

7.6. With 2-bromotoluene

To an oven-dried, septum-capped round bottom flask equipped with a stir bar, was added R - $\mathbf{1 8}$ of 96:4 er ($247 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ under argon. The mixture was cooled to $60^{\circ} \mathrm{C}$ and a solution of s-BuLi in hexanes ($1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0 \mathrm{M}, 1.0$ equiv) was added slowly. After 3 h at this temperature, a solution of $\mathrm{ZnCl}_{2}\left(0.6 \mathrm{~mL}, 1.0 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 0.6$ equiv), was added slowly over a two minute period and the mixture was stirred for 30 minutes followed by warming to room temperature. After 30 minutes, $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{mg}, 4 \mathrm{~mol} \%), t$ $\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(23 \mathrm{mg}, 8 \mathrm{~mol} \%)$ and 2 -bromotoluene ($0.15 \mathrm{~mL}, 1.1 \mathrm{mmol}, 1.1$ equiv) were added sequentially. After stirring for 48 h at room temperature, $\mathrm{NH}_{4} \mathrm{OH}$ ($5 \mathrm{~mL}, 10 \%$ aqueous solution) was added dropwise and the mixture was stirred for 30 minutes. The resulting slurry was filtered through Celite and rinsed with $5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The filtrate was washed with $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$, then with water ($2 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to obtain the crude product. Purification by silica gel chromatography eluting with hexane-EtOAc (90:10) afforded $R-29$ as an oil in less than 10% yield and $92: 8$ er.

Note 8: When the lithiation of R - $\mathbf{1 8}$ was carried out using the conditions in General Procedure \mathbf{H}, followed by arylation as described above, we obtained 34 mg of $R-\mathbf{2 9}$ in 8% yield and $92: 8$ er. Note 9: When rac-18 was lithiated in the absence of TMEDA at $-60{ }^{\circ} \mathrm{C}$ for 3 h in $\mathrm{Et}_{2} \mathrm{O}$, then arylated as described above, we obtained 51 mg of $\mathrm{rac}-\mathbf{2 9}$ in 12% yield.

8. Lithiation-substitution of other N-Boc-2-arylpyrrolidines
8.1. Lithiation-substitution of (R)- N -Boc-2-(o-toluyl)pyrrolidine with MeOD

Using General Procedure G, R - $\mathbf{1 9}$ of 90:10 er and 0.1 mL MeOD showed complete deuteration after 3 h and $R \mathbf{- 1 9 \cdot} \mathbf{d}_{\mathbf{1}}$ was obtained with no loss of er. There is a noticeable shift of the protonated base peak from m/z 206 for $\mathbf{1 9}$ to $\mathrm{m} / \mathrm{z} 207$ for $R-\mathbf{1 9 \cdot} \mathbf{d}_{\mathbf{1}}$.

Pirkle-Whelk-0-1; Flow = 1.0, Modifier $\%=5 \% \mathrm{MeOH}$

8.2. Lithiation-substitution of (R)-N-Boc-2-(2-pyridyl)pyrrolidine with MeOD

8.3. Lithiation-substitution of (R)-N-Boc-2-(1-naphthyl)pyrrolidine, 21

a) With MeOD

Using General Procedure G, R - $\mathbf{2 1}$ of $95: 5$ er and 0.1 mL MeOD showed complete deuteration after 3 h and $R \mathbf{- 2 1} \cdot \mathbf{d}_{\mathbf{1}}$ was obtained with no loss of er. There is a noticeable shift of the protonated base peak from $\mathrm{m} / \mathrm{z} 297$ for $\mathbf{2 1}$ to $\mathrm{m} / \mathrm{z} 298$ for $R-\mathbf{2 1} \cdot \mathbf{d}_{\mathbf{1}}$.

