Supporting Information for:

Cobalt(III) Porphyrin Catalyzed Aza-Diels-Alder Reaction

Ryota Wakabayashi, Takuya Kurahashi*, and Seijiro Matsubara*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University,Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Contents
Instrumentation and Chemicals S2
Experimental Procedure and Characterization Data for Products S3
${ }^{1} H$ NMR and ${ }^{13} \mathbf{C}$ NMR Spectra of Products S11
ORTEP Drawings of 3aj and 3bi S54
References S56

Instrumentation and Chemicals

All manipulations of oxygen- and moisture-sensitive materials were conducted in a dry box or with a standard Schlenk technique under a purified argon atmosphere. Nuclear magnetic resonance spectra were taken on Varian UNITY INOVA $500\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz}\right.$; $\left.{ }^{13} \mathrm{C}, 125.7 \mathrm{MHz}\right)$ spectrometer using tetramethylsilane $\left({ }^{1} \mathrm{H}\right)$ as an internal standard. ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet), coupling constants (Hz), integration, and identification. High-resolution mass spectra were obtained with a Thermo Fisher SCIENTIFIC EXACTIVE spectrometer. X-Ray data were taken on a Bruker Smart APEX X-Ray diffracto- meter equipped with a large area CCD detector. Preparative recycling gel permeation chromatography (GPC) was performed with JAI LC-908 equipped with JAIGEL-1H and -2 H columns (toluene as an eluent). Infrared spectra (IR) spectra were determined on a SHIMADZU IR Affinity-1 spectrometer. Melting points were determined using a YANAKO MP-500D. TLC analyses were performed by means of Merck Kieselgel $60 \mathrm{~F}_{254}(0.25 \mathrm{~mm})$ Plates. Visualization was accomplished with UV light (254 nm) and/or an aqueous alkaline KMnO_{4} solution followed by heating. Flash column chromatography was carried out using Kanto Chemical silica gel (spherical, $40-50 \mu \mathrm{~m}$). Toluene and cobalt(II) acetate were purchased from Wako Pure Chemical Co. ${ }^{1-3}$ Free base meso-tetraphenylporphine and AgSbF_{6} were purchased from Strem chemicals. Dienes were purchased from TCI. Aldimines were prepared according to the reported procedure. ${ }^{4.5}$ Unless otherwise noted, commercially available reagents were used without purification.

Experimental Procedure and Characterization Data for Products.

Prepapration of $[\boldsymbol{C o}(\mathbf{T P P})] \mathbf{S b F}_{6} \cdot{ }^{1-3} \mathrm{Cobalt}(\mathrm{II})$ porphyrin ([Co(TPP)]) was prepared with free base tetraphenyl porphyrin (TPP) and cobalt(II) acetate by refluxing in DMF. The [Co(TPP)] was then oxidized by air with hydrogen chloride solution of MeOH to afford $[\mathrm{Co}(\mathrm{TPP})] \mathrm{Cl}$, which was purified with recrystallization in chloroform. X-Ray single crystal analysis was performed to confirm the formation of $[\mathrm{Co}(\mathrm{TPP})] \mathrm{Cl}$. The cationic cobalt complex was prepared following reported procedure: $[\mathrm{Co}(\mathrm{TPP})] \mathrm{Cl}(311 \mathrm{mg}, 0.44 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(137$ $\mathrm{mg}, 0.4 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and stirred for 6 h in dry box. The reaction mixture was filtered and concentrated to dryness. The complex was used without further purification. Other cobalt complexes were also prepared by this procedure.

