Remarkable Improvement Achieved by Imidazole Derivatives in RutheniumCatalyzed Hydroesterification of Alkenes Using Formates

Hideyuki Konishi ${ }^{\dagger}$, Tsuyoshi Ueda ${ }^{\dagger, \dagger}$, Takashi Muto ${ }^{\dagger}$, and Kei Manabe*, ${ }^{\dagger}$
\dagger School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan and \ddagger Process Technology Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan

Email: manabe@u-shizuoka-ken.ac.jp

Supporting Information 1
 Table of Contents

S2 General method and materials
S3 Investigation of reaction conditions
S4 Preparation of compounds
S14 General experimental procedure
S16 Analytical data of hydroesterification products
S27 NMR spectra of newly obtained compounds (substrates and products of intermolecular hydroesterification)
S71 References

1. General method and materials

General. All reactions were performed in oven-dried or flame-dried glassware under argon atmosphere. Reactions were monitored by TLC on Merck silica gel 60 F254 plates visualized by UV lump at 254 nm . Column chromatography was performed on Merck silica gel 60 and preparative TLC was performed on Merck silica gel 60 F254 0.5 mm plates. NMR spectra were measured on a JEOL AL-400 NMR spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ spectra and 100 MHz for ${ }^{13} \mathrm{C}$ spectra, and for ${ }^{1} \mathrm{H} \mathrm{NMR}$, tetramethylsilane (TMS) $(\delta=0)$ in CDCl_{3} served as an internal standard. For ${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}(\delta=77.0)$ served as an internal standard. Infrared spectra were measured on a SHIMADZU IR Prestige-21 spectrometer (ATR). High-resolution mass spectra (HRMS) were measured on a JEOL JMS-T100TD time-of-flight mass spectrometer (DART). Melting point was measured using a YAZAWA MICRO MELTING POINT BY-1.

Materials. $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ was purchased from Strem and used as received. Mesitylene was purchased from TCI and purified by distillation prior to use. Compounds 2a-g, and 3a-b were purchased from TCI and used as received. Alkyl and aryl formates 1a-h were synthesized according to the literature. ${ }^{1}$ Analytical data of compounds $\mathbf{1 a},{ }^{2} \mathbf{1 b} \mathbf{- c}$ and $\mathbf{1 f}-\mathbf{g},{ }^{3} \mathbf{1 e},{ }^{4} \mathbf{1 h},{ }^{5} \mathbf{3 e},{ }^{6} \mathbf{3 g},{ }^{7}$ and $\mathbf{3 h}{ }^{8}$ were identical to those reported in precedent literature.

2. Investigation of reaction conditions

We have further investigated reaction conditions (Table S1). Then we found that ratio of catalystimidazole $\left(\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right.$ and $\mathbf{3 i}$) and equivalence of reagents ($\mathbf{1 a}$ and $\mathbf{2 a}$) were important to promote hydroesterification reaction as well as to suppress decarbonylation of 1a. Other Ru sources did not work at all.

Table S1. Investigation of Reaction Conditions.

		$\mathrm{Ru}_{3}(\mathrm{CO})_{12}(5 \mathrm{~mol} \%)$					
		2a (z equiv)		sitylene or ne $135^{\circ} \mathrm{C}, 24 \mathrm{~h}$ = 4-methoxyph	BnO^{\prime}	PMP	
entry	$\begin{gathered} \hline x \\ (\mathrm{~mol} \%) \\ \hline \end{gathered}$	y (equiv)	$\begin{gathered} \mathrm{z} \\ \text { (equiv) } \end{gathered}$	solvent	yield of 4 (\%)	4aa:4ab ${ }^{\text {b }}$	$\begin{gathered} \text { yield of } \\ \mathrm{BnOH}(\%)^{c} \end{gathered}$
1	5	1.5	1.0	mesitylene	39	82:18	13
2	15	1.5	1.0	mesitylene	69	37:63	<1
3	30	1.5	1.0	mesitylene	66	43:57	51
4	15	1.5	1.0	neat	74	39:61	57
5	15	1.0	1.5	mesitylene	80	59:41	3
6	15	1.0	1.5	neat	89	54:46	<1
7	15	1.0	1.0	neat	77	44:56	14
8^{d}	15	1.5	1.0	mesitylene	N.R. ${ }^{e}$	-	7
9^{f}	15	1.5	1.0	mesitylene	trace	-	7

$\overline{{ }^{a} \text { Isolated yield. }{ }^{b} \text { Ratio determined by }{ }^{1} \mathrm{H} \text { NMR analysis of isolated mixture of 4aa and 4ab. }{ }^{c} \text { Yield of }}$ BnOH (based on 2a) determined by crude ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{d} \mathrm{Ru}(\mathrm{cod}) \mathrm{Cl}_{2}$ and 3 g were used instead of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and $3 \mathbf{i}$. ${ }^{e}$ No reaction. ${ }^{\mathrm{f}} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right) \mathrm{HCl}$ and 3 g were used instead of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and $3 \mathbf{3 i}$.

3. Preparation of compounds

Preparation of imidazole derivatives.

1-(1-Phenylethyl)- $\mathbf{1 H}$-imidazole (3e) ${ }^{6}$

To a solution of 38% aq. glyoxal $(5.04 \mathrm{~g}, 33.0 \mathrm{mmol}, 2.0$ equiv) and ammonium acetate $(2.54 \mathrm{~g}, 33.0$ mmol, 2.0 equiv) in $\mathrm{MeOH}(17 \mathrm{~mL})$ was added (\pm)-1-phenylethylamine ($2.00 \mathrm{~g}, 16.5 \mathrm{mmol}$) and $35 \% \mathrm{aq}$. formaldehyde ($2.83 \mathrm{~g}, 33.0 \mathrm{mmol}, 2.0$ equiv). The mixture was warmed to $80^{\circ} \mathrm{C}$ and stirred for 14 h . The reaction mixture was cooled to RT and diluted with toluene. The solution was washed with $10 \% \mathrm{aq}$. NaOH and the aqueous layer was extracted with toluene. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered, and concentrated. The obtained residue was purified by column chromatography on silica gel (EtOAc) to afford the desired product $3 \mathbf{e}(0.89 \mathrm{~g}, 5.18 \mathrm{mmol}, 31 \%)$ as a pale yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz})$, $5.27(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.78(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$.

2,4,5-Trimethyl-1-phenyl-1H-imidazole (3f)

To a solution of 2,3-butanedione ($3.70 \mathrm{~g}, 43.0 \mathrm{mmol}, 2.0$ equiv) and ammonium acetate ($3.31 \mathrm{~g}, 33.0$ mmol, 2.0 equiv) in $\mathrm{MeOH}(17 \mathrm{~mL})$ was added aniline ($2.00 \mathrm{~g}, 21.5 \mathrm{mmol}$) and 90% aq. acetaldehyde $\left(2.10 \mathrm{~g}, 43.0 \mathrm{mmol}, 2.0\right.$ equiv). The mixture was warmed to $80^{\circ} \mathrm{C}$ and stirred for 20 h . The reaction mixture was cooled to RT and diluted with toluene. The solution was washed with $10 \% \mathrm{aq}$. NaOH and the aqueous layer was extracted with toluene. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated. The obtained residue was purified by column chromatography on silica gel (EtOAc) to afford the desired product $\mathbf{3 f}(1.23 \mathrm{~g}, 6.60 \mathrm{mmol}, 31 \%)$ as a dark red oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.8,137.2,131.6,129.4,128.4,127.5,123.0,13.8,12.5$ and 9.4 ; IR (ATR) 2920, $1597,1499,1404,1387,762$ and $698 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2}: 187.1230$; found 187.1240.

(1-Methyl-1H-imidazol-2-yl)methanol (3g) ${ }^{8}$
This compound was synthesized according to reported procedure. Yield: 73\%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$.

2-(1-Methyl-1H-imidazol-2-yl)ethanol (3h) ${ }^{8}$
This compound was synthesized according to reported procedure. Yield: 4%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{t}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 3.64(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}$, $3 \mathrm{H}), 2.83(\mathrm{t}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz})$.