b) With $\mathrm{Me}_{2} \mathrm{SO}_{4}$

R-31

Using General Procedure H, R - 21 of $95: 5$ er ($311 \mathrm{mg}, 1.0 \mathrm{mmol}$), TMEDA ($0.15 \mathrm{~mL}, 1.0$ mmol, 1.0 equiv), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), n-\mathrm{BuLi}\left(0.5 \mathrm{~mL}, 1.0 \mathrm{mmol}, 2.0 \mathrm{M}, 1.0\right.$ equiv), $\mathrm{Me}_{2} \mathrm{SO}_{4}$ (0.15 $\mathrm{mL}, 1.5 \mathrm{mmol}, 1.5$ equiv) for 8 h at $-80^{\circ} \mathrm{C}$ prior to addition of 2 mL MeOH , gave the crude product as an oil. Purification by silica gel chromatography eluting with hexane-EtOAc (80:20) afforded 291 mg of $R \mathbf{- 3 1}$ as an oil in 90% yield and $95: 5 \mathrm{er}$. ${ }^{1} \mathrm{H}$ NMR (mixture of rotomers) (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.23-7.37(6 \mathrm{H}, \mathrm{m}), 3.92(1 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{m}), 2.29-1.82(6 \mathrm{H}$, $\mathrm{m}), 1.58-1.35$ and $0.78(9 \mathrm{H}, \mathrm{s}){ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.4(\mathrm{C}=\mathrm{O}), 142.1(\mathrm{C})$, 134.0 (C) $131.5(\mathrm{C}), 128.9(\mathrm{CH}), 127.3(\mathrm{CH}), 125.8(\mathrm{CH}), 125.4(\mathrm{CH}), 124.9(\mathrm{CH}), 123.5(\mathrm{CH})$, $123.2(\mathrm{CH}) 79.5,67.4(\mathrm{C}), 47.1\left(\mathrm{CH}_{2}\right), 41.5\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{3}\right), 28.3\left(3 \mathrm{XCH}_{3}\right), 22.3\left(\mathrm{CH}_{2}\right)$. The enantiomer ratio was evaluated by CSP-SFC, monitoring at 210 nm , by comparison with an authentic racemic sample, under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=0.5 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=10.0 \% \mathrm{MeOH}$.

CSP-SFC trace; Column: Pirke Whell-0-1, flow rate $=0.5$, modfier $=10 \%$ MeOH
From 95:5 er (R:S)

c) With bromobenzene:

To an oven-dried, septum-capped round bottom flask equipped with a stir bar, was added R - $\mathbf{2 1}$ of 95:5 er ($75 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ under argon. The mixture was cooled to $60{ }^{\circ} \mathrm{C}$ and a solution of $n-\mathrm{BuLi}$ in hexanes ($0.1 \mathrm{~mL}, 0.25 \mathrm{mmol}, 2.5 \mathrm{M}, 1.0$ equiv) was added slowly. After 3 h at this temperature, a solution of $\mathrm{ZnCl}_{2}\left(0.15 \mathrm{~mL}, 1.0 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 0.6$ equiv), was added slowly over a two minute period and the mixture was stirred for 30 minutes followed by warming to room temperature. After 30 minutes, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.5 \mathrm{mg}, 4 \mathrm{~mol} \%), t$ $\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(6 \mathrm{mg}, 8 \mathrm{~mol} \%)$ and phenyl bromide ($0.033 \mathrm{~mL}, 0.28 \mathrm{mmol}, 1.1$ equiv) were added sequentially. After stirring for 48 h at $40^{\circ} \mathrm{C}, \mathrm{NH}_{4} \mathrm{OH}(2 \mathrm{~mL}, 10 \%$ aqueous solution) was added dropwise and the mixture was stirred for 30 minutes. The resulting slurry was filtered through Celite and rinsed with $5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The filtrate was washed with $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$, then with water ($2 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to obtain the crude
product. Analysis of the crude product by CG-MS showed complete conversion of $\mathbf{2 1}$ but less than 5% yield of $\mathbf{3 2}$ was present.
Enamine byproduct formed during Pd-catalyzed arylation of Boc-Pyrr-2-Np with phenyl bromide:

33
${ }^{1} \mathrm{H}$ NMR (mixture of rotomers) $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.23-7.37(6 \mathrm{H}, \mathrm{m}), 5.23(1 \mathrm{H}, \mathrm{t}, \mathrm{br}), 4.26$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{br}), 2.81(2 \mathrm{H}, \mathrm{t}, \mathrm{br}), 1.01-0.61(9 \mathrm{H}, \mathrm{s}, \mathrm{br}){ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.4$ (C=O), 142.1 (C), 141.8 (C), 134.0 (C) 131.5 (C), $128.9(\mathrm{CH}), 127.3(\mathrm{CH}), 125.8(\mathrm{CH}), 125.4$ $(\mathrm{CH}), 124.9(\mathrm{CH}), 123.5(\mathrm{CH}), 123.2(\mathrm{CH}) 112.2(\mathrm{CH}), 79.8,48.2\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.3(3 \mathrm{x}$ CH_{3}).

8.4. Lithiation-substitution of (S)- N -Boc-2-(4-cyanophenyl)pyrrolidine with MeOD

Pirke-Whelk-D-1; Flow $=1.0$, Modifier $\%=3 \% \mathrm{MeOH}$

GC-MS traces from electron impact ionization

9. Dynamics of Inversion of 24

Typical kinetic run:

In oven-dried, septum-capped tubes equipped with a stir bar, $R-\mathbf{1 8}(0.06 \mathrm{M}$ in ether, 0.5 mL$)$ and 0.06 M TMEDA (0.00 or 1.00 equiv) were treated with $n-\mathrm{BuLi}$ (1.0 equiv) at $-60{ }^{\circ} \mathrm{C}$ for 3 h under nitrogen. The total volume of each tube was maintained at 1.0 mL . The tubes were quickly transferred to a second bath thermostatted at the desired temperature (see tables below). At various time intervals over a four-hour period, a tube was transferred to a bath at $-80^{\circ} \mathrm{C}$ and rapidly quenched with MeOD . Each tube was analyzed by GC-MS to ensure 100% deuterium incorporation (indicative of complete lithiation). The enantiomer ratio (er) of $\mathbf{1 8} \cdot \mathbf{d}_{\mathbf{1}}$ was determined by CSP-SFC monitoring at 210 nm under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=2.0 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=2.0 \% \mathrm{EtOH} . S$ $\mathbf{1 8} \cdot \mathbf{d}_{\mathbf{1}}$ elutes after $\sim 4.2 \mathrm{~min}$ and $R \mathbf{- 1 8} \cdot \mathbf{d}_{\mathbf{1}}$ elutes after $\sim 5.7 \mathrm{~min}$. The rate constants were determined by non-linear fitting of the zero-order plots using reversible first-order kinetics. Using reversible first-order kinetics, the fraction of the R-enantiomer starting from R - $\mathbf{1 8}$ (96:4 er) as a function of time (t), is given by $(R)_{t}=0.5+(0.96-0.50)\left(e^{-k_{r a c} t}\right)$ where $k_{\text {rac }}$ is the observed rate constant for the racemization. The enantiomerization rate constant, $k_{\text {ent }}=k_{\text {rac }} / 2$.

Notes

(a) $\mathrm{In}_{\mathrm{Et}}^{2} \mathrm{O}$, the lithiation of R - $\mathbf{1 8}$ (96:4 er) was carried out for 3 h both in the absence of any ligand and in the presence of TMEDA or 23.
(b) In THF, the lithiation of $S \mathbf{- 1 8}$ (96:4 er) was carried out for 1 h in the absence of any ligand.
(c) In 2-MeTHF, the lithiation of $R-\mathbf{1 8}$ (96:4 er) was carried out for 1 h in the absence of any ligand.