General procedure. The reaction was performed in a 15 mL sealed tube equipped with a Teflon-coated magnetic stirrer bar. A diene (0.8 mmol) were added to a solution of imine (0.4 $\mathrm{mmol})$ and $[\mathrm{Co}(\mathrm{TPP})] \mathrm{SbF}_{6}(3.6 \mathrm{mg}, 4.0 \mu \mathrm{~mol})$ in toluene $(4 \mathrm{~mL})$ in a dry box. The flask was taken outside the dry box and stirred at ambient temperature for the indicated time under argon atmosphere. The resulting reaction mixture was filtered through a silica gel pad, concentrated in vacuo. The residue was purified by flash silica gel column chromatography $(20 \mathrm{~g}, 2 \times 15 \mathrm{~cm}$, hexane/ethyl acetate $=5: 1)$ to give the corresponding product.

4,5-Dimethyl-2-phenyl-1-tosyl-1,2,3,6-tetrahydropyridine (3aa).

$(\mathrm{d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $2.31-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $143.14,139.95,137.98,129.58,128.55,127.56,127.54,127.27,123.44,122.50,53.75,45.16$, $32.78,21.69,18.82,16.21$. IR (KBr): 2919, 1927, 1596, 1522, $1517,1352,1330,1279,1162$, $1090,1009,856,814 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{ESI}^{+}\right)$found 342.1512, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 342.1522$.

4,5-Dimethyl-2-(naphthalen-1-yl)-1-tosyl-1,2,3,6-tetrahydropyridine (3ba).

Yield: 89%. Mp. $155-157{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.36$ (hexane/ethyl acetate $=7: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=8.5$
$\mathrm{Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.06(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3,17(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $2.22(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 143.33,137.50$, $135.09,134.16,131.86,129.30,128.96,128.74,127.60,126.82,125.90,124.87,124.59$,
124.43, 124.30, 122.59, 50.71, 45.49, 32.84, 21.62, 18.40, 16.40. IR (KBr): 3065, 2908, 2882, 1598, 1511, 1442, 1338, 1303, 1183, 1163, 1139, 1054, 919, $815 \mathrm{~cm}^{-1}$. HRMS (ESI $)$ found 392.1666, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 392.1679$.

4,5-Dimethyl-2-(naphthalen-2-yl)-1-tosyl-1,2,3,6-tetrahydropyridine (3ca).

Yield: 83\%. Mp. $100-102{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.41$ (hexane/ethyl acetate $=5: 1){ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.71-7.81(\mathrm{~m} .3 \mathrm{H})$, 7.68-7.70 (m, 2H), 7.56 (s, 1H), 7.44-7.47 (m, 3H), 7.20-7.22 (m, 2H), $5.39(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d} J=18.5 \mathrm{~Hz} .1 \mathrm{H}), 3.27(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.43(\mathrm{~m}$, $2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.19,137.95,137.20$, $133.25,132.86,129.58,128.32,128.25,127.68,127.22$, 126.16, 126.13, 126.04, 125.95, 123.34, 122.58, 53.88, 45.29, 32.57, 21.64, 18.84, 16.22. IR (KBr): 2978, 2880, 1596, 1507, 1493, 1457, 1437, 1386, 1378, 1339, 1320, 1292, 1107, 949, $841 \mathrm{~cm}^{-1}$. HRMS (ESI $)$ found 392.1666, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 392.1679$.

2-(4-Chlorophenyl)-4,5-dimethyl-1-tosyl-1,2,3,6-tetrahydropyridine (3da).
 Yield: 90%. Mp. $110-112{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.41$ (hexane/ethyl acetate $=7: 1){ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dt}, J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.24$ (m, 4H), 7.15-7.18 (m, 2H), $5.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.19-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}$, $3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 143.43,138.44,137.74,133.36,129.65,128.93$, 128.66, 127.18, 123.18, 122.59, 53.14, 45.10, 32.68, 21.68, 18.81, 16.18. IR (KBr): 2922, 2856, 1595, 1492, 1447, 1325, 1292, 1159, 1089, 1011, 922, 816, $715 \mathrm{~cm}^{-1}$. HRMS (ESI $^{+}$) found 342.1512, calcd for $[\mathrm{M}+\mathrm{H}]^{+}$342.1522. HRMS $\left(\mathrm{ESI}^{+}\right)$found 376.1121, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 342.1133$.

