Supporting Information

Methyliminopropadienone CH₃-N=C=C=C=O: Photoelectron Spectrum and Electronic Structure Anna Chrostowska,*[†] Alain Dargelos[†], Saîd Khayar[†] and Curt Wentrup*[‡]

†Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR CNRS 5254, Université de Pau et des Pays de l'Adour, 64 000 Pau, France and

^{*}School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.

E-mail: anna.chrostowska@univ-pau.fr, wentrup@uq.edu.au

Contents:

1) N-Methyliminopropadienone 1a

[CAM-B3LYP/6-311G(d,p)] Atomic Coordinates of Optimized Geometry.¹

2) Energies: total, 1^{st} cation, HOMO, LUMO, Δ SCF and Δ E(HOMO-LUMO);

3) Dipole Moment

4) **Table SI-1.** CAM-B3LYP/6-311G(d,p) Total Energy (a.u.), HOMO, LUMO energies and HOMO-LUMO gap (eV), Ground State Dipole Moments (Debye), 1st Radical Cation Energy (a.u.), Δ SCF Ionization Energy (IE, eV), CAM-B3LYP/6-311G++(d,p) Total Energy (a.u.), Radical Anion Energy (a.u.), Electron Affinity (EA, eV), Δ (EA-IE) (eV) for CH₃N=CH₂, CH₃-N=C=C=O **1a**, and CH₂=O.

5) Atomic coordinates for optimized geometry of 2a [CAM-B3LYP/6-311G(d,p)].

Energies: total, 1^{st} cation, HOMO, LUMO, Δ SCF and Δ E(HOMO-LUMO);

Dipole Moment

Table SI-2. Calculated CAM-B3LYP Kohn-Sham energies of MO (ϵ^{K-S}), Δ SCF/TD-DFT (CAM-B3LYP), OVGF, SAC-CI and P3 ionization energies with the MOLEKEL MO visualization of **2a** compared with experimental values (in eV). The 6-311G(d,p) basis set was applied for all calculations; iso value = ±0.05.

6) Atomic coordinates for optimized geometry of **2b** [CAM-B3LYP/6-311G(d,p)].

Energies: total, 1^{st} cation, HOMO, LUMO, Δ SCF and Δ E(HOMO-LUMO);

Dipole Moment

Table SI-3. Calculated CAM-B3LYP Kohn-Sham energies of MO (ϵ^{K-S}), Δ SCF/TD-DFT (CAM-B3LYP), OVGF, SAC-CI and P3 ionization energies with the MOLEKEL MO visualization of **2b** compared with experimental values (in eV). The 6-311G(d,p) basis set was applied for all calculations; iso value = ±0.05.

7) Atomic coordinates for optimized geometry of **2c** [CAM-B3LYP/6-311G(d,p)].

Energies: total, 1^{st} cation, HOMO, LUMO, Δ SCF and Δ E(HOMO-LUMO);

Dipole Moment

Table SI-4. Calculated CAM-B3LYP Kohn-Sham energies of MO $(-\epsilon^{K-S})$, Δ SCF/TD-DFT (CAM-B3LYP), OVGF, SAC-CI and P3 ionization energies with the MOLEKEL MO

visualization of **2c** compared with experimental values (in eV). The 6-311G(d,p) basis set was applied for all calculations; iso value = ± 0.05 .

Me-N=C=C=C=O 1a

1) Atomic coordinates for optimized geometry of **1a** [CAM-B3LYP/6-311G(d,p)].

8
6 0.515238 2.924691 0.000294
1 1.130086 3.054506 0.893481
1 1.146389 3.032185 -0.884471
1 -0.245799 3.703818 -0.015921
7 -0.107942 1.643659 0.011585
6 -0.057890 0.462652 0.005806
6 -0.091003 -0.823416 0.001976
6 -0.108353 -2.085097 -0.003794
8 -0.123599 -3.248718 -0.008956
2) E_{tot} (neutral) = -284.068221 A.U.
Zero-point correction= 0.061122 (Hartree/Particle)
Sum of electronic and zero-point Energies= -284.007099
Sum of electronic and thermal Energies= -284.000070
Sum of electronic and thermal Enthalpies= -283.999126
Sum of electronic and thermal Free Energies= -284.040225
$E_{tot} (1^{st} \text{ cation}) = -283.738175 \text{ au}$
$\Delta SCF = E_{tot} (1^{st} \text{ cation}) - E_{tot} (neutral) \qquad \Delta SCF = 8.98 \text{ eV}$
E(HOMO) = -8.02 eV
E(LUMO) = 0.08 eV
$\Delta E(HOMO-LUMO) = 7.94 \text{ eV}$
3) Dipole moment (Debye): 4.8755

4) **Table SI-1.** CAM-B3LYP/6-311G(d,p) Total Energy (a.u.), HOMO, LUMO energies and HOMO-LUMO gap (eV), Ground State Dipole Moments (Debye), 1st Radical Cation Energy (a.u.), Δ SCF Ionization Energy (IE, eV), CAM-B3LYP/6-311G++(d,p) Total Energy (a.u.), Radical Anion Energy (a.u.), Electron Affinity (EA, eV), and Δ (EA-IE) (eV) for CH₃N=CH₂, CH₃-N=C=CH₂, CH₂=C=O, CH₃-N=C=C=C=O **1a**, and CH₂=O.