Table S1. Enantiomer ratios for racemization of 24 in the absence of any ligand in $\mathrm{Et}_{2} \mathrm{O}$

a) at $-20^{\circ} \mathrm{C}$	
Time (h)	Fraction R
0	0.960
0.5	0.915
2.5	0.823
4.5	0.753

b) at $-7^{\circ} \mathrm{C}$

Time (h)	Fraction R
0	0.960
0.25	0.858
0.5	0.757
1	0.645
2	0.541

c) at $0^{\circ} \mathrm{C}$

Time (h)	Fraction R
0	0.960
0.1667	0.805
0.5	0.633
0.75	0.585
1	0.539

d) at $8^{\circ} \mathrm{C}$

Time (h)	Fraction R
0	0.960
0.083333	0.824
0.25	0.627
0.5	0.539
0.75	0.501

Figure S1. Evolution of er in the enantiomerization of R-24 in the absence of any ligand in $\mathrm{Et}_{2} \mathrm{O}$.

KEY: 281 K ; triangles, 273 K ; squares, 266 K ; diamonds, 253 K ; circles

Enantiomerization in the absence of any ligand at 281 K in $\mathrm{Er}_{2} \mathrm{O}$

Table S2. Enantiomer ratios for enantiomerization of $\mathbf{2 4}$ in the presence of 1 equiv TMEDA in $\mathrm{Et}_{2} \mathrm{O}$

a) at $-7{ }^{\circ} \mathrm{C}$	
Time (h)	Fraction R
0	0.960
0.5	0.919
1	0.875
1.5	0.828
2.5	0.784
3.5	0.752

b) at $0^{\circ} \mathrm{C}$

Time (h)	Fraction R
0	0.96
0.1667	0.93
0.5	0.861
0.75	0.82
1	0.789

Figure S2. Evolution of er in the enantiomerization of R-24 in the presence of 1 equiv TMEDA in $\mathrm{Et}_{2} \mathrm{O}$ at various temperatures.

KEY: 291 K ; triangles, 281 K ; squares, 273 K ; circles, 266 K ; diamonds

Table S3. Enantiomer ratios for enantiomerization of 24 in the presence of 1 equiv DIB, 23, in $\mathrm{Et}_{2} \mathrm{O}$

a) at $-2{ }^{\circ} \mathrm{C}$	
Time (h)	Fraction S
0	0.96
0.1667	0.945
0.5	0.922
1	0.893

b) at $8^{\circ} \mathrm{C}$

Time (h)	Fraction S
0	0.953
0.08333	0.913
0.25	0.872
0.5	0.84
0.75	0.77

c) at $14^{\circ} \mathrm{C}$

Time (min)	Fraction S
0	0.96
0.08333	0.875
0.25	0.784
0.5	0.724
0.75	0.643
1.25	0.543

Evolution of er in the enantiomerization of R-24 in the presence of 1 equiv DIB in $\mathrm{Et}_{2} \mathrm{O}$ at various temperatures.

KEY: 287 K ; squares, 281 K ; circles, 271 K ; diamonds

Enantiomerization in the presence of 1 equiv DIB at 281 K in $\mathrm{Et}_{2} \mathrm{O}$

CSP-SFC conditions: Flow rate $=0.5, \mathrm{Mod} \%=10$

Table 4. Enantiomer ratios for enantiomerization of S-24 in the absence of any ligand in THF (lithiation with n-BuLi).

a) at $-57^{\circ} \mathrm{C}$		c) at $-31^{\circ} \mathrm{C}$	
Time (h)	Fraction S	Time (h)	Fraction S
0.5	0.88	0.083333	0.754
1	0.8	0.25	0.652
2	0.701	0.5	0.603
4	0.628	1	0.519
8	0.51		
b) at $-43^{\circ} \mathrm{C}$			
Time (h)	Fraction S		
0.08333	0.872		
0.5	0.658		
1	0.578		
2	0.512		

Evolution of er in the enantiomerization of $\boldsymbol{S} \mathbf{- 2 4}$ in the absence of any ligand in THF at various temperatures.

The rate constants were obtained from a nonlinear fit of the equation $(S)_{t}=0.5+\left(S_{i n i}-0.50\right)\left(e^{-k_{r a c t}}\right)$
Since the initial values at $\mathrm{t}=0, S_{i n i}$, were not determined experimentally, $S_{i n i}$, and $k_{r a c}$ were both treated as variable parameters.