4,5-Dimethyl-1-tosyl-2-(4-(trifluoromethyl)phenyl)-1,2,3,6-tetrahydropyridine (3ea).

Yield: 85%. Mp. $93-95{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.29$ (hexane/ethyl acetate/triethylamine $=20: 1: 0.02){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{dt}, J=8.0$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.24(\mathrm{~m}$, $2 \mathrm{H}), 5.25(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.26(\mathrm{~m}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 144.09,143.47,137.53,129.68,129.67(\mathrm{q}, J=32.2 \mathrm{~Hz}), 127.84,127.19$, $125.50(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.29$ (q, $J=272.1$), 123.13, 122.66, 53.46, 45.30, 32.83, 21.65, 18.84, 16.20. IR (KBr): 2920, 2880, 2858, 1620, 1437, 1413, 1342, 1322, 1183, 1141, 1114, 1107, 1063, 1038, 922, $814 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$) found 410.1382, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 410.1396$.

4-(4,5-Dimethyl-1-tosyl-1,2,3,6-tetrahydropyridin-2-yl)phenyl acetate (3fa).
Yield: 85\%. Mp. $125-127{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.30$
 (hexane/ethyl acetate $=3: 1)^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dt}, J=8.5,2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 4 \mathrm{H}), 6.97$ (dt, $J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.36(\mathrm{~m}$, $1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $169.50,150.04,143.23,137.75,137.43,129.60,128.62,127.17,123.22,122.52,121.54$, 53.20, 45.04, 32.76, 21.64, 21.28, 18.76, 16.19. IR (KBr): 2923, 2860, 1754, 1597, 1508, 1447, 1322, 1220, 1209, 1156, 1066, 1012, 912, $805 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$) found 400.1563, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 400.1577$.

2-(4-Methoxyphenyl)-4,5-dimethyl-1-tosyl-1,2,3,6-tetrahydropyridine (3ga).

Yield: 83\%. Mp. $120-122{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.37$ (hexane/ethyl acetate $=5: 1)^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.63-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.22$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (dt, $J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{dt}, J=8.5,2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}), 2.30-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.99,143.09,137.98,131.94,129.55,128.76,127.22,123.43,122.45,113.82$, 55.42, 53.19, 44.98, 32.86, 21.68, 18.78, 16.21. IR (KBr): 2906, 2842, 1609, 1513, 1442, 1379, 1333, 1302, 1254, 1167, 1138, 1088, 1031, 916, $\left.816 \mathrm{~cm}^{-1} . \mathrm{HRMS}^{(E S I}{ }^{+}\right)$found 372.1616, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 372.1628$.

4,5-Dimethyl-2-(4-nitrophenyl)-1-tosyl-1,2,3,6-tetrahydropyridine (3ha).

Yield: 77%. Mp. $141-143{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.35$ (hexane/ethyl acetate $=3: 1)^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{dt}, J=8.5,2.0 \mathrm{~Hz}$, 2 H), 7.66 (dt $J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.26(\mathrm{~m}, 2 \mathrm{H})$, $5.29(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.26(\mathrm{~m}, 1 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 147.51,147.43,143.70,137.44,129.82,128.39,127.18,123.81,123.01$, $122.88,53.33,45.33,32.74,21.72,18.91,16.22$. IR (KBr): 2919, 1927, 1596, 1522, 1517,
 $[\mathrm{M}+\mathrm{H}]^{+} 387.1373$.

2-Cyclohexyl-4,5-dimethyl-1-tosyl-1,2,3,6-tetrahydropyridine (3ia).