(1-Dodecyl-1H-imidazol-2-yl)methanol (3i) ${ }^{9}$
This compound was synthesized from 1-dodecylimidazole according to reported procedure. ${ }^{8}$ Yield: 50\%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.92(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{t}, 2 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), 1.79-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 18 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 147.4,127.1,120.1,56.3,46.2,32.0,31.2,29.7,29.6,29.4,29.3,26.8,22.8$ and 14.2.

1-Dodecyl-2-(methoxymethyl)-1H-imidazole (3j)
To a solution of $\mathbf{3 i}(213 \mathrm{mg}, 0.800 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ was added $\mathrm{NaH}(64.0 \mathrm{mg}, 1.60 \mathrm{mmol}, 2.0$ equiv) at $0^{\circ} \mathrm{C}$. The mixture was warmed to RT and stirred for 45 min . MeI ($100 \mu \mathrm{~L}, 1.60 \mathrm{mmol}, 2.0$ equiv) was added to the mixture. After the reaction mixture was stirred at RT for 2 h , EtOAc and $\mathrm{H}_{2} \mathrm{O}$ were added carefully. The solution was separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated. The obtained residue was purified by $\mathrm{PTLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 1 / 1\right)$ to afford the desired product $3 \mathbf{j}$ (172 mg , $0.613 \mathrm{mmol}, 77 \%$) as a pale yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 3.32(\mathrm{~s}$, $3 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 18 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $143.9,127.4,120.3,66.2,57.5,45.9,31.7,30.8,29.50,29.48,29.4,29.3,29.2,29.0,26.5,22.5$ and 13.9 ; IR (ATR) 2920, 1492, 1462, 1188, 1087, 987 and $732 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}: 281.2593$; found 281.2603.

Preparation of formates.

Formates 1a-h were synthesized by formylation of the corresponding alcohols. ${ }^{3}{ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 a - c}, \mathbf{1 e - f}$, and $\mathbf{1 g}$ were exactly identical to the reported data.

Naphthalen-1-ylmethyl formate (1d)

1-Naphthylmethanol $(1.58 \mathrm{~g}, 10.0 \mathrm{mmol})$ was added to formic acid $(4.0 \mathrm{~mL})$ and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 3.5 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The solution was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with saturated NaHCO_{3} aq., dried over MgSO_{4}, filtered, and concentrated. The obtained residue was purified by column chromatography on silica gel (hexane/EtOAc 100/1) to afford $\mathbf{1 d}(0.586 \mathrm{~g}, 3.15 \mathrm{mmol}, 32 \%)$ as a colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.85(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.56-7.41(\mathrm{~m}$, $4 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.7,133.6,131.4,130.6,129.5,128.7,127.7,126.6$, $125.9,125.1,123.3$ and 63.8 ; IR (ATR) 1716,1145 , and $771 \mathrm{~cm}^{-1} ; \mathrm{HRMS}$ (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{2}$: 187.0754; found 187.0754.

Benzhydryl formate (1h) ${ }^{10}$
Formic acid ($1.70 \mathrm{~mL}, 45.0 \mathrm{mmol}, 4.5$ equiv) was added to acetic anhydride ($4.70 \mathrm{~mL}, 50.0 \mathrm{mmol}, 5.0$ equiv) at RT. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h and cooled to RT. Benzhydrol (1.21 mL , 10.0 mmol) was added to the solution and the mixture was stirred for 0.5 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ three times, dried over MgSO_{4}, filtered, and concentrated. The obtained residue was purified by column chromatography on silica gel (hexane/EtOAc 20/1) to afford the desired product $\mathbf{1 h}(1.18 \mathrm{~g}, 7.84 \mathrm{mmol}, 78 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 10 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H})$

Preparation of substrates for intramolecular hydroesterification.

(2-Vinylphenyl)methanol (S1)

To a solution of 2-ethynylbenzyl alcohol ($2.00 \mathrm{~g}, 15.1 \mathrm{mmol}$) in $\mathrm{MeOH}(14 \mathrm{~mL})$ was added triphenylphosphine ($150 \mathrm{mg}, 0.57 \mathrm{mmol}$) and 5% palladium on calcium carbonate $(30 \mathrm{mg})$. The mixture was stirred at RT under H_{2} atmosphere (1 atm) for 3 h . The reaction mixture was filtered through Celite pad and concentrated. The obtained residue was purified by column chromatography on silica gel (hexane/EtOAc 6/1) to afford the desired product S1 $(2.03 \mathrm{~g}, 15.1 \mathrm{mmol}, 100 \%$ yield) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{dd}, 1 \mathrm{H}, J=6.8,2.0 \mathrm{~Hz}), 7.34(\mathrm{dd}, 1 \mathrm{H}, J=6.8,2.0 \mathrm{~Hz}), 7.31-7.23(\mathrm{~m}$, $2 \mathrm{H}), 7.03(\mathrm{dd}, 1 \mathrm{H}, J=17.5,10.8 \mathrm{~Hz}), 5.70(\mathrm{dd}, 1 \mathrm{H}, J=17.5,1.2 \mathrm{~Hz}), 5.34(\mathrm{dd}, 1 \mathrm{H}, J=10.8,1.2 \mathrm{~Hz})$, $4.72(\mathrm{~s}, 2 \mathrm{H}), 2.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5,136.6,133.7,128.3,128.1,127.9$, $125.9,116.4$ and 63.3 ; IR (ATR) $3318,1483,1452,1413,945,912,760$ and $729 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}$: 135.0805; found 135.0810.

2-Vinylbenzyl formate (5a)

Formic acid ($5.80 \mathrm{~mL}, 153 \mathrm{mmol}, 10$ equiv) was added to acetic anhydride ($11.6 \mathrm{~mL}, 122 \mathrm{mmol}, 8.0$ equiv) at RT. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h and cooled to RT. $\mathrm{S} 1(2.03 \mathrm{~g}, 15.3 \mathrm{mmol})$ was added to the solution and the mixture was stirred for 3 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ three times, dried over MgSO_{4}, filtered, and concentrated. The obtained residue was purified by column chromatography on silica gel (hexane/EtOAc 15/1) to afford the desired product $5 \mathbf{a}$ $(2.16 \mathrm{~g}, 13.3 \mathrm{mmol}, 87 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{ddd}, 1 \mathrm{H}, J$ $=7.6,7.2,1.2 \mathrm{~Hz}), 6.97(\mathrm{dd}, 1 \mathrm{H}, J=17.6,11.2 \mathrm{~Hz}), 5.70(\mathrm{dd}, 1 \mathrm{H}, J=17.6,0.8 \mathrm{~Hz}), 5.38(\mathrm{dd}, 1 \mathrm{H}, J=$ $11.2,0.8 \mathrm{~Hz}), 5.28(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8,137.6,133.6,132.2,130.2,129.2,128.0$, $126.2,117.1$ and 63.7 ; IR (ATR) $1717,1144,916,772$ and $750 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}$: 163.0754; found 163.0760.

General procedure of the synthesis of compounds 5b-5d.

Method 1: To a solution of methyltriphenylphosphonium bromide ($18.9 \mathrm{mmol}, 2.3$ equiv) in dry THF (30 mL) was added $1 \mathrm{M}^{t} \mathrm{BuOK}$ solution in THF ($18.9 \mathrm{~mL}, 2.3$ equiv). The mixture was stirred at RT for 2 h and cooled to $-78^{\circ} \mathrm{C}$. Corresponding aldehyde or ketone (8.20 mmol) was added, warmed to RT slowly and stirred at $30^{\circ} \mathrm{C}$ for $8-20 \mathrm{~h}$. The reaction mixture was quenched with 1 M HCl aq., diluted with EtOAc, washed with brine. The obtained solution was dried over MgSO_{4}, filtered, and concentrated. The obtained residue was purified by column chromatography on silica gel.
Method 2: Formic acid ($23.6 \mathrm{mmol}, 10$ equiv) was added to acetic anhydride ($18.9 \mathrm{mmol}, 8$ equiv) at RT. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h and cooled to RT. Phenol derivative synthesized above (2.40 mmol) and sodium hydrogen carbonate ($4.80 \mathrm{mmol}, 2.0$ equiv) were added to the solution and the mixture was stirred for $9-16 \mathrm{~h}$. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ three times, dried over MgSO_{4}, filtered, and concentrated. The obtained residue was purified by column chromatography on neutral silica gel to afford the desired product.