Enantiomerization in the absence of

 any ligand at -31 ${ }^{\circ} \mathrm{C}$ in THF

Table 5. Enantiomer ratios for enantiomerization of $R-24$ in the absence of any ligand in 2-MeTHF at $-31^{\circ} \mathrm{C}$

$\mathrm{T}=-31^{\circ} \mathrm{C}$	
Time (h)	Fraction R
0	0.898
0.25	0.850
0.5	0.823
1	0.782

Table 6. Eyring plot parameters for enantiomerization of 24
Eyring analysis of the rate constants at their respective temperatures was performed using the equation $\ln \left(\frac{k_{\text {ent }}}{T}\right)=-\frac{\Delta H^{\ddagger}}{R T}+\ln \frac{k_{B}}{h}+\frac{\Delta S^{\ddagger}}{R} \quad$ where $\quad k_{\text {ent }}=$ rate constant for the enantiomerization (S to R or vice versa), $\mathrm{T}=$ absolute temperature, $\Delta \mathrm{H}^{\ddagger}=$ enthalpy of activation, $\mathrm{R}=$ molar gas constant, $k_{B}=$ Boltzmann's constant, $\mathrm{h}=$ Planck's constant, $\Delta \mathrm{S}^{\ddagger}=$ entropy of activation.

The analysis of the Eyring plots is based on the assumption that A (the Arrhenius pre-exponential factor), E_{a} (the activation energy), and $\Delta \mathrm{H}^{\ddagger}$ are independent of temperature. ${ }^{11}$ This
approximation is generally considered valid over a small temperature range, such as used in these experiments.
(a) No ligand in $\mathrm{Et}_{2} \mathrm{O}$

Temp (K)	$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	$k_{\text {rac }}\left(\times 10^{-4} \mathrm{~s}^{-1}\right)^{\mathrm{a}}$	$\ln \left(k_{\text {rac }} / \mathrm{T}\right)$	$\ln \left(k_{\text {ent }} / \mathrm{T}\right)$
253	0.00395257	0.358 ± 0.06	-15.770	-16.463
266	0.0037594	3.184 ± 0.61	-13.636	-14.329
273	0.003663	6.703 ± 0.93	-12.917	-13.610
281	0.00355872	13.53 ± 1.04	-12.244	-12.937

(b) 1 equiv TMEDA in $\mathrm{Et}_{2} \mathbf{O}$

Temp (K)	$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	$k_{\text {rac }}\left(\times 10^{-4} \mathrm{~s}^{-1}\right)^{\mathrm{a}}$	$\ln \left(k_{\text {rac }} / \mathrm{T}\right)$	$\ln \left(k_{\text {ent }} / \mathrm{T}\right)$
266	0.0037594	0.528 ± 0.07	-15.433	-16.126
273	0.003663	1.314 ± 0.03	-14.547	-15.240
281	0.00355872	3.705 ± 0.07	-13.539	-14.232
291	0.00343643	7.564 ± 1.04	-12.860	-13.553

(c) 1 equiv DIB in $\mathrm{Et}_{2} \mathrm{O}$

Temp (K)	$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	$k_{\text {rac }}\left(\mathrm{x} 10^{-4} \mathrm{~s}^{-1}\right)^{\mathrm{a}}$	$\ln \left(k_{\text {rac }} / \mathrm{T}\right)$	$\ln \left(k_{\text {ent }} / \mathrm{T}\right)$
271	0.00369004	0.4598 ± 0.008	-15.589	-16.282
281	0.00355872	1.910 ± 0.02	-14.201	-14.894
287	0.00348432	4.429 ± 0.08	-13.382	-14.075