Yield: $87 \% . \mathrm{Mp} .133-135{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.42$ (hexane/ethyl acetate $=7: 1){ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.62-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.23(\mathrm{~m}, 2 \mathrm{H})$,
$3.86(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{td}, J=4.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=18.0,1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $1.70-1.86(\mathrm{~m}, 5 \mathrm{H}), 1.59-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.39(\mathrm{~m}, 1 \mathrm{H})$, 1.12-1.25 (m, 3H), 0.96-1.04 (m, 1H), 0.86-092 (m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.81$, $138.73,129.53,126.99,123.21,121.20,56.56,45.56,37.64,31.05,30.54,30.36,26.53,26.35$, 26.26, 21.67, 19.07, 15.98. IR (KBr): 2926, 2856, 2848, 1595, 1452, 1437, 1327, 1266, 1163, 1080, 1005, 925, $816 \mathrm{~cm}^{-1}$. HRMS (ESI $)$ found 348.1980, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 348.1992$.

2-tert-Butyl-4,5-dimethyl-1-tosyl-1,2,3,6-tetrahydropyridine (3ja).

Yield: 83%. Mp. $104-106{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.33$ (hexane/ethyl acetate $=10: 1){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.61-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.23(\mathrm{~m}, 2 \mathrm{H}), 3.95$ (d, $J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=18.5,1 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 1.72-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.87$, $138.27,129.55,127.04,124.08,120.78,58.35,46.81,36.34,29.12,28.15,21.68,18.67,15.97$. IR (KBr): 2972, 2935, 2865, 1595, 1476, 1400, 1328, 1182, 1160, 1142, 1089, 1011, 920, 817, $732 \mathrm{~cm}^{-1}$. HRMS (ESI') found 322.1824, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 322.1835$.

4,5-Dimethyl-1-(2-nitrophenylsulfonyl)-2-phenyl-1,2,3,6-tetrahydropyridine (3ka).
 Yield: 64\%. TLC: $\mathrm{R}_{\mathrm{f}}=0.41$ (hexane/ethyl acetate $=2: 1$) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.98(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.26(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.34$ $(\mathrm{d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 139.25,133.47,131.83$, 130.84, 128.68, 127.82, 127.47, 124.50, 123.61, 122.59, 109.98, 54.30, 45.41, 33.34, 18.90, 16.15. (One signal emerged.) IR (neat): 2916, 2856, 1547, 1538, 1451, 1372, 1346, 1173, $1068,1012,777 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$) found 373.1205, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 373.1217$.

2,4-Diphenyl-1-tosyl-1,2,3,6-tetrahydropyridine (3ab).

Yield: 91%. Mp. $33-35{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.26$ (hexane/ethyl acetate $=7: 1){ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 4 \mathrm{H})$, $7.21-7.27(\mathrm{~m}, 8 \mathrm{H}), 5.90(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J$ $=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=19.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.72(\mathrm{~m}, 1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.36,140.44,139.16,137.76,134.40,129.72,128.62$, $128.56,127.74,127.68,127.44,127.17,125.16,120.21,53.37,41.49,28.72,21.58$. IR (KBr): 3060, 3030, 2923, 1598, 1494, 1446, 1372, 1345, 1324, 1304, 1289, 1155, 1090, 927, 820 cm^{1}. HRMS (ESI $)$ found 390.1507, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 390.1522$.

4-(4-Chlorophenyl)-2-phenyl-1-tosyl-1,2,3,6-tetrahydropyridine (3ac).

Yield: 87%. Mp. $47-49{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.37$ (hexane/ethyl acetate $=5: 1){ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.31(\mathrm{~m}$, $9 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.30-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.65-2.72 (m, 1H), $2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.50,139.05,138.90,137.75,133.62$, $133.49,129.79,128.83,128.68,127.82,127.42,127.27,126.49,120.85,53.35,41.48,28.79$, 21.67. IR (KBr): 3029, 2853, 1595, 1496, 1407, 1338, 1333, 1283, 1161, 1155, 1090, 927, $820,737 \mathrm{~cm}^{-1}$. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right.$) found 424.1119, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 424.1133$.

4-(4-Fluorophenyl)-2-phenyl-1-tosyl-1,2,3,6-tetrahydropyridine (3ad).