	CH ₃ N=CH ₂	CH ₃ -N=C=CH ₂	CH ₂ =C=O	CH ₃ -N=C=C=C=O	CH ₂ =O
E _{tot} neutral (6-311G(d,p)) au	-133.901331	-171.971304	-152.574947	-284.068221	-114.485589
HOMO (eV)	-8.672	-7.827	-8.370	-8.025	-9.121
LUMO (eV)	1.227	1.538	0.452	0.083	0.295
HOMO-LUMO gap (eV)	7.445	6.289	7.918	7.942	8.826
ground state dipole moment	1.5010	1.4909	1.415	4.8755	2.304
$E_{tot} 1^{st}$ cation (6-311G(d,p)) au	-133.540844	-171.644995	-152.215779	-283.738175	-114.088769
Δ SCF (ionization energy IE) (eV)	9.809	8.879	9.773	8.979	10.797
E_{tot} neutral (6-311G++(d,p)) au	-133.904892	-171.974715	-152.578845	-284.073837	-114.491280
E_{tot} anion (6-311G++(d,p)) au	-133.873949	-171.947938	-152.572196	-284.090800	-114.467399
electron affinity (EA) (eV)	-0.854	-0.729	-0.181	+0.462	-0.650
Δ (IE+EA) (eV)	8.955	8.150	9.592	9.441	10.147

5) Atomic coordinates for optimized geometry of 2a [CAM-B3LYP/6-311G(d,p)].

6	-4 920401	1 576144	-0 487502
6	-5 781859	2 677909	-0 107775
6	-7 198780	2 562644	-0 371760
6	-6 866046	0 198256	-0 180/29
6	-6.962404	0.15020	1 220002
1	-0.002404	0.015009	1.550092
1	-7.880623	-0.15/049	1.6/9643
1	-6.245292	-0.845282	1.590035
Ţ	-6.465945	0.896927	1.832142
6	-7.435874	-0.993878	-0.912600
1	-6.839579	-1.880003	-0.696188
1	-8.466925	-1.163053	-0.602784
1	-7.410636	-0.799078	-1.983727
8	-7.683042	1.309012	-0.543425
8	-5.548398	0.373989	-0.674211
8	-7.993726	3.479052	-0.485877
8	-3.737877	1.626276	-0.716179
6	-5.237663	3.959756	0.197659
7	-5.954004	5.061820	-0.062782
1	-6.890219	4.855664	-0.416193
6	-5 652112	6 379831	0 447180
1	-4 800796	6 837380	-0 068100
1	-6 516095	7 018864	0 277233
1	-5 444482	6 361608	1 521967
1 7	-1.041656	1 144420	0 701//6
1	-4.041030	4.144429 5.0000777	0.701440
T	-3.001/40	5.065577	0./030/0
5	-3.236527	3.1/2026	1.501451
T	-2.528887	2.666646	0.84855/
1	-2.717178	3.697492	2.303878
1	-3.886153	2.420237	1.947081

E(RCAM-B3LYP) = -761.692129534 A.U.

Thermal correction to Gibbs Free Energy=

Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies=

Sum of electronic and zero-point Energies=

Sum of electronic and thermal Free Energies=

Zero-point correction=

Thermal correction to Energy=

Dipole moment (Debye): 5.4382

Thermal correction to Enthalpy=

0.238529(Hartree/Particle) 0.253657 0.254601 0.197451 -761.453600 -761.438473 -761.437529 -761.494679

S 4

Table SI-2. Calculated CAM-B3LYP Kohn-Sham energies of MO (ϵ^{K-S}), Δ SCF/TD-DFT (CAM-B3LYP), OVGF, SAC-CI and P3 ionization energies with the MOLEKEL MO visualization of **2a** compared with experimental values (in eV). The 6-311G(d,p) basis set was applied for all calculations; iso value = ±0.05.

O.M.	$-\varepsilon^{KS}$	TD-DFT	OVGF	SAC-CI	P3	IEs exp
H.	7.71	8.24	7.76	7.59	8.18	8.25
t	8.87	9.43	9.37	8.78	9.51	0.4
H H	9.03	9.74	9.81	8.89	9.63	9.4
	9.57	10.20	10.22	9.39	10.24	10.1
	9.88	10.51	10.61	9.71	10.52	10.6
HE C	10.09	10.72	10.84	10.05	10.80	11.1
	11.24	11.91	12.25	11.11	12.24	12.1
	11.68	12.30	12.25	11.80	12.34	

6) Atomic coordinates for optimized geometry of **2b** [CAM-B3LYP/6-311G(d,p)].