(d) No ligand in THF

Temp (K)	$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	$k_{\text {rac }}\left(\times 10^{-4} \mathrm{~s}^{-1}\right)^{\mathrm{a}}$	$\ln \left(k_{\text {rac }} / \mathrm{T}\right)$	$\ln \left(k_{\text {ent }} / \mathrm{T}\right)$
216	0.00462963	1.06 ± 0.12	-14.531	-15.224
230	0.00434783	5.3 ± 0.19	-12.980	-13.674
242	0.00413223	9.8 ± 1.4	-12.416	-13.109

a. $k_{r a c}=k_{R S}+k_{S R}=2 k_{e n t}$

From an Eyring plot,
$\Delta \mathrm{H}^{\ddagger}=-$ slope $\cdot \mathrm{R} ; \frac{\operatorname{Err}(\Delta H)}{\Delta H}=\sqrt{\left(\frac{\operatorname{err}(\text { slope })}{\text { slope }}\right)^{2}+\left(\frac{\operatorname{err}(R)}{R}\right)^{2}}=\sqrt{\left(\frac{\operatorname{err}(\operatorname{slope})}{\text { slope }}\right)^{2}}$ since $\operatorname{err}(\mathrm{R})=0$
Similarly, $\Delta S^{\ddagger}=$ Intercept $\cdot \mathrm{R}-\mathrm{R} \ln \left(\mathrm{k}_{\mathrm{B}} / \mathrm{T}\right) ; \frac{\operatorname{Err}(\Delta S)}{\Delta S}=\sqrt{\left(\frac{\text { err(intercept }}{\text { intercept }}\right)^{2}+\left(\frac{(\mathrm{er}(\mathrm{R})}{R}\right)^{2}}=\sqrt{\left(\frac{\text { errfintercept) }}{(\text { intercept }}\right)^{2}}$
$\Delta \mathrm{G}^{\ddagger}=\Delta \mathrm{H}^{\ddagger}-\mathrm{T} \Delta \mathrm{S}^{\ddagger}$ such that $\frac{\operatorname{Err}(T \Delta S)}{T \Delta S}=\sqrt{\left(\frac{\operatorname{err}(T)}{T}\right)^{2}+\left(\frac{\operatorname{err}(\Delta S)}{\Delta S}\right)^{2}}$
$\operatorname{Err}(\Delta G)=\sqrt{(\operatorname{err}(d H))^{2}+(\operatorname{err}(T d S))^{2}}$

Relationship between free energy of activation and temperature for enantiomerization of $\mathbf{2 4}$.

10. Dynamics of Inversion of 8

Typical kinetic run:

In oven-dried, septum-capped tubes equipped with a stir bar, $R-3(0.06 \mathrm{M}$ in ether, 0.5 mL$)$ and 0.06 M TMEDA (0.00 or 1.00 equiv) were treated with $n-\mathrm{BuLi}\left(1.0\right.$ equiv) at $-80^{\circ} \mathrm{C}$ for 1 h under nitrogen. The total volume of each tube was maintained at 1.0 mL . The tubes were quickly transferred to a second bath thermostated at the appropriate temperature (see tables below). At various time intervals over a four-hour period, a tube was transferred to the bath at $-80^{\circ} \mathrm{C}$ and rapidly quenched with MeOD. Each tube was analyzed by GC-MS to ensure 100% deuterium incorporation (indicative of complete lithiation). The enantiomer ratio (er) of $\mathbf{3} \cdot \mathbf{d}_{\mathbf{1}}$ was determined by CSP-SFC monitoring at 210 nm under the following column conditions: Column: Pirkle Whelk-O-1, Flow Rate $=0.5 \mathrm{~mL} / \mathrm{min}$, Polarity Modifier $=10.0 \% \mathrm{IPA} . S-\mathbf{3} \cdot \mathbf{d}_{\mathbf{1}}$ elutes after $\sim 17.2 \mathrm{~min}$ and $R \cdot \mathbf{3} \cdot \mathbf{d}_{\mathbf{1}}$ elutes after $\sim 21 \mathrm{~min}$. In some cases, the enantiomer ratio (er) of $\mathbf{3} \cdot \mathbf{d}_{\mathbf{1}}$ was determined by CSP-HPLC monitoring at 254 nm . The rate constants were determined by non-linear fitting of the zero-order plots using reversible first-order kinetics. The rate constants were obtained from a nonlinear fit of the equation $(R)_{t}=0.5+\left(R_{i n i}-0.50\right)\left(e^{-k_{\text {ract }}}\right)$