2-Vinylphenol (S2) ${ }^{11}$

S2 was obtained from o-hydroxybenzaldehyde using method 1 as a colorless oil. Yield: 100% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}$, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.72(\mathrm{~d}, 1 \mathrm{H}, J=17.6 \mathrm{~Hz}), 5.32(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 5.14(\mathrm{~s}, 1 \mathrm{H})$.

2-Vinylphenyl formate (5b)

5b was obtained from $\mathbf{S 2}$ using method 2 as a colorless oil. Yield: 100\% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{dd}, 1 \mathrm{H}, J=7.2,1.6 \mathrm{~Hz}), 7.33-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}$, $1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}), 6.80(\mathrm{dd}, 1 \mathrm{H}, J=17.6,11.2 \mathrm{~Hz}), 5.78(\mathrm{dd}, 1 \mathrm{H}, J=17.6,0.8 \mathrm{~Hz}), 5.37(\mathrm{dd}, 1 \mathrm{H}, J=$ $11.2,0.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,147.3,130.2,130.1,129.0,126.8,126.8,122.2$, 117.1; IR (ATR) 1759, 1736, 1483, 1450, 1211, 1173, 1107, 1086, 918 and $762 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2}: 149.0598$; found 149.0600 .

4-Chloro-2-vinylphenol (S3) ${ }^{12}$

S3 was obtained from 3-chlorosalicylaldehyde using method 1 as a colorless oil. Yield: 100\% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}$, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.72(\mathrm{~d}, 1 \mathrm{H}, J=17.6 \mathrm{~Hz}), 5.32(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 5.14(\mathrm{~s}, 1 \mathrm{H})$.

4-Chloro-2-vinylphenyl formate (5c)

5c was obtained from S3 using method 2 as a colorless oil. Yield: 42\%
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.26(\mathrm{dd}, 1 \mathrm{H}, J=8.4,2.4 \mathrm{~Hz}), 7.04$ $(\mathrm{d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.72(\mathrm{dd}, 1 \mathrm{H}, J=17.6,11.2 \mathrm{~Hz}), 5.78(\mathrm{~d}, 1 \mathrm{H}, J=17.6 \mathrm{~Hz}), 5.42(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,145.3,132.1,131.6,128.9,128.5,126.4,123.4,118.1$; IR (ATR) 1734, 1474, 1408, 1211, 1167, 1111, 1076 and $1042 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClO}_{2}$: 183.0208 ; found 183.0208 .

Ethyl 4-hydroxy-3-vinylbenzoate (S4)

S4 was obtained from 5-ethoxycarbonylsalicylaldehyde, which was synthesized according to previous report, ${ }^{13}$ using method 1 as white needle (m.p. $105{ }^{\circ} \mathrm{C}$). Yield: 86%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.84(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.4 \mathrm{~Hz}), 6.93(\mathrm{dd}, 1 \mathrm{H}, J=$ $17.2,11.2 \mathrm{~Hz}), 6.84(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{dd}, 1 \mathrm{H}, J=17.2,1.2 \mathrm{~Hz}), 5.42(\mathrm{dd}, 1 \mathrm{H}, J=$
$11.2,1.6 \mathrm{~Hz}), 4.36(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.39(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.4$, $157.7,130.7,130.6,129.2,124.9,122.3,116.4,115.7,61.2$ and 14.3; IR (ATR) 3362, 1686, 1603, 1273, 752 and $635 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3}: 193.0859$; found 193.0867 .

Ethyl 4-(formyloxy)-3-vinylbenzoate (5d)

5d was obtained from S4 using method 2 as a colorless oil. Yield: 99\%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.98(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.0 \mathrm{~Hz}), 7.18$ $(\mathrm{d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.80(\mathrm{dd}, 1 \mathrm{H}, J=17.2,11.2 \mathrm{~Hz}), 5.90(\mathrm{dd}, 1 \mathrm{H}, J=17.2,0.8 \mathrm{~Hz}), 5.45(\mathrm{dd}, 1 \mathrm{H}, J=$ $11.2,0.8 \mathrm{~Hz}), 4.40(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.41(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5$, $158.3,150.1,130.1,129.8,129.2,128.9,128.2,122.1,118.1,61.2,14.2$; IR (ATR) 1744, 1713, 1287, 1248, 1171, 1105, 1074 and $758 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{4}: 221.0809$; found 221.0801.

2-Allylphenyl formate (5e)
5e was obtained from 2-allylphenol by formylation analogous to synthesis of $\mathbf{5 b}$ as a colorless oil. Yield: 93\%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{dd}, 1 \mathrm{H}, J=8.0,2.0 \mathrm{~Hz}), 5.91$ (ddt, $1 \mathrm{H}, J=17.2,10.0,6.4 \mathrm{~Hz}), 5.09(\mathrm{dd}, 1 \mathrm{H}, J=10.0,1.2 \mathrm{~Hz}), 5.04(\mathrm{ddt}, 1 \mathrm{H}, J=17.2,1.6,1.2 \mathrm{~Hz}), 3.34(\mathrm{~d}$, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,147.9,135.4,131.5,130.4,127.3,126.3,121.6$, 116.2 and 34.1 ; IR (ATR) 1761, 1736, 1487, 1209, 1167, 1117 and $742 \mathrm{~cm}^{-1}$; HRMS (DART) [M+H] calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}$: 163.0754; found 163.0758.

2-(Prop-1-en-1-yl)phenol (S5) ${ }^{14}$
Compound $\mathbf{S} 5$ was synthesized according to previous report $(E: Z=80: 20) .{ }^{15}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{dd}, 1 \mathrm{H}, J=8.0,1.2 \mathrm{~Hz}), 7.10(\mathrm{dt}, 1 \mathrm{H}, J=8.0,1.2 \mathrm{~Hz}), 6.89(\mathrm{t}, 1 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 6.80(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.61(\mathrm{dq}, 1 \mathrm{H}, J=15.9,1.4 \mathrm{~Hz},(E)), 6.42(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz},(Z))$, $6.21(\mathrm{dq}, 1 \mathrm{H}, J=15.9,6.6 \mathrm{~Hz},(E)), 6.02(\mathrm{dq}, 1 \mathrm{H}, J=11.2,7.0 \mathrm{~Hz},(Z)), 5.02(\mathrm{~s}, 1 \mathrm{H}), 1.92(\mathrm{dd}, 3 \mathrm{H}, J=$ $6.5,1.3 \mathrm{~Hz},(E)), 1.72(\mathrm{dd}, 3 \mathrm{H}, J=6.5,1.3 \mathrm{~Hz},(Z))$.

2-(Prop-1-en-1-yl)phenyl formate (5f)
$\mathbf{5 f}(E: Z=80: 20)$ was obtained from $\mathbf{S 5}(E: Z=80: 20)$ by formylation analogous to synthesis of $\mathbf{5 b}$ as a colorless oil. Yield: 85%.
(E)-isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.99$ $(\mathrm{m}, 1 \mathrm{H}), 6.44(\mathrm{dd}, 1 \mathrm{H}, J=16.0,2.0 \mathrm{~Hz}), 6.24(\mathrm{dq}, 1 \mathrm{H}, J=16.0,6.8 \mathrm{~Hz}), 1.86(\mathrm{dd}, 3 \mathrm{H}, J=6.8,1.6 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,146.5,130.2,128.9,127.6,126.6,126.5,123.8,121.8$ and 18.7 .
(Z)-isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{dd}, 1 \mathrm{H}, J=7.2,1.6 \mathrm{~Hz}), 7.27-7.16(\mathrm{~m}, 2 \mathrm{H})$, $7.08(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.6 \mathrm{~Hz}), 6.33(\mathrm{dd}, 1 \mathrm{H}, J=11.6,1.2 \mathrm{~Hz}), 5.86(\mathrm{dq}, 1 \mathrm{H}, J=11.6,6.8 \mathrm{~Hz}), 1.75(\mathrm{dd}$, $3 \mathrm{H}, J=6.8,2.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 159.1,147.5,130.5,129.9,129.4,127.9,126.0$, 123.8, 121.7 and 14.4.
(E)/(Z)-mixture: IR (ATR) 1759, 1736, 1483, 1445, 1215, 1173, 1113, 962 and $740 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}$: 163.0754; found 163.0763.