Yield: $90 \% . \mathrm{Mp} .129-131{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.36$ (hexane/ethyl acetate $=5: 1){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.71-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.33(\mathrm{~m}, 9 \mathrm{H})$, $6.98-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.85-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.38$ $(\mathrm{m}, 1 \mathrm{H}), 3.52-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 162.52(\mathrm{~d}, J=245.8 \mathrm{~Hz}), 143.46,139.15,137.79,136.65(\mathrm{~d}, J=3.4 \mathrm{~Hz})$, $133.60,129.78,128.66,127.80,127.44,127.28,126.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 120.23,115.53(\mathrm{~d}, J=$ $21.5 \mathrm{~Hz})$, 53.40, 41.46, 29.06, 21.66. IR (KBr): 2885, 2852, 1596, 1512, 1495, 1460, 1334, 1282, 1220, 1156, 1100, 1045, 930, $727 \mathrm{~cm}^{-1}$. HRMS (ESI $)$ found 408.1416, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 408.1428$.

2-Phenyl-1-tosyl-4-(4-(trifluoromethyl)phenyl)-1,2,3,6-tetrahydropyridine (3ae).

Yield: 83%. Mp. $45-47{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.41$ (hexane/ethyl acetate $=5: 1){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.71-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 7 \mathrm{H}), 5.99-6.01(\mathrm{~m}, 1 \mathrm{H})$, $5.47(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~d}$, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 143.91,143.60$, 138.92, 137.70, 133.55, 130.27 (q, $J=24.4 \mathrm{~Hz}$), 129.83, 128.72, 127.88, 127.36, 127.27, $125.67(\mathrm{q}, J=2.6 \mathrm{~Hz}), 125.51,124.29(\mathrm{q}, J=272.1 \mathrm{~Hz}), 122.48,53.32,41.51,28.72,21.65$. IR (KBr): 3063, 3032, 2926, 1682, 1598, 1494, 1466, 1410, 1306, 1287, 1262, 1215, 1069, 1016, $906,845 \mathrm{~cm}^{-1}$. HRMS (ESI^{+}) found 458.1381, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 458.1396$.

4-Methyl-2-phenyl-1-tosyl-1,2,3,6-tetrahydropyridine (3af).

Yield: 71%. Mp. $101-103{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.40$ (hexane/ethyl acetate $=5: 1)^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{dt}, J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.27(\mathrm{~m}$, $7 \mathrm{H}), 5.27-5.28(\mathrm{~m}, 2 \mathrm{H}), 4.02-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.35(\mathrm{~m}$,
$1 \mathrm{H}), 2.21(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 143.18,139.68,137.97$, $131.65,129.64,128.56,127.63,127.51,127.28,117.72,53.40,41.06,31.55,23.43,21.69$. IR (KBr): 3027, 2851, 1595, 1493, 1451, 1368, 1324, 1258, 1147, 1093, 1030, 923, $815 \mathrm{~cm}^{-1}$. HRMS (ESI^{+}) found 328.1354, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 328.1366$.

3-Phenyl-2-tosyl-2,3,4,5,6,7,8,9-octahydro-1H-cyclohepta[c]pyridine (3ag).

Yield: 88%. Mp. $88-89{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.53$ (hexane/ethyl acetate $=5: 1){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.33(\mathrm{~m}$, $7 \mathrm{H}), 5.22(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}), 2.37-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.93(\mathrm{~m}, 3 \mathrm{H})$, 1.61-1.75 (m, 2H), 1.27-1.45 (m, 3H), 1.15-1.22 (m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.15$, $139.85,137.93,131.08,130.18,129.56,128.46,127.58,127.53,127.27,53.30,44.95,34.79$, $32.61,32.27,31.87,26.12,26.09,21.66$. IR (neat): 2915, 2845, 1597, 1451, 1343, 1329, 1165,

2,4,5-Triphenyl-1-tosyl-1,2,3,6-tetrahydropyridine (3ah).