Since the initial values at $\mathrm{t}=0, R_{i n i}$, were not determined experimentally, $R_{i n i}$, and $k_{r a c}$ were both treated as variable parameters in the fitted equation; $k_{r a c}$ is the observed rate constant for the racemization. The enantiomerization rate constant, $k_{\text {ent }}=k_{\text {rac }} / 2$.
Table 1. Enantiomer ratios for enantiomerization of $\mathbf{8}$ in the absence of any ligand in $\mathrm{Et}_{2} \mathrm{O}$

a) at 225 K	
Time (h)	Fraction R
1	0.91
2	0.86
3	0.80
4	0.78

b) at 232 K

Time (h)	Fraction R
0.5	0.9
2	0.725
4	0.63

c) at 239 K	
Time (h)	Fraction R
0.25	0.84
0.5	0.74
1	0.64
2	0.53

d) at 248 K

Time (h)	Fraction R
0.1667	0.701
0.5	0.535
0.75	0.515
1	0.5

Table 2. Enantiomer ratios for enantiomerization of $\mathbf{8}$ in the presence of 1 equiv TMEDA in $\mathrm{Et}_{2} \mathrm{O}$

a) at 225 K		c) at 243 K	
Time (h)	Fraction R	Time (h)	Fraction R
1	0.93	0.25	0.82
3	0.88	0.5	0.73
6	0.8	0.75	0.65
9	0.755	1	0.61
b) at 233 K		2	0.53
Time (h)	Fraction R	d) at 253 K	
		Time (h)	Fraction R
0.25	0.93		
0.5	0.9	0.1667	0.75
1	0.87	0.5	0.58
2	0.78	0.75	0.535
4	0.68	1	0.50

Evolution of er in the enantiomerization of $\mathbf{8}$ in the presence of 1 equiv TMEDA in $\mathrm{Et}_{2} \mathrm{O}$ at various temperatures.

KEY: 225 K ; circles, 233 K ; diamonds, 243 K ; triangles, 248 K ; squares

Table 4. Enantiomer ratios for enantiomerization of $\mathbf{8}$ in the absence of any ligand in THF

a) at 213 K		c) at 233 K	
Time (h)	Fraction R	Time (h)	Fraction R
0.5	0.835	0.083333	0.8
1	0.75	0.25	0.652
2	0.64	0.5	0.55
4	0.55	d) at 243 K	
b) at 223 K		Time (h)	Fraction R
Time (h)	Fraction R		
		0.083333	0.6
0.08333	0.89	0.25	0.51
0.5	0.658	0.41667	0.5
1	0.55	0.75	0.5
2	0.5		

Evolution of er in the enantiomerization of $\mathbf{8}$ in the absence of any ligand in THF at various temperatures.

Table 6. Eyring plot parameters for enantiomerization of $\mathbf{8}$
a) No ligand in $\mathrm{Et}_{2} \mathrm{O}$

Temp, K	$1 / \mathrm{T}$	$k_{\text {rac }}$	$k_{\text {ent }}$	$\ln \left(k_{\text {ent }} / T\right)$
225	0.00444444	$3.58413 \mathrm{E}-05$	$1.79206 \mathrm{E}-05$	-16.3456584
232	0.00431034	$9.48636 \mathrm{E}-05$	$4.74318 \mathrm{E}-05$	-15.4029551
239	0.0041841	0.000350222	0.000175111	-14.1265529
248	0.00403226	0.00141522	0.00070761	-12.7670461