2-(Prop-1-en-2-yl)phenol (S6) ${ }^{16}$
S6 was obtained from o-hydroxyacetophenone by Wittig reaction analogous to synthesis of S2 as a colorless oil. Yield: 87\%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{t}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz})$, $5.16(\mathrm{~s}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.

2-(Prop-1-en-2-yl)phenyl formate (5g)
$5 \mathbf{g}$ was obtained from $\mathbf{S 6}$ by formylation analogous to synthesis of $\mathbf{5 b}$ as a colorless oil. Yield: 88%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.6 \mathrm{~Hz}), 5.21(\mathrm{q}, 1 \mathrm{H}$, $J=1.2 \mathrm{~Hz}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{t}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,146.6,141.2$, $136.4,129.5,128.3,126.5,122.1,116.8$ and 23.3; IR (ATR) 1761, 1738, 1487, 1445, 1186, 1103, 905 and $762 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}$: 163.0754; found 163.0757.

2-(1-Hydroxy-1-phenylethyl)phenol (S7) ${ }^{17}$
To a solution of o-hydroxyacetophenone ($2.0 \mathrm{~g}, 14.7 \mathrm{mmol}$) in dry THF (20 mL) was added 1 M PhMgBr solution ($32.3 \mathrm{~mL}, 32.3 \mathrm{mmol}, 2.2$ equiv) at $0^{\circ} \mathrm{C}$. The mixture was warmed to reflux temperature and stirred for 8 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and then $15 \% \mathrm{AcOH}$ aq. and toluene were added. The aqueous layer was extracted with toluene three times and the combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated. The obtained residue was purified by column chromatography on silica gel to afford the desired product $\mathbf{S 7}(2.2 \mathrm{~g}, 10.3 \mathrm{mmol}, 70 \%)$ as a yellow solid (m.p. $110^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.13(\mathrm{~m}, 6 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.82(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 3.18(\mathrm{~s}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H})$.

2-(1-phenylvinyl)phenol (S8) ${ }^{18}$
To a solution of $\mathbf{S 7}(1.60 \mathrm{~g}, 7.50 \mathrm{mmol})$ in benzene $(10 \mathrm{~mL})$ was added $\mathrm{I}_{2}(10.0 \mathrm{mg})$. The mixture was stirred at reflux temperature for 13 h . The reaction mixture was cooled to RT, washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq. and brine, dried over MgSO_{4}, filtered, and concentrated. The obtained residue was purified by column chromatography on silica gel (hexane/EtOAc 9/1) to afford the desired product S8 ($1.40 \mathrm{~g}, 7.20 \mathrm{mmol}$, 96%) as a colorless oil.
.$^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{dd}, 1 \mathrm{H}, J=7.5,1.6 \mathrm{~Hz})$, 6.96-6.90 (m, 2H), $5.86(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 5.41(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 5.17(\mathrm{~s}, 1 \mathrm{H})$.

2-(1-Phenylvinyl)phenyl formate (5h)
5h was obtained from $\mathbf{S 8}$ by formylation analogous to synthesis of $\mathbf{5 b}$ as a colorless oil. Yield: 100\% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.72(\mathrm{~d}, 1 \mathrm{H}, J=$ $1.2 \mathrm{~Hz}), 5.33(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7,147.3,145.3,140.2,134.7,131.4$, $129.0,128.3,127.9,126.7,126.6,122.4$ and 116.9; IR (ATR) 1736, 1485, 1447, 1188, 1115, 1090, 907, 760 and $700 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2}: 225.0910$; found 225.0903 .

2-(2-Methylbut-3-en-2-yl)phenol (S9) ${ }^{19}$
Compound $\mathbf{S 9}$ was synthesized according to previous report. ${ }^{20}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{dd}, 1 \mathrm{H}, J=17.6,10.6 \mathrm{~Hz})$, $5.78(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=17.6 \mathrm{~Hz}), 5.21(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}), 1.36(\mathrm{~s}, 6 \mathrm{H})$.

2-(2-Methylbut-3-en-2-yl)phenyl formate (5i)
$5 \mathbf{i}$ was obtained from $\mathbf{S 9}$ by formylation analogous to synthesis of $\mathbf{5 b}$ as a colorless oil. Yield: 71\%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, 1 \mathrm{H}, J=8.0,2.4 \mathrm{~Hz}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{dd}$, $1 \mathrm{H}, J=7.6,2.0 \mathrm{~Hz}), 6.01-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.94(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $160.1,148.5,147.0,139.2,127.7,127.5,126.4,123.3,111.2,40.4$ and 27.7 ; IR (ATR) 1761, 1740, 1485, 1443, 1184, 1099 and $752 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}$: 191.1067; found 191.1072.

2-(2-Methylprop-1-en-1-yl)phenol (S10)
S10 was obtained from o-hydroxyacetophenone by Wittig reaction using isopropyltriphenylphosphonium iodide analogous to synthesis of S2 as a colorless oil. Yield: 71\%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{ddd}, 1 \mathrm{H}, J=7.2,6.8,2.0 \mathrm{~Hz}), 7.04(\mathrm{dd}, 1 \mathrm{H}, J=7.2,1.6 \mathrm{~Hz}), 6.90-$ $6.84(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 1.94(\mathrm{~d}, 3 \mathrm{H}, J=0.8 \mathrm{~Hz}), 1.68(\mathrm{~d}, 3 \mathrm{H}, J=1.6 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,140.5,129.8,128.2,124.6,120.1,118.7,114.8,25.8$ and 19.4; IR (ATR) 3422, 2970 , 2911, 1576, 1485, 1445, 1215, 1171, 1096 and $748 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}$: 149.0961; found 149.0965.

2-(2-Methylprop-1-en-1-yl)phenyl formate (5j)

$\mathbf{5 j}$ was obtained from $\mathbf{S 1 0}$ by formylation analogous to synthesis of $\mathbf{5 b}$ as a colorless oil. Yield: $\mathbf{1 0 0 \%}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{dd}, 1 \mathrm{H}, J=7.2,1.6 \mathrm{~Hz}), 6.10(\mathrm{~s}, 1 \mathrm{H})$, $1.89(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 1.74(\mathrm{~d}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,147.6,138.4$, $131.3,131.0,127.5,126.1,121.5,119.0,26.2$ and 19.4; IR (ATR) 2913, 1738, 1483, 1445, 1188, 1171, 1111 and $760 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}$: 177.0910; found 177.0914.

2-(Cyclopent-1-en-1-yl)phenol (S11)

Compound $\mathbf{S 1 1}$ was synthesized according to previous report. ${ }^{21}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.4 \mathrm{~Hz}), 7.13(\mathrm{ddd}, 1 \mathrm{H}, J=7.8,6.8,1.4 \mathrm{~Hz}), 6.90-$ $6.86(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 2.75-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 2 \mathrm{H})$.

2-(Cyclopent-1-en-1-yl)phenyl formate (5k)

$\mathbf{5 k}$ was obtained from $\mathbf{S 1 1}$ by formylation analogous to synthesis of $\mathbf{5 b}$ as a colorless oil. Yield: 96%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H})$, 6.19-6.14 (m, 1H), 2.73-2.65 (m, 2H), 2.56-2.48 (m, 2H), 2.00-1.91 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.9,147.3,134.0,131.8,130.6,129.3,127.8,126.7,122.4,35.4,33.8$ and 23.3 ; IR (ATR) 2949, 2843, 1759, 1738, 1487, 1445, 1175, 1115, 1090 and $746 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}: 189.0910$; found 189.0917.