Yield: 50%. Mp. $134-136{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.39$ (hexane/ethyl acetate $=5: 1)^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 6 \mathrm{H}), 6.84-6.86$ $(\mathrm{m}, 2 \mathrm{H}), 6.75-6.77(\mathrm{~m}, 2 \mathrm{H}) 5.46(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dt}, J=$ $18.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.60,141.37$, $139.52,139.31,137.80,132.33,131.75,129.80,128.92,128.79,128.67,128.25,128.16$, 127.94, 127.56, 127.45, 127.14, 126.88, 53.83, 45.17, 32.41, 21.71. IR (KBr): 3049, 2922, 1598, 1493, 1344, 1165, 1094, 1070, 981, 912, $812 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$) found 466.1820, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 466.1835$.
$\left(2 S^{*}, 6 S^{*}\right)$-6-Methyl-4-(naphthalen-2-yl)-2-phenyl-1-tosyl-1,2,3,6-tetrahydropyridine (3ai).
 Yield: 70%. Mp. $67-69{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.38$ (hexane/ethyl acetate $=5: 1){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.79-7.83(\mathrm{~m}, 5 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H})$, $7.44-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.06(\mathrm{dd}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.69(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (dddd, $J=17.0,6.0,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.47,140.74,138.33,137.29,133.60,133.04,132.45,130.09,128.40,128.33$, 128.31, 127.81, 127.58, 127.03, 126.69, 126.34, 123.82, 123.46, 52.13, 50.65, 26.51, 22.69, 21.75. (Two signals emerged.) IR (KBr): 3058, 2928, 1597, 1495, 1451, 1381, 1329, 1281, $1160,1100,995,815 \mathrm{~cm}^{-1}$. HRMS $^{(E S I}{ }^{+}$) found 454.1822, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 454.1835$.
$\left(2 S^{*}, 6 R^{*}\right)$-6-Methyl-4-(naphthalen-2-yl)-2-phenyl-1-tosyl-1,2,3,6-tetrahydropyridine (3ai'). Yield: 13%. Mp. $46-48{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.32$ (hexane/ethyl acetate $=5: 1$) ${ }^{1} \mathrm{H}$
 NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.75-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.47(\mathrm{~m}$, $5 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.20(\mathrm{dd}, J=4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.75(\mathrm{~m}$, $1 \mathrm{H}), 3.22$ (ddd, $J=16.5,5.51 .0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (dddd, $J=16.5,5.5,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (s, $3 \mathrm{H}), 1.54(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.64,139.93,139.66,137.71,134.45$, $133.58,133.01,129.26,128.40,128.30,128.25,128.16,128.00,127.76,127.46,127.14$, $126.52,126.17,124.06,123.68,56.82,51.52,32.55,21.87,21.62$. IR (KBr): 3029, 2926, 1597, 1452, 1382, 1324, 1159, 1094, 1009, $848 \mathrm{~cm}^{1} . \mathrm{HRMS}^{(E S I}{ }^{+}$) found 454.1820, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 454.1835$.
($1 R^{*}, 3 R^{*}, 4 S^{*}$)-3-Phenyl-2-tosyl-2-azabicyclo[2.2.2]oct-5-ene (3aj).
Yield: 55%. Mp. $186-188{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.39$ (hexane/ethyl
 acetate $=5: 1){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.0,2 \mathrm{H}), 7.24-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.61$ (ddd, $J=8.0,7.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.92$ (ddd, $J=8.0,5.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 2.57-2.59(\mathrm{~m}, 1 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{ddt}, J=12.0,10.0,4.0,1 \mathrm{H}), 1.39(\mathrm{ddt}, J=12.0,12.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.85-0.91(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.48,141.02,135.63,134.09,131.80$, $129.57,128.42,128.40,127.12,126.62,62.23,49.77,38.59,26.75,21.75,15.89$. IR (KBr): $3062,3023,2965,1599,1493,1366,1344,1304,1164,1096,1053,1015,922,816 \mathrm{~cm}^{-1}$. HRMS (ESI ${ }^{+}$) found 340.1353, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 340.1366$.
($1 R^{*}, 3 S^{*}, 4 S^{*}$)-3-Phenyl-2-tosyl-2-azabicyclo[2.2.2]oct-5-ene (3aj’).

