Supporting Information:

Efficient Light Harvesting and Charge Collection of Dye-Sensitized Solar Cells with (001) Faceted Single Crystalline Anatase Nanoparticles

Feng Hao^a, Xiao Wang^a, Chen Zhou^a, Xingjian Jiao^a, Xin Li^b, Jianbao Li^{a,c}, Hong Lin^{a,*}

^aState Key Laboratory of New Ceramics & Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084, PR China.

^bPen-Tung Sah Micro-Nano Technology Research Center, Xiamen University, Xiamen 361005, PR China

^c College of Materials Science and Chemical Engineering, Hainan University, Haikou

570228, PR China.

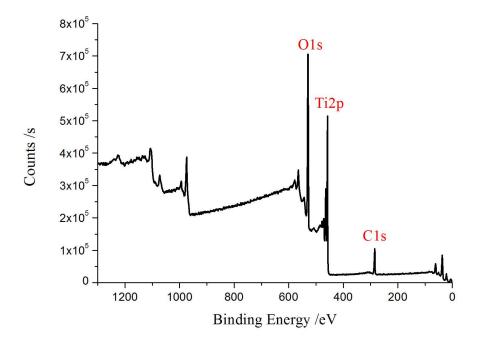


Figure S1 XPS spectrum of the as-synthesized TiO₂ single crystals

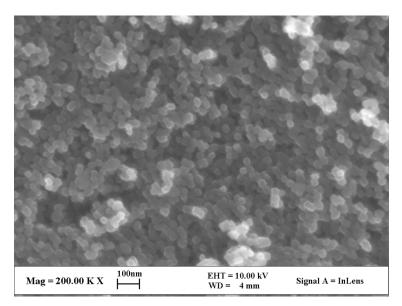


Figure S2 Representative SEM image of the $\rm TiO_2$ single crystals after thermal annealing

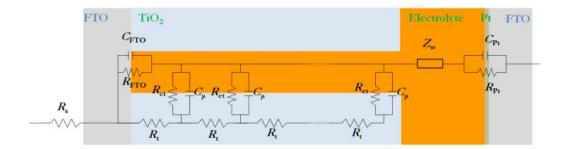


Figure S₃ Transmission line model used to fit the impedance experimental data of DSCs. *R*_{ct}, *R*_{Pt}, and *R*_{FTO}: charge-transfer resistance at the dyed TiO₂/electrolyte, the electrolyte/Pt interface, and the uncovered layer of FTO/electrolyte interface, respectively; *C*_µ, *C*_{Pt}, and *C*_{FTO}: the chemical capacitance at the dyed TiO₂/electrolyte, the electrolyte/Pt interface, and the uncovered layer of FTO/electrolyte interface, respectively; *R*_t is the transport resistance of the electrons in the TiO₂ film; *Z*_w is the Warburg element showing the Nernst diffusion of I₃⁻ in the electrolyte; *R*₅ is the series resistance, including the sheet resistance of the FTO glass and the contact resistance of the cells.

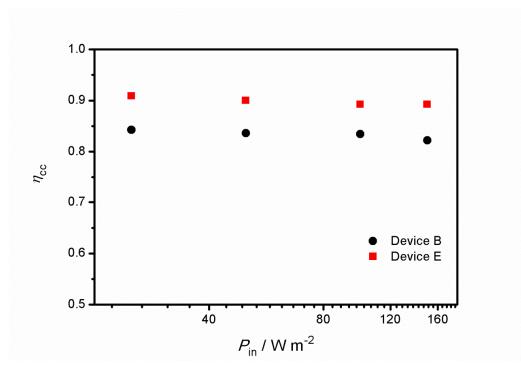


Figure S4 Derived charge collection efficiency against incident light intensities of device B and device E from IMPS/IMVS analysis.