2-(Cyclohex-1-en-1-yl)phenol (S12)

Compound S12 was synthesized according to previous report. ${ }^{23}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{ddd}, 1 \mathrm{H}, J=8.1,7.8,1.5 \mathrm{~Hz}), 7.07(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.5 \mathrm{~Hz}), 6.91$ $(\mathrm{dd}, 1 \mathrm{H}, J=8.3,1.0 \mathrm{~Hz}), 6.87(\mathrm{ddd}, 1 \mathrm{H}, J=8.3,8.1,1.0 \mathrm{~Hz}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 2.29-2.25(\mathrm{~m}$, $2 \mathrm{H}), 2.23-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H})$.

2-(Cyclohex-1-en-1-yl)phenyl formate (5l)

51 was obtained from $\mathbf{S 1 2}$ by formylation analogous to synthesis of $\mathbf{5 b}$ as a colorless oil. Yield: $\mathbf{9 2 \%}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.74(\mathrm{~m}, 1 \mathrm{H})$, 2.28-2.22 (m, 2H), 2.18-2.11 (m, 2H), 1.77-1.69 (m, 2H), 1.67-1.61 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.8,147.1,137.4,134.7,129.9,128.6,127.9,126.7,122.1,29.2,25.7,23.0$ and 22.0 ; IR (ATR) $2928,1761,1740,1483,1443,1177,1115,1092$ and $750 \mathrm{~cm}^{-1} ; H R M S ~(D A R T)[M+H]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}$ 203.1067; found 203.1065.

4. General experimental procedure

General experimental procedure of investigations for effect of additives (Table 1).

Benzyl formate (1a, $77.0 \mu \mathrm{~L}, 0.600 \mathrm{mmol}, 1.5$ equiv), imidazole derivative as additive 3 (0.0600 mmol , $15 \mathrm{~mol} \%), \mathrm{Ru}_{3}(\mathrm{CO})_{12}(12.8 \mathrm{mg}, 0.0200 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, and mesitylene $(0.20 \mathrm{~mL})$ were added to a 2mL vial equipped with a silicon septum cap under flowing Ar. 4-Methoxystyrene (2a, $53.2 \mu \mathrm{~L}, 0.400$ mmol) was added to the vial and then sealed by a new silicon septum cap. The mixture was warmed to $135{ }^{\circ} \mathrm{C}$ (bath temperature) and stirred for 24 h . The reaction mixture was cooled to RT and was diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ three times, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The obtained residue was purified by column chromatography on silica gel (hexane/EtOAc 5/1) to afford mixture of the desired product 4aa and 4ab as a colorless oil.

General experimental procedure of intermolecular hydroesterification (Tables 2 and 3).

Formate (0.400 mmol), $\mathbf{3 i}(16.0 \mathrm{mg}, 0.0600 \mathrm{mmol}, 15 \mathrm{~mol} \%)$, and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(12.8 \mathrm{mg}, 0.0200 \mathrm{mmol}, 5$ $\mathrm{mol} \%$) were added to a $2-\mathrm{mL}$ vial equipped with a silicon septum cap under flowing Ar. Alkene (0.600 mmol, 1.5 equiv) was added to the vial and then sealed by a new silicon septum cap. The mixture was warmed to $135{ }^{\circ} \mathrm{C}$ (bath temperature) and stirred for 24 h . The reaction mixture was cooled to RT and was diluted with EtOAc , washed with $\mathrm{H}_{2} \mathrm{O}$ three times, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The obtained residue was purified by column chromatography on silica gel (hexane/EtOAc $5 / 1$) to afford mixture of the desired linear and branched product as colorless oil.

Representative experimental procedure of intramolecular hydroesterification (Table 4, entry 2).

$5 \mathbf{a}(100 \mathrm{mg}, 0.620 \mathrm{mmol}), \mathbf{3 e}(16.0 \mathrm{mg}, 0.0930 \mathrm{mmol}, 15 \mathrm{~mol} \%)$, and mesitylene $(0.30 \mathrm{~mL})$ were added to a $2-\mathrm{mL}$ vial equipped with a silicon septum cap under flowing $\mathrm{Ar}^{2} \mathrm{Ru}_{3}(\mathrm{CO})_{12}(20.0 \mathrm{mg}, 0.0310 \mathrm{mmol}$, $5 \mathrm{~mol} \%$) was added to the vial and then sealed by a new silicon septum cap. The mixture was warmed to $135{ }^{\circ} \mathrm{C}$ (bath temperature) and stirred for 24 h . The reaction mixture was cooled to RT and directly purified by PTLC on silica gel (hexanes/EtOAc 4/1) to afford exo product $\mathbf{6 a a}(68 \mathrm{mg}, 0.422 \mathrm{mmol}, 68 \%$) as a colorless oil and endo product $\mathbf{6 a b}(8 \mathrm{mg}, 0.050 \mathrm{mmol}, 8 \%)$ as a colorless oil.

5. Analytical data of hydroesterification products

Benzyl 3-(4-methoxyphenyl)propanoate (4aa) ${ }^{22}$
4aa was obtained from 1a and 2a as a colorless oil. Yield: 48\%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.81(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz})$,
$5.10(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.65(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,158.1,136.0,132.5,129.2,128.5,128.2,113.9,66.2,55.2,36.2$ and 30.1 ; IR (ATR) 2934, 1732, 1512, 1244, 1148, 1034, 826, 735, 696 and $519 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3}$: 271.1329; found 271.1323 .

Benzyl 2-(4-methoxyphenyl)propanoate (4ab)
4ab was obtained from 1a and $\mathbf{2 a}$ as a colorless oil. Yield: 41%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.25(\mathrm{~m}, 7 \mathrm{H}), 6.85(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.7 \mathrm{~Hz}) 5.06$ $(\mathrm{d}, 1 \mathrm{H}, J=12.7 \mathrm{~Hz}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{q}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.49(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 174.6,158.7,136.0,132.5,128.5,128.4,128.0,127.8,113.9,66.3,55.2,44.6$ and 18.5 ; IR (ATR) 2934, 1732, 1510, 1244, 1153, 1034, 833, 737 and $696 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3}$: 271.1329; found 271.1323.

4-Methylbenzyl 3-(4-methoxyphenyl)propanoate (4ba) and 4-methylbenzyl 2-(4methoxyphenyl)propanoate (4bb)
Mixture of $\mathbf{4 b} \mathbf{b}$ and $\mathbf{4 b b}$ was obtained from $\mathbf{1 b}$ and 2a as a colorless oil. Yield: $83 \%(\mathbf{4 b a} \mathbf{4} \mathbf{4} \mathbf{b}=53: 47$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}), 6.84(\mathrm{~d}$, $2 \mathrm{H}, J=11.0 \mathrm{~Hz}), 6.79(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.07(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, 4 \mathrm{bb}), 5.05(\mathrm{~s}, 2 \mathrm{H}, 4 \mathrm{ba}), 5.00(\mathrm{~d}, 1 \mathrm{H}$, $J=15.9 \mathrm{~Hz}, \mathbf{4 b b}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{q}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathbf{4 b b}), 2.89(\mathrm{t}, 2 \mathrm{H}, J=9.8 \mathrm{~Hz}, 4 \mathbf{b a})$, $2.62(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz}, \mathbf{4 b a}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~d}, 3 \mathrm{H}, J=8.6 \mathrm{~Hz}, 4 \mathbf{b b}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.5,172.7,158.6,158.0,137.9,137.8,133.0,132.9,132.5,132.4,129.2,129.13$, $129.06,128.5,128.3,128.0,113.9,113.8,66.3,66.1,55.2,55.1,44.6,36.1,30.0,21.11,21.10$ and 18.5 ; IR (ATR) 1730, 1512, 1244, 1151, 1033 and $806 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$: 285.1485; found 285.1483.

4-Chlorobenzyl 3-(4-methoxyphenyl)propanoate (4ca)
4ca was obtained from 1c and 2a as a colorless oil. Yield: 31\%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}), 7.21(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}), 7.08(\mathrm{~d}, 2 \mathrm{H}, J=11.0$ $\mathrm{Hz}), 6.80(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{t}, 2 \mathrm{H}, J=9.8 \mathrm{~Hz}), 2.64(\mathrm{t}, 2 \mathrm{H}, J=9.8$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,158.1,134.4,132.3,129.5,129.2,128.7,113.8,65.3,55.2$, 36.1 and 30.0 (one aromatic carbon signal is missing); IR (ATR) 1732, 1512, 1244, 1149, 1033 and 825 cm^{-1}; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{3}: 305.0939$; found 305.0934.

