Peptide Bond Hydrolysis Catalyzed by the Wells-Dawson $Zr(\alpha_2 - P_2W_{17}O_{61})_2$ Polyoxometalate

Gregory Absillis and Tatjana N. Parac-Vogt*

Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

Supporting Information

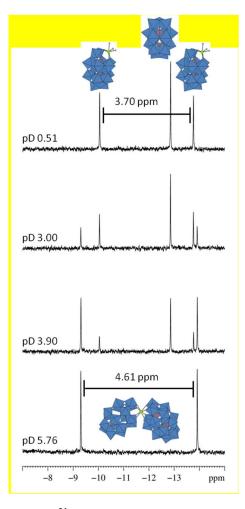


Figure S1. pD dependence of the ³¹P NMR spectrum of 2.0 mM of **1**. The spectra were recorded immediately after mixing and pD adjustment. (242.94 MHz, D₂O, 293 K, n 128, d1 60 s, 25% H₃PO₄). The peaks at -9.34 ppm and -13.95 ppm (Δ = 4.61 ppm) are characteristic for the 1:2 species.¹ The 1:1 monomer can be found at -10.04 ppm and -13.76 ppm (Δ = 3.70 ppm).²

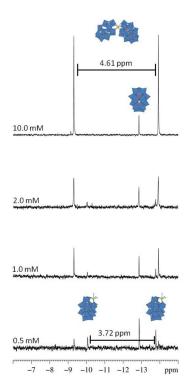


Figure S2. Concentration dependence of the ³¹P NMR spectrum of **1** at pD 5.0. The spectra were recorded immediately after mixing. (242.94 MHz, D₂O, 293 K, n = 128, d1 = 60 s, 25% H₃PO₄) The peaks at -9.34 ppm and -13.95 ppm (Δ = 4.61 ppm) are characteristic for the 1:2 species.¹ The 1:1 monomer can be found at -10.04 ppm and -13.76 ppm (Δ = 3.70 ppm).²

Concentration (mM)	% 1:2	% 1:1
10.0	100	0
2.0	80.92	19.08
1.0	73.18	26.82
0.5	16.88	83.12

Table S1: Concentration dependence of the species distribution of **1** at pD 5.0.

Time	2.0 mM 1		10.0	mM 1
Time	2:2 ^a	1:2	2:2	1:2
1 day	39.54	60.46	16.77	83.23
2 days	48.26	51.74	21.65	78.35
1 week	46.79	53.21	22.52	77.48

Table S2. Time dependence of the species distribution of 2.0 mM and 10.0 mM of 1 at pD 5.0 and 60 $^{\circ}\mathrm{C}.$

a) The 2:2 dimer can be found at -9.87 and -12.82 ppm.³

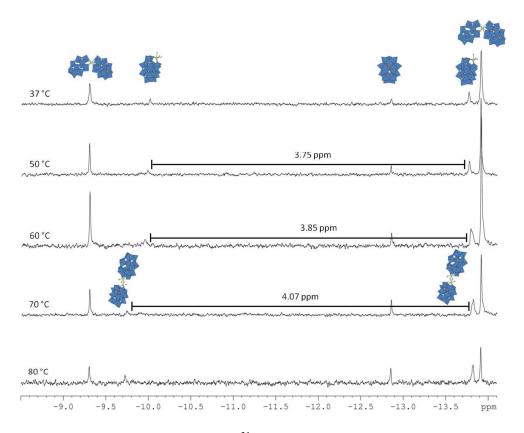


Figure S3: Temperature dependence of the 31 P NMR spectrum of 2.0 mM of 1 after 1 h at X °C and pD 5.0. (242.94 MHz, D₂O, 293 K, n = 512, d1 = 2 s, 25% H₃PO₄)

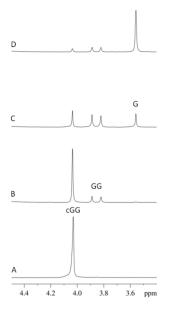


Figure S4. ¹H NMR spectra recorded at various reaction times during the hydrolysis of 2.0 mM of cGG in the presence of 2.0 mM of **1** at pD 5.0 and 60 °C. (400 MHz, D₂O, 293 K, n = 16, 0.5 mM TMSPA-d₄) (A) after mixing (B) after 1910 min (C) 10160 min (D) after 30455 min.