Yield: 8%. Mp. $174-176{ }^{\circ} \mathrm{C}$ (ethyl acetate). TLC: $\mathrm{R}_{\mathrm{f}}=0.45$ (hexane/ethyl acetate $=5: 1){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{dt}, J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.17(\mathrm{~m}, 7 \mathrm{H}), 6.61$ (ddd, $J=8.0,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.69(\mathrm{~m}, 2 \mathrm{H})$, $2.77-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{ddt}, J=13.0,9.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 1 \mathrm{H})$, $1.39(\mathrm{ddt}, J=12.5,12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.19-1.25(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.12,142.35$, 137.96, 134.35, 132.48, 129.40, 127.77, 127.64, 127.06, 126.93, 62.77, 49.33, 39.65, 25.38, 22.55, 21.65. IR (KBr): 3060, 2961, 2874, 1598, 1447, 1373, 1344, 1323, 1159, 1099, 1063, 962, 923, $763 \mathrm{~cm}^{-1}$. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right.$) found 340.1353, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 340.1366$.
$\left(2 S^{*}, 6 S^{*}\right)-6-$ Methyl-2-(naphthalen-1-yl)-4-(naphthalen-2-yl)-1-tosyl-1,2,3,6-tetrahydropyridi ne (3bi).Yield: 59\%. Mp. $226-228{ }^{\circ} \mathrm{C}$ (chloroform). TLC: $\mathrm{R}_{\mathrm{f}} 0.30$ (hexane/ethyl acetate $=7: 1)^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.82-7.90(\mathrm{~m}, 6 \mathrm{H}), 7.76-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.72(\mathrm{~m}, 1 \mathrm{H})$, $7.47-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 3 \mathrm{H})$, $6.39(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.99-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.87$, $137.57,137.35,135.92,134.25,134.16,133.63$, 133.09, 132.56, 129.85, 129.20, 128.79, $128.39,128.34,128.08,127.82,126.82$, 126.66, 126.31, 126.05, 125.80, 125.78, 125.19, 124.77, 124.01, 123.70, 50.75, 49.75, 28.89, 21.73, 19.96. IR (KBr): 3105, 3020, 2960, 2853, 1597, 1510, 1448, 1381, 1335, 1323, 1282, 1163, 1099, 981, $816 \mathrm{~cm}^{-1}$. HRMS (ESI $)$ found 504.1980, calcd for $[\mathrm{M}+\mathrm{H}]^{+} 504.1992$.

1H and 13C NMR Spectrum

3aa ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3aa ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ba ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ba (125.7 MHz, CDCl_{3})

3ca ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{ll}002 & 0 z z \\ 0\end{array}$

3da ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3da (125.7 MHz, CDCl_{3})

3ea $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ea ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ea ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3fa $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\mathbf{3 f a}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$

$\stackrel{8}{8}$

3ga ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ga ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ha ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ha ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ia (125.7 MHz, CDCl_{3})

3ja ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{3 j a}$ (125.7 MHz, CDCl_{3})

3ka ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ab ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ab (125.7 MHz, CDCl_{3})

ะ
\qquad 22.59a

3ac (500 MHz, CDCl_{3})

3ac ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]

143.501
139.049
$\begin{array}{c}138.896 \\ 137.751 \\ 133.616 \\ 133.486\end{array}$

 28.789

3ad ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ad (125.7 MHz, CDCl_{3})

3ae (500 MHz, CDCl_{3})

3ae ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3af ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3af ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

登

3ag ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{3 a g}$ ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ah ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ah ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ai ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ai (125.7 MHz, CDCl_{3})

3aj ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3aj ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bi ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bi ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ORTEP Drawing of 3aj