4-Chlorobenzyl 2-(4-methoxyphenyl)propanoate (4cb)
4cb was obtained from 1c and 2a as a colorless oil. Yield: 30%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}), 7.20(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=11.0$ $\mathrm{Hz}), 6.85(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{q}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 1.48(\mathrm{~d}, 3 \mathrm{H}, J=9.2$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.4,158.7,134.5,133.9,132.3,129.2,128.6,128.5,114.0,65.5$, $55.2,44.6$ and 18.4 ; IR (ATR) 11732, 1510, 1246, 1155, 1085 and $804 \mathrm{~cm}^{-1}$; HRMS (DART) [M+H] calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{3}: 305.0939$; found 305.0931 .

Naphthalen-1-ylmethyl 3-(4-methoxyphenyl)propanoate (4da) and naphthalen-1-ylmethyl 2-(4methoxyphenyl)propanoate (4db)
Mixture of $\mathbf{4 d a}$ and $\mathbf{4 d b}$ was obtained from $\mathbf{1 d}$ and 2 a as a colorless oil. Yield: 79% ($\mathbf{4 d a} \mathbf{4 d b}=44: 56$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, 4 \mathrm{db}), 7.06$ (d, 2H, $J=11.0 \mathrm{~Hz}, 4 \mathrm{da}), 6.80(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}, 4 \mathrm{da}), 6.77(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}, 4 \mathrm{db}), 5.55(\mathrm{~s}, 2 \mathrm{H}$, 4da), $5.54(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, 4 \mathrm{db}), 5.50(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, 4 \mathrm{db}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{q}$, $1 \mathrm{H}, J=9.2 \mathrm{~Hz}, 4 \mathrm{db}), 2.90(\mathrm{t}, 2 \mathrm{H}, J=9.8 \mathrm{~Hz}, 4 \mathrm{da}), 2.62(\mathrm{t}, 2 \mathrm{H}, J=9.8 \mathrm{~Hz}, 4 \mathrm{da}), 1.48(\mathrm{~d}, 3 \mathrm{H}, J=9.2 \mathrm{~Hz}$, 4db); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,172.8,158.6,158.0,133.61,133.56,132.31,132.29,131.5$, $131.44,131.36,131.3,129.2,129.14,129.06,128.6,128.50,128.47,127.4,127.1,126.4,126.3,125.84$, $125.76,125.2,125.1,123.53,123.47,113.9,113.8,64.9,64.4,55.12,55.08,44.6,36.1,30.0$ and 18.5 ; IR (ATR) $1728,1510,1244,1151,1033$ and $790 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{3}$: 321.1485; found 321.1493.

Phenyl 3-(4-methoxyphenyl)propanoate (4ea) and phenyl 2-(4-methoxyphenyl)propanoate (4eb) Mixture of 4ea and 4eb was obtained from 1e and 2a as a colorless oil. Yield: 43% (4ea:4eb $=68: 32$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.84(\mathrm{~m}$, $2 \mathrm{H}), 3.91(\mathrm{q}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, 4 \mathrm{eb}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, 4 \mathrm{ea}), 2.84(\mathrm{t}, 2 \mathrm{H}, J=16.1 \mathrm{~Hz}$, 4ea), $1.58(\mathrm{~d}, 3 \mathrm{H}, J=5.9 \mathrm{~Hz}, 4 \mathrm{eb}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,171.6,158.9,158.3,150.9$, $150.7,132.3,132.2,129.5,129.4,128.7,125.9,125.8,121.7,121.5,114.3,114.1,114.0,55.4,44.9,36.4$, 30.2 and 18.7; IR (ATR) 2934, 1753, 1611, 1512, 1246, 1194, 1128, 1032, 827 and $689 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{3}$: 257.1172; found 257.1180.

4-Methoxyphenyl 3-(4-methoxyphenyl)propanoate (4fa) and 4-methoxyphenyl 2-(4methoxyphenyl)propanoate (4fb)
Mixture of $\mathbf{4 f} \mathbf{f}$ and $\mathbf{4 f b}$ was obtained from $1 f$ and $\mathbf{2 a}$ as a colorless oil. Yield: 57% ($\mathbf{4 f a} \mathbf{4 f b}=48: 52$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}, 4 \mathrm{fb}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}, 4 \mathrm{fa}), 6.93-6.81(\mathrm{~m}$, $6 \mathrm{H}), 3.88(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}, 4 \mathrm{fb}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $9.8 \mathrm{~Hz}, \mathbf{4 f a}), 2.81(\mathrm{t}, 2 \mathrm{H}, J=9.8 \mathrm{~Hz}, \mathbf{4 f a}), 1.57(\mathrm{~d}, 3 \mathrm{H}, J=9.2 \mathrm{~Hz}, \mathbf{4 f b}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.6,171.8,158.8,158.1,157.2,157.1,144.3,144.1,132.18,132.16,129.3,128.5,122.2,122.1,114.4$, $114.3,114.1,113.9,55.5,55.2,44.7,36.2,30.1$ and 18.5 ; IR (ATR) $1749,1504,1238,1184,1099,1029$ and $813 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}: 287.1278$; found 287.1283.

Heptyl 3-(4-methoxyphenyl)propanoate (4ga) and heptyl 2-(4-methoxyphenyl)propanoate (4gb) Mixture of 4ga and 4gb was obtained from 1g and 2a as a yellow oil. Yield: 76\% (4ga:4gb = 61:39). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(1 \mathrm{H}, \mathrm{d}),, 7.11(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.83(\mathrm{dd}, 2 \mathrm{H}, J=10.7,8.8 \mathrm{~Hz})$, $4.04(\mathrm{td}, 2 \mathrm{H}, J=6.8,3.9 \mathrm{~Hz}), 3.77(\mathrm{~d}, 3 \mathrm{H}, J=2.9 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{q}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, 4 \mathrm{gb}), 2.88(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, 4 \mathrm{ga}), 2.58(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, 4 \mathrm{ga}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, 4 \mathrm{gb}), 1.26(\mathrm{~m}$, $8 \mathrm{H}), 0.87(\mathrm{q}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}){ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.8,173.0,158.5,158.0,132.7,132.5$, $129.1,128.4,113.8,64.7,64.5,55.1,44.6,36.1,31.6,30.1,28.8,28.5,25.8,25.7,22.5,18.4$ and 14.0 ; IR (ATR) $2928,1732,1612,1512,1458,1246,1204,1167,1036$ and $827 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{3}$: 279.1955; found 279.1953.

Benzhydryl 3-(4-methoxyphenyl)propanoate (4ha) and benzhydryl 2-(4-methoxyphenyl)propanoate (4hb)
Mixture of 4ha and 4hb was obtained from 1h and 2a as a colorless oil. Yield: 73\% (4ha: $\mathbf{4 h b}=83: 17$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.55(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.45(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, 7.34-7.19 (m, 5H), 7.10-7.04 (m, 2H), 6.88-6.77 (m, 3H), 3.80-3.72 (m, 1H, 4hb), 3.75 (s, $3 \mathrm{H}, 4 \mathbf{4 h a}), 3.74$ $(\mathrm{s}, 3 \mathrm{H}, \mathbf{4 h b}), 2.91(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}$, $4 \mathbf{h a}), 2.70(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, 4 \mathbf{h a}), 1.49(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathbf{4 h b})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.6,171.9,158.0,140.1,137.5,132.3,123.0,129.2,128.6,128.5,128.4$, $128.3,128.2,128.1,127.8,127.5,127.2,127.1,127.0,126.6,113.9,113.8,55.2,55.1,44.8,36.3,30.0$ and 18.2; IR (ATR) $1734,1659,1512,1246,1150,1032,829,745,700$ and $638 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{3}: 347.1642$; found 347.1633.