6	-0.437887	1.162734	0.433116
6	0 268689	-0 007258	-0 032417
6	-0 411845	-1 058267	-0 756614
6	-2 160629	-0 083657	0.042477
6	-3 786779	0.003037	-0 603863
1	-1 245900	-0 674059	-0.003003
1	-4.343099	-0.074950	-0.700124
1	-4.363174	0.090007	0.043720
Ţ	-3.605340	0.746415	-1.552100
6	-2.613/41	-0./94385	1.3/95/9
1	-3.186663	-0.168849	2.064257
1	-3.132525	-1.742413	1.235994
1	-1.639401	-0.992148	1.827505
8	-1.766550	-0.917279	-0.876652
8	-1.792376	1.155813	0.226595
8	0.107857	-1.999609	-1.306882
8	0.041844	2.132629	0.969120
6	1.684358	-0.083475	0.103425
7	2.302353	-1.225812	0.457768
6	3.689118	-1.492989	0.113642
1	4.372034	-1.274139	0.942325
1	3.788543	-2.548969	-0.139347
1	3.980428	-0.907865	-0.756992
7	2.485607	0.965759	-0.144558
1	3.395233	0.958990	0.287450
6	2.140424	2.161319	-0.894243
1	1.766596	2.946691	-0.239804
1	3 026342	2 494888	-1 436274
1	1 361919	1 915380	-1 614313
6	1 612875	-2 317857	1 124149
1	0 714273	-1 940892	1 605423
⊥ 1	1 320321	-3 080307	1.0009420
⊥ 1	2 272010	-2.722152	1 000501
\perp	2.2/2919	-2./33132	1,000001

E(RCAM-B3LYP) = -800.971306906A.U. Zero-point correction= 0.266509 (Hartree/Particle) Thermal correction to Energy= 0.283148 Thermal correction to Enthalpy= 0.284093 Thermal correction to Gibbs Free Energy= 0.223628 Sum of electronic and zero-point Energies= -800.704797 Sum of electronic and thermal Energies= -800.688159 -800.687214 Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= -800.747679

Dipole moment (Debye): 5.0977

Table SI-3. Calculated CAM-B3LYP Kohn-Sham energies of MO ($-\varepsilon^{K-S}$), Δ SCF/TD-DFT (CAM-B3LYP), OVGF, SAC-CI and P3 ionization energies with the MOLEKEL MO visualization of **2b** compared with experimental values (in eV). The 6-311G(d,p) basis set was applied for all calculations; iso value = ±0.05.

O.M.	$-\varepsilon^{KS}$	TD-DFT	OVGF	SAC-CI	P3	IEs exp
the set	7.68	8.14	7.67	7.23	8.11	8.05
the second	8.50	8.98	8.90	8.01	9.01	8.9
the state	8.84	9.51	9.61	8.45	9.41	9.4
the second	9.50	10.12	10.15	9.05	10.17	10.05
	9.63	10.26	10.37	9.17	10.27	10.5
	9.94	10.56	10.66	9.59	10.60	10.5
	10.76	11.61	11.71	10.61	11.77	11.4

11.45	12.06	12.21	11.18	12.23	12.1
-------	-------	-------	-------	-------	------

7) Atomic coordinates for optimized geometry of 2c [CAM-B3LYP/6-311G(d,p)].

E(RCAM-B3LYP) = -1104.54257429A.U.Zero-point correction=0.221579 (Hartree/Particle)Thermal correction to Energy=0.237164Thermal correction to Enthalpy=0.238109Thermal correction to Gibbs Free Energy=0.179302Sum of electronic and zero-point Energies=-1104.320995Sum of electronic and thermal Energies=-1104.305410

Sum of electronic and thermal Enthalpies= -1104.304466 Sum of electronic and thermal Free Energies= -1104.363272 Dipole moment (Debye): 3.9201

Table SI-4. Calculated CAM-B3LYP Kohn-Sham energies of MO (ϵ^{K-S}), Δ SCF/TD-DFT (CAM-B3LYP), OVGF, SAC-CI and P3 ionization energies with the MOLEKEL MO visualization of **2c** compared with experimental values (in eV). The 6-311G(d,p) basis set was applied for all calculations; iso value = ±0.05.

O.M.	$-\varepsilon^{KS}$	TD-DFT	OVGF	SAC-CI	P3	IEs exp
A Contract	7.92	8.37	7.87	7.54	8.36	8.4
H	8.59	9.30	9.07	8.55	9.08	9.1
	9.16	9.83	9.87	8.91	9.75	9.8
	9.66	10.28	10.32	9.26	10.36	10.1
A Contraction of the second se	9.87	10.52	10.58	9.46	10.66	10.5
X	10.20	10.81	10.97	9.86	10.97	10.5
HE TO	10.91	11.61	11.37	10.85	11.25	11.35

¹All calculation were performed using the Gaussian package:

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;
Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers,
E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.;
Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J.
E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,
O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;.
Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.;
Farkas, Ö.; Foresman, J.B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision A.1.*:
Gaussian, Inc., Wallingford CT, 2009.