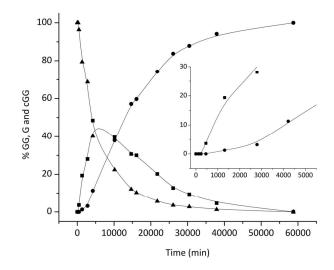


Figure S5. Hydrolysis of 2.0 mM of cGG in the presence of 2.0 mM of 1 at pD 5.0 and 60 °C. Percentage of GG (- \blacksquare -), G (- \bullet -), and cGG (- \blacktriangle -) as a function of reaction time.

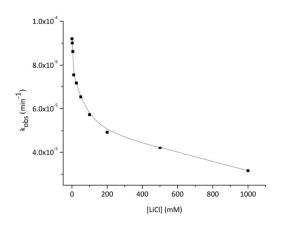


Figure S6. Effect of salt concentration on the rate constant for the hydrolysis of 2.0 mM of GG in the presence of 2.0 mM of 1 at pD 5.0 and 60 $^{\circ}$ C.

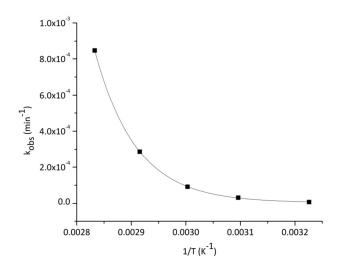


Figure S7. The reaction rate constant for the hydrolysis of GG as a function of the reciprocal temperature. (2.0 mM of GG - 2.0 mM of 1 at pD 5.0).

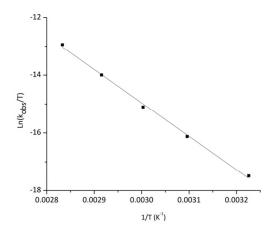


Figure S8. $ln(k_{obs}/T)$ as a function of the reciprocal temperature (2.0 mM GG - 2.0 mM 1 at pD 5.0).

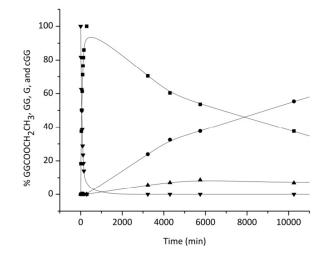


Figure S9. Hydrolysis of 2.0 mM of GGOEt in the presence of 2.0 mM of 1 at pD 5.0 and 60 °C. Percentage of GGOEt ($-\nabla$ -), GG ($-\bullet$ -), G ($-\bullet$ -), and cGG ($-\Delta$ -) as a function of reaction time.

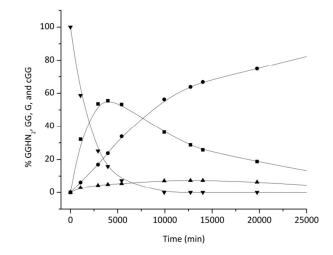


Figure S10. Hydrolysis of 2.0 mM of GGNH₂ in the presence of 2.0 mM of 1 at pD 5.0 and 60 °C. Percentage of GGNH₂ (- ∇ -), GG (- \blacksquare -), G (- \blacksquare -), and cGG (- \blacktriangle -) as a function of reaction time.

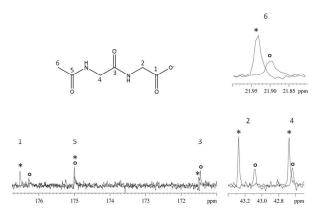


Figure S11. ¹³C NMR spectrum of AcGG in the presence (*) and absence (°) of **1**.

	30.0 mM	10 mM AcGG +	Δ
	AcGG	10 mM 1	(ppm)
C1(CO)	176.28	176.53	0.25
C3(CO)	171.51	171.46	-0.05
C5(CO)	174.99	175.01	0.02
C2(CH2)	43.08	43.28	0.20
C4(CH2)	42.64	42.67	0.03
C6(CH3)	21.90	21.93	0.03

Table S3. ¹³C NMR chemical shift values (ppm) of AcGG in the presence and absence of **1**.

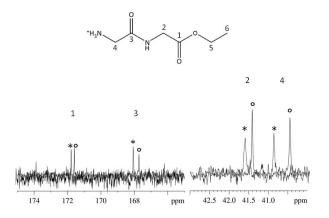


Figure S12. ¹³C NMR spectrum of GGOEt in the presence (*) and absence (°) of **1**.