b) 1 equiv TMEDA in $\mathrm{Et}_{2} \mathrm{O}$

Temp, K	$1 / \mathrm{T}$	$k_{\text {rac }}$	$k_{\text {ent }}$	$\ln \left(k_{\text {ent }} / \mathrm{T}\right)$
225	0.00444444	$1.87 \mathrm{E}-05$	$9.35035 \mathrm{E}-06$	-16.9961975
233	0.00429185	$6.48182 \mathrm{E}-05$	$3.24091 \mathrm{E}-05$	-15.7881093
243	0.00411523	0.000398194	0.000199097	-14.0147796
253	0.00395257	0.000985167	0.000492583	-13.1492365
c) No ligand in THF				
Temp, K	$1 / \mathrm{T}$	$k_{\text {rac }}$	$k_{\text {ent }}$	$\ln \left(k_{\text {ent }} / \mathrm{T}\right)$
213	0.00469484	0.000157504	$7.8752 \mathrm{E}-05$	-14.8104985
223	0.0044843	0.000612632	0.000306316	-13.4980645
233	0.00429185	0.001162146	0.000581073	-12.9016728
243	0.00411523	0.003868864	0.001934432	-11.741003

Relationship between free energy of activation and temperature for enantiomerization of $\mathbf{8}$.

		$\Delta \mathrm{G}^{\ddagger}=\Delta \mathrm{H}^{\ddagger}-\mathrm{T} \Delta \mathrm{S}^{\ddagger}$	
Entry	Description	$\Delta \mathrm{H}^{\ddagger}(\mathrm{kcal} / \mathrm{mol})$	$\Delta \mathrm{S}^{\ddagger}(\mathrm{cal} / \mathrm{mol} \cdot \mathrm{K})$
1	No ligand in $\mathrm{Et}_{2} \mathrm{O}$	17.5 ± 0.8	-2.0 ± 0.06
2	1 equiv TMEDA in $\mathrm{Et}_{2} \mathrm{O}$	16.0 ± 1.3	-9.6 ± 0.5
3	No ligand in THF	10.1 ± 0.9	-29.1 ± 4.2

11. References

1. Hoye, T. R.; Eklov, B. M.; Ryba, T. D.; Voloshin, M.; Yao, L. J., Org. Lett. 2004, 6 (6), 953-956.
2. Beng, T. K.; Gawley, R. E., J. Am. Chem. Soc. 2010, 132 (35), 12216-12217.
3. Beng, T. K.; Gawley, R. E., Org. Lett. 2011, 13 (3), 394-397.
4. Wu, S.; Lee, S.; Beak, P., J. Am. Chem. Soc. 1996, 118, 715-721.
5. Barker, G.; McGrath, J. L.; Klapars, A.; Stead, D.; Zhou, G.; Campos, K. R.; O'Brien, P., J. Org. Chem. 2011, 76 (15), 5936-5953.
6. Seel, S.; Thaler, T.; Takatsu, K.; Zhang, C.; Zipse, H.; Straub, B. F.; Mayer, P.; Knochel, P., J. Am. Chem. Soc. 2011, 133 (13), 4774-4777.
7. Xiao, D.; Lavey, B. J.; Palani, A.; Wang, C.; Aslanian, R. G.; Kozlowski, J. A.; Shih, N.Y.; McPhail, A. T.; Randolph, G. P.; Lachowicz, J. E.; Duffy, R. A., Tetrahedron Lett. 2005, 46 (44), 7653-7656.
8. Bagutski, V.; Elford, T. G.; Aggarwal, V. K., Angew. Chem., Int. Ed. 2011, 50 (5), 10801083, S1080/1-S1080/57.
9. Campos, K. R.; Klapars, A.; Waldman, J. H.; Dormer, P. G.; Chen, C., J. Am. Chem. Soc. 2006, 128 (11), 3538-3539.
10. Barker, G.; O'Brien, P.; Campos, K. R., Org. Lett. 2010, 12 (18), 4176-4179.
11. Espenson, J. H., Chemical Kinetics and Reaction Mechanisms. 2 ed.; McGraw-Hill: New York, 2002; p 281.