Benzyl 3-phenylpropanoate (4ia) ${ }^{23}$ and benzyl 2-phenylpropanoate (4ib) ${ }^{24}$
Mixture of 4ia and 4ib was obtained from $\mathbf{1 a}$ and $\mathbf{2 b}$ as a colorless oil. Yield: $>99 \%$ ($\mathbf{4} \mathbf{i a}: \mathbf{4 i b}=55: 45$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.35-7.17(\mathrm{~m}, 10 \mathrm{H}), 5.13(\mathrm{~d}, 1 \mathrm{H}, J=12.7 \mathrm{~Hz}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~d}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz})$, 3.78 (q, 1H, $J=7.2 \mathrm{~Hz}, 4 \mathbf{i b}), 2.97(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, 4 \mathbf{i a}), 2.69(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, 4 \mathbf{i a}), 1.52(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}, 4 \mathrm{ib}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2,172.6,140.4,136.0,135.9,128.6,128.5,128.4,128.2$, $128.1,128.0,127.8,127.5,127.1,126.2,66.3,66.2,45.5,35.8,30.9$ and 18.4 ; IR (ATR) 3030, 1732, $1497,1454,1200,1152,1030,733$ and $694 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2}: 241.1223$; found 241.1214 .

Benzyl tridecanoate (4ja) and benzyl 2-methyltridecanoate (4jb)

Mixture of $\mathbf{4 j a}$ and $\mathbf{4 j b}$ was obtained from $\mathbf{1 a}$ and $\mathbf{2 c}$ as a gray oil. Yield: $75 \%(\mathbf{~ j} \mathbf{j}: \mathbf{4 j b}=76: 24)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{q}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, 4 \mathrm{jb}), 2.35(\mathrm{t}, 2 \mathrm{H}$, $J=7.6 \mathrm{~Hz}, 4 \mathbf{j a}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.28(\mathrm{~m}, 18 \mathrm{H}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, 4 j \mathrm{j}), 0.86(\mathrm{t}, 3 \mathrm{H}, J=8.3 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.8,176.5,176.4,173.8,136.4,136.3,128.6,128.3,66.1,66.0,65.9$, $47.5,45.8,45.6,39.7,34.4,33.9,32.0,29.8,29.7,29.6,29.5,29.4,29.3,27.3,25.1,22.8,17.2$ and 14.3 ; IR (ATR) 2922, 2853, 1736, 1456, 1213, 1155, 1115, 748, 733 and $696 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{2}$: 305.2475; found 305.2476.

Benzyl 3-phenylbutanoate (4k) ${ }^{25}$
$4 \mathbf{k}$ was obtained from $\mathbf{1 a}$ and $\mathbf{2 d}$ as a colorless oil. Yield: 50%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{q}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.64(\mathrm{dq}, 2 \mathrm{H}, J$ $=7.6,7.5 \mathrm{~Hz}), 1.30(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,145.5,135.9,128.5,128.4$, $128.1,126.7,126.4,66.1,42.9,36.5$ and 21.8; IR (ATR) 2963, 1730, 1495, 1454, 1265, 1152, 1020, 976, 750 and $696 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2}: 255.1380$; found 255.1385.

(1S,2S,4R)-Benzyl bicyclo[2.2.1]heptane-2-carboxylate (4I) ${ }^{26}$
4l was obtained from 1a and 1e as a colorless oil. Yield: 83%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 2.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.37(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz})$, $2.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.19(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $175.8,136.4,128.5,128.0,66.0,46.5,40.9,36.5,36.0,34.1,29.4$ and 28.6; IR (ATR) 2953, 1728, 1310, $1213,1155,1065,1024,735$ and $696 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}: 232.1380$; found 232.1380 .

Benzyl 2,3-dihydro-1H-indene-1-carboxylate (4ma) and benzyl 2,3-dihydro-1H-indene-2carboxylate (4mb)
Mixture of $\mathbf{4 m a}$ and $\mathbf{4 m b}$ was obtained from 1a and $\mathbf{2 f}$ as a colorless oil. Yield: 88% ($\mathbf{4 m a} \mathbf{~} \mathbf{4 m b}=76: 24$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}$, 4ma), 3.40-3.31 (m, 1H, 4mb), 3.29-3.18 (m, 4H, 4mb), 3.14-3.06 (m, 1H, 4ma), 2.94-2.87 (m, 1H, 4ma), 2.51-2.42 (m, 1H, 4ma), 2.37-2.28 (m, 1H, 4ma); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,173.9$, $144.3,141.7,140.7,136.2,128.7,128.3,128.2,127.7,126.8,126.6,125.0,124.8,124.5,66.7,66.6,50.3$, $43.8,36.3,31.9$ and 28.8; IR (ATR) 2947, 1730, 1603, 1456, 1258, 1153, 1016, 970, 745 and $696 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2}: 253.1223$; found 253.1231.

Benzyl 2-phenylbutanoate (4na), ${ }^{27}$ benzyl 2-methyl-3-phenylpropanoate (4nb), ${ }^{24}$ and benzyl 4phenylbutanoate (4nc) ${ }^{29}$
Mixture of 4na, 4nb and 4nc was obtained from 1a and 2g as a colorless oil. Yield: 69\% (4na:4nb:4nc = 51:20:29).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.13(\mathrm{~m}, 10 \mathrm{H}), 5.14(\mathrm{~d}, 1 \mathrm{H}, J=12.7 \mathrm{~Hz}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H})$, $5.06(\mathrm{~d}, 1 \mathrm{H}, J=12.7 \mathrm{~Hz}), 3.51(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, 4 \mathbf{n a}), 3.04(\mathrm{q}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}, 4 \mathbf{n b}), 2.80(\mathrm{q}, 1 \mathrm{H}, J=7.0$ $\mathrm{Hz}, \mathbf{4 n b}), 2.70(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}, 4 \mathbf{n b}), 2.64(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, 4 \mathrm{nc}), 2.38(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, 4 \mathrm{nc}), 2.18-$ 2.07 ($\mathrm{m}, 1 \mathrm{H}, 4 \mathbf{n a}$), 2.01-1.94 (m, 2H, 4nc), 1.87-1.77 (m, 1H, 4na), 1.18 (d, 3H, $J=6.8 \mathrm{~Hz}, \mathbf{4 n b}$), 0.88 (t, $3 \mathrm{H}, J=7.3 \mathrm{~Hz}, 4 \mathbf{n a}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.9,173.3,141.3,139.2,136.1,129.0,128.5$, $128.4,128.3,128.2,128.1,128.0,127.9,126.3,126.0,66.3,66.1,41.5,39.7,35.1,33.6,26.6,26.5$ and
16.8; IR (ATR) 3028, 1732, 1497, 1454, 1153, 1028, 743, 696 and $509 \mathrm{~cm}^{-1} ;$ HRMS (DART) [M+H] ${ }^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2}$: 255.1380; found 255.1389 .

4-Methylisochroman-3-one (6aa) ${ }^{28}$
6aa was obtained from $5 \mathbf{a}$ as a colorless oil. Yield: 67%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.24(\mathrm{~m}, 4 \mathrm{H}), 5.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.6 \mathrm{~Hz}), 5.28(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz})$, $3.64(\mathrm{q}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.64(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}){ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,135.4,131.8$, $128.7,126.9,124.5,124.4,69.0,39.2$, and 12.7 ; IR (ATR) 1736, 1462, 1381, 1240, 1150, 1123, 1043, 1022, 793, 752, and $733 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}: 163.0754$; found 163.0763 .

4,5-Dihydrobenzo[c]oxepin-3(1H)-one (6ab) ${ }^{29}$
6ab was obtained from 5 a as a colorless oil. Yield: 8%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 3.28-3.24(\mathrm{~m}, 2 \mathrm{H})$, 3.11-3.07 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.0,137.0,133.1,129.9,129.20,129.17,126.6,70.2$, 31.5, and 28.3; IR (ATR) 1726, 1452, 1381, 1236, 1152, 1016, and $754 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}$: 163.0754; found 163.0749.

3-Methylbenzofuran-2(3H)-one (6ba) ${ }^{30}$
6ba was obtained from $\mathbf{5 b}$ as a colorless oil. Yield: 71\%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.72$ $(\mathrm{q}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.56(\mathrm{~d}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.8,153.4,128.72,128.66$, 124.1, 123.8, 110.6, 38.2, and 15.7; IR (ATR) 1800, 1618, 1477, 1464, 1292, 1231, 1202, 1125, 1086, $1030,989,878,748$, and $727 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2}: 149.0597$; found 149.0597 .

