Supporting Information for "Charge transport in mixed organic disorder semiconductors: trapping, scattering, and effective energetic disorder"

Derivation of equation 6:

Assume that two materials are in the mixed organic semiconductors: material A with a content of x (mol), a energy level of ε_A , a disorder (standard deviation) of σ_A and a density function of p(A); material B with a content of 1-x (mol), a energy level of ε_B , a disorder (standard deviation) of σ_B and a density function of p(B).

Then the equations below are obtained:

$$\int p(A) d\epsilon = 1, \quad \int p(B) d\epsilon = 1$$
$$\int \epsilon \cdot p(A) d\epsilon = \epsilon_A, \quad \int \epsilon \cdot p(B) d\epsilon = \epsilon_B$$
$$\int \epsilon^2 \cdot p(A) = \epsilon_A^2 + \sigma_A^2, \quad \int \epsilon^2 \cdot p(B) = \epsilon_B^2 + \sigma_B^2$$

And the density function of the mixed system, p_m , and the average energy level of the mixed system, ε_m , will be

 $p_m = x \cdot p(A) + (1 - x) \cdot p(B)$ and $\varepsilon_m = x \cdot \varepsilon_A + (1 - x) \cdot \varepsilon_B$.

The deviation of the mixed system, σ_m^2 , will be

$$\sigma_m^2 = \int (\epsilon - \epsilon_m)^2 \cdot p_m d\epsilon$$

$$= \int [\epsilon - (x \cdot \varepsilon_A + (1 - x) \cdot \varepsilon_B)]^2 \cdot (x \cdot p(A) + (1 - x) \cdot p(B)) d\epsilon = I_A + I_B$$

where $I_A = \int [\epsilon - (x \cdot \varepsilon_A + (1 - x) \cdot \varepsilon_B)]^2 \cdot x \cdot p(A) d\epsilon$ and
 $I_B = \int [\epsilon - (x \cdot \varepsilon_A + (1 - x) \cdot \varepsilon_B)]^2 \cdot (1 - x) \cdot p(B) d\epsilon.$
 $I_A = \int [\epsilon - (x \cdot \varepsilon_A + (1 - x) \cdot \varepsilon_B)]^2 \cdot x \cdot p(A) d\epsilon$
 $= \int \epsilon^2 \cdot x \cdot p(A) d\epsilon + \int 2\epsilon \cdot (x \cdot \varepsilon_A + (1 - x) \cdot \varepsilon_B) \cdot x \cdot p(A) d\epsilon$
 $+ \int (x \cdot \varepsilon_A + (1 - x) \cdot \varepsilon_B)^2 \cdot x \cdot p(A) d\epsilon$
 $= x \cdot (\varepsilon_A^2 + \sigma_A^2) + 2x \cdot (x \cdot \varepsilon_A + (1 - x) \cdot \varepsilon_B) \cdot \varepsilon_A + x \cdot (x \cdot \varepsilon_A + (1 - x) \cdot \varepsilon_B)^2$
 $= x \cdot \sigma_A^2 + x \cdot (1 - x)^2 \cdot (\varepsilon_A - \varepsilon_B)^2.$

Similarly, $I_B = (1 - x) \cdot \sigma_B^2 + (1 - x) \cdot x^2 \cdot (\varepsilon_A - \varepsilon_B)^2$.

So we get
$$\sigma_m^2 = I_A + I_B = x \cdot \sigma_A^2 + x \cdot (1-x) \cdot (\varepsilon_A - \varepsilon_B)^2 + (1-x) \cdot \sigma_B^2$$
.

This equation is valid for any type of DOS.

Generalization of our conclusion to the TPD hosted system and NPB hosted systems^{12,13} reported by So *et al.*

Table S1. The critical ΔE and the effects of traps and scatters on hole transport

Host	μ_h (cm ² /Vs)	$\Delta E_{\rm critical}({\rm eV})$	$\sigma_{\rm exp}~({\rm meV})$	λ		$\varDelta E$	$\mu_{\rm h} ({\rm cm}^2/{\rm Vs})$	$\sigma_{\rm exp} ({\rm meV})^{\rm c)}$	λ
TPD ¹²	7.87×10 ^{-2 a)}	0.20	76	2.1	TPD: Rubrene	-0.1 (shallow trap)	3.21×10 ⁻²	80 (79)	2.4
					TPD:DCM1	-0.2 (shallow trap)	4.29×10 ⁻³	103 (88)	6
NPB ¹³	6.6×10 ^{-3 b)}	0.23	75	1.3	NPB:DCM1	-0.2 (shallow trap)	1.0×10 ⁻³	100 (88)	Dispersive
					NPB:DCM2	-0.2 (shallow trap)	1.5×10 ⁻³	98 (88)	Dispersive
					NPB:TBu-TBD	0.4 (high scatter)	4.7×10 ⁻³	74 (75)	1.5
					NPB:BCP	1.0 (high scatter)	6.2×10 ⁻³	77 (75)	2.0
					NPB:CuPc	-0.3 (deep trap)	6.0×10 ⁻³	— (75)	2.5

characters in TPD hosted system and NPB hosted system.

^{a)} Hole mobilities of the TPD system are the zero field mobilities.
 ^{b)} Hole mobilities of the NPB system are under the field of 0.29 MV/cm.
 ^{c)} Data in the brackets are the effective energetic disorders calculated via equation 6.

This material is available free of charge via the Internet at http://pubs.acs.org.