Identification code	3aj
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$
Formula weight	339.44
Temperature	298(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)
Unit cell dimensions	$a=7.819(3) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=11.480(4) \AA \quad \beta=105.707(6)^{\circ}$
	$\mathrm{c}=9.859(4) \AA \quad \gamma=90^{\circ}$
Volume	851.8(5) \AA^{3}
Z	2
Density (calculated)	$1.323 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.202 \mathrm{~mm}^{-1}$
F(000)	360
Crystal size	$0.10 \times 0.10 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	2.15 to 26.82°.
Index ranges	$-9<=\mathrm{h}<=7,-14<=\mathrm{k}<=13,-12<=1<=9$
Reflections collected	5118
Independent reflections	$3275[\mathrm{R}(\mathrm{int})=0.0170]$
Completeness to theta $=26.82^{\circ}$	98.5 \%
Absorption correction	None
Max. and min. transmission	0.9801 and 0.9801
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3275 / 1 / 218
Goodness-of-fit on F^{2}	1.035
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0369, \mathrm{wR} 2=0.0960$
R indices (all data)	$\mathrm{R} 1=0.0385, \mathrm{wR} 2=0.0973$
Absolute structure parameter	0.62(6)
Largest diff. peak and hole	$\begin{aligned} & 0.361 \text { and }-0.196 \mathrm{e} . \AA^{-3} \\ & \text { S54 } \end{aligned}$

ORTEP Drawing of 3bi

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=27.01$ -
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

3bi
C34 H30 Cl3 N O2 S
623.00

298(2) K
0.71073 A

Triclinic
P-1
$a=10.6082(17) \AA \quad \alpha=72.785(3)^{\circ}$.
$\mathrm{b}=11.0420(19) \AA \quad \beta=75.236(3)^{\circ}$.
$\mathrm{c}=14.459(2) \AA \quad \gamma=79.948(3)^{\circ}$.
1555.4(4) \AA^{3}

2
$1.330 \mathrm{Mg} / \mathrm{m}^{3}$
$0.394 \mathrm{~mm}^{-1}$
648
$0.10 \times 0.10 \times 0.10 \mathrm{~mm}^{3}$
1.51 to 27.01°.
$-13<=\mathrm{h}<=12,-12<=\mathrm{k}<=14,-13<=1<=18$
9537
$6581[\mathrm{R}(\mathrm{int})=0.0179]$
96.8 \%

None
0.9617 and 0.9617

Full-matrix least-squares on F^{2}
6581 / 0 / 372
1.041
$\mathrm{R} 1=0.0895, \mathrm{wR} 2=0.2530$
$R 1=0.1245, w R 2=0.2867$
0.783 and -0.374 e. \AA^{-3}

References

1. For synthesis of $[\mathrm{Co}(\mathrm{TPP})]$, see: (a) Shirazi, A.; Goff, H. M. Inorg. Chem. 1982, 21, 3420. (b) Aldler, A. D.; Longo, F. R.; Varadi, V. Inorg. Synth. 1976, 16, 213.
2. For synthesis of $[\mathrm{Co}(\mathrm{TPP})] \mathrm{Cl}$, see: (a) Fukuzumi, S.; Miyamoto, K.; Suenobu, T.; Caemelbecke, E. V.; Kadish, K. M. J. Am. Chem. Soc. 1998, 120, 2880.
3. For synthesis of $[\mathrm{Co}(\mathrm{TPP})]^{+}$, see: (a) Fukuzumi, S.; Mochizuki, S.; Tanaka, T. Inorg. Chem. 1990, 29, 653. (b) Fukuzumi, S.; Okamoto, K.; Tokuda, Y.; Gros, C. P.; Guilard, R. J. Am. Chem. Soc. 2004, 126, 17059.
4. Love, B. E.; Raje, P. S.; Williams II, T. C. Synlett, 1994, 493.
5. Kiss, E.; Markó, I. E.; Guillaume, M. Tetrahedron, 2011, 9173.

[^0]: 5.

 \approx