	30 mM	10 mM GGOEt +	Δ
	GGOEt	10 mM 1	(ppm)
C1(CO)	171.59	171.72	0.13
C3(CO)	167.72	168.03	0.31
C2(CH2)	41.41	41.70	0.29
C4(CH2)	40.44	40.98	0.54
C5(CH2)	62.75	62.75	0.00
C6(CH3)	13.33	13.40	0.07

Table S4. ¹³C NMR chemical shift values (ppm) of GGOEt in the presence and absence of **1**.

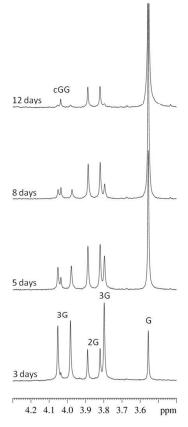


Figure S13. ¹H NMR spectra recorded at various reaction times during the hydrolysis of 2.0 mM of 3G in the presence of 2.0 mM of 1 at 60 °C and pD 5.0. (600 MHz, D₂O, 293 K, n = 16, 0.5 mM TMSPA-d₄)

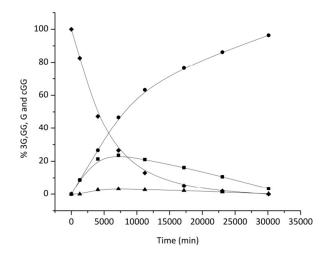


Figure S14. Hydrolysis of 2.0 mM of 3G in the presence of 2.0 mM of 1 at pD 5.0 and 60 °C. Percentage of 3G (- \bullet -), GG (- \bullet -), G (- \bullet -), and cGG (- \blacktriangle -) as a function of reaction time.

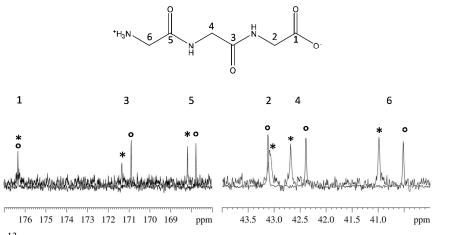


Figure S15. ¹³C NMR spectrum of 3G in the presence (*) and absence (°) of **1**. (150.90 MHz, D_2O , 293 K, n = 20k, 1% TMS in CDCl₃)

	30.0 mM 3G	10.0 mM 3G + 10.0 mM 1	∆ (ppm)
C1(CO)	176.35	176.30	-0.05
C3(CO)	170.90	171.31	0.41
C5(CO)	167.79	168.15	0.36
$C2(CH_2)$	43.12	43.09	-0.03
$C4(CH_2)$	42.39	42.69	0.30
C6(CH ₂)	40.52	40.99	0.47

Table S5. ¹³C NMR chemical shift values (ppm) of 3G in the presence and absence of 1.

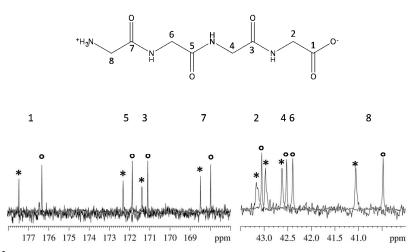


Figure S16. ¹³C NMR spectrum of 4G in the presence (*) and absence (°) of **1**. (150.90 MHz, D_2O , 293 K, n = 20k, 1% TMS in CDCl₃)

	30.0 mM 4G	10.0 mM 4G + 10.0 mM 1	Δ (ppm)
C1(CO)	176.34	177.42	1.08
C3(CO)	171.10	171.34	0.24
C5(CO)	171.87	172.27	0.40
C7(CO)	167.99	168.44	0.45
$C2(CH_2)$	43.05	43.17	0.11
$C4(CH_2)$	42.52	42.97	0.45
$C6(CH_2)$	42.39	42.62	0.23
C8(CH ₂)	40.48	41.06	0.58

Table S6. ¹³C NMR chemical shift values (ppm) of 4G in the presence and absence of **1**.

(1) Kato, C. N.; Shinohara, A.; Hayashi, K.; Nomiya, K. *Inorg. Chem.* **2006**, *45*, 8108.

(2) Sokolov, M. N.; Izarova, N. V.; Peresypkina, E. V.; Mainichev, D. A.; Fedin, V. P. *Inorganica Chimica Acta* **2009**, *362*, 3756.

(3) Saku, Y.; Sakai, Y.; Nomiya, K. *Inorganica Chimica Acta* **2010**, *363*, 967.