Chroman-2-one (6bb) ${ }^{31}$
$\mathbf{6 b b}$ was obtained from $\mathbf{5 b}$ as a colorless oil. Yield: 11%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.26-7.10 (m, 2H), 7.10-6.95 (m, 2H), 3.01-2.89 (m, 2H), 2.78-2.69 (m, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,152.0,128.3,128.0,124.4,122.6,117.0,29.3$, and 23.7; IR (ATR) $1768,1751,1489,1458,1244,1225,1138,1107,1024,897$, and $754 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2}$: 149.0597; found 149.0589.

5-Chloro-3-methylbenzofuran-2(3H)-one (6ca)
6ca was obtained from 5c as a colorless oil. Yield: 67\%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.74(\mathrm{q}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.57$ $(\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.1,151.8,130.4,129.4,128.8,128.4,124.2,111.8$, 38.5 and 15.7; IR (ATR) 1803, 1471, 1231, 1132, 1094, 1026, 849 and $812 \mathrm{~cm}^{-1} ;$ HRMS (DART) [M+H] calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClO}_{2}$: 183.0207; found 183.0214 .

6-Chlorochroman-2-one (6cb) ${ }^{33}$
$\mathbf{6 c b}$ was obtained from $5 \mathbf{d}$ as a white solid (m.p. $107^{\circ} \mathrm{C}$). Yield: 13%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 3.05-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.74$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.7,150.5,129.4,128.3,127.9,124.2,118.3,28.8$, and 23.6; IR (ATR) $1734,1479,1414,1341,1280,1225,1179,1163,1153,1115,1082,899$, and $818 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClO}_{2}$: 183.0207; found 183.0211.

Ethyl 3-methyl-2-oxo-2,3-dihydrobenzofuran-5-carboxylate (6da)
6da was obtained from $\mathbf{5 d}$ as a white solid (m.p. $97{ }^{\circ} \mathrm{C}$). Yield: 59%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{ddd}, 1 \mathrm{H}, J=8.0,1.2,0.8 \mathrm{~Hz}), 7.97(\mathrm{dd}, 1 \mathrm{H}, J=1.2,0.8 \mathrm{~Hz}), 7.15(\mathrm{~d}$, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.38(\mathrm{qdd}, 2 \mathrm{H}, J=7.6,0.8,0.8 \mathrm{~Hz}), 3.78(\mathrm{q}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.62(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $1.41(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.2,165.8,156.8,131.2,128.9,126.7,125.5$, $110.5,61.2,38.1,15.7,14.3$; IR (ATR) 1802, 1709, 1620, 1242, 1022, 993 and $768 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{4}: 221.0808$; found 221.0808 .

Ethyl 2-oxochroman-6-carboxylate (6db)
6db was obtained from $5 \mathbf{d}$ as a colorless oil. Yield: 14\%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.2 \mathrm{~Hz}), 7.93(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 4.38(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.07(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 2.82(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 1.40(\mathrm{t}, 3 \mathrm{H}, J=7.6$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.6,165.7,155.2,130.0,129.7,126.7,122.5,117.0,61.1,28.9$, 23.6 and 14.3 ; IR (ATR) $1775,1709,1285,1265,1115,1098,1026,897$ and $770 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{4}:$ 221.0808; found 221.0810.

3-Ethylbenzofuran-2(3H)-one (6ea) ${ }^{32}$
6ea was obtained from $5 \mathbf{e}$ or $\mathbf{5 f}$ as a colorless oil. Yield: 90% from $5 \mathbf{e}, 82 \%$ from $5 \mathbf{f}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.70(\mathrm{t}, 1 \mathrm{H}$, $J=5.6 \mathrm{~Hz}), 2.11-2.01(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.0,153.8$, $128.6,127.1,124.1,123.9,110.5,44.4,24.2$, and 10.0 ; IR (ATR) 1800, 1618, 1477, 1462, 1229, 1126, 1047, 908, 878, and $750 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}: 163.0754$; found 163.0756.

3-Methylchroman-2-one (6eb) ${ }^{33}$
$\mathbf{6 e b}$ was obtained from $5 \mathbf{d}$ or $\mathbf{5 f}$ as a white solid (m.p. $61^{\circ} \mathrm{C}$). Yield: 10% from $\mathbf{5 e}, 13 \%$ from $\mathbf{5 f}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.10-6.98(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.61(\mathrm{~m}$, $2 \mathrm{H}), 1.37(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,151.8,128.1,127.9,124.2,122.8$, $116.5,34.2,31.6$, and 15.3 ; IR (ATR) $1746,1489,1458,1358,1225,1150,1113,937$, and $756 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}$: 163.0754; found 163.0751.

3,3-Dimethylbenzofuran-2(3H)-one (6ga) ${ }^{34}$
Following the general procedure except for using $\mathbf{3 f}$ in place of $\mathbf{3 e}$, $6 \mathbf{g a}$ was obtained from $5 \mathbf{g}$ as a colorless oil. Yield: 28%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{ddd}, 1 \mathrm{H}, J=7.6,7.2,1.6 \mathrm{~Hz}), 7.22(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.6 \mathrm{~Hz}), 7.15$ (ddd, $1 \mathrm{H}, J=8.07 .2,0.8 \mathrm{~Hz}), 7.11(\mathrm{dd}, 1 \mathrm{H}, J=8.0,0.8 \mathrm{~Hz}), 1.50(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $180.8,152.2,133.6,128.5,124.2,122.7,110.7,42.8$, and 25.2; IR (ATR) 1798, 1618, 1477, 1458, 1290, $1233,1188,1119,1103,1034,935,876$, and $750 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}$: 163.0754; found 163.0754 .

4-Methylchroman-2-one (6gb) ${ }^{35}$
Following the general procedure except for using $\mathbf{3 f}$ in place of $\mathbf{3 e}, \mathbf{6 g b}$ was obtained from $\mathbf{5 g}$ as colorless oil. Yield: 58\%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.06(\mathrm{~m}, 4 \mathrm{H}), 3.24-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.8,5.5 \mathrm{~Hz}), 2.60$ $(\mathrm{dd}, 1 \mathrm{H}, J=15.8,8.6 \mathrm{~Hz}), 1.36(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,151.2,128.2$, $127.8,126.5,124.6,117.0,36.8,28.5$, and 19.8; IR (ATR) 1763, 1487, 1449, 1348, 1215, 1146, 1115, 1078,908 , and $756 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}: 163.0754$; found 163.0747.

3-Methyl-3-phenylbenzofuran-2(3H)-one (6ha) ${ }^{35}$
Following the general procedure except for using $\mathbf{3 f}$ in place of $\mathbf{3 e}$, $\mathbf{6 h a}$ was obtained from $\mathbf{5 h}$ as a colorless oil. Yield: 72\%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.15(\mathrm{~m}, 9 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6$, 152.7, 139.5, 132.6, 129.0, 128.8, 127.8, 126.4, 124.52, 124.49, 111.0, 50.8, and 24.8; IR (ATR) 1800, 1477, 1462, 1445, 1227, 1148, 1024, 887, 752, 729, and $694 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2}: 225.0910$; found 225.0904.

4-Phenylchroman-2-one (6hb) ${ }^{36}$

Following the general procedure except for using $\mathbf{3 f}$ in place of $\mathbf{3 e}, \mathbf{6} \mathbf{h b}$ was obtained from $\mathbf{5 h}$ as a white solid (m.p. $82{ }^{\circ} \mathrm{C}$). Yield: 16%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}$, $J=7.5 \mathrm{~Hz}), 4.35(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.09(\mathrm{dd}, 1 \mathrm{H}, J=16.1,6.2 \mathrm{~Hz}), 3.03(\mathrm{dd}, 1 \mathrm{H}, J=16.1,7.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,151.7,140.3,129.1,128.8,128.3,127.6,127.5,125.8,124.6,117.1$, 40.7, and 37.0; IR (ATR) 1765, 1485, 1454, 1213, 1130, 924, 754, and $698 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2}$: 225.0910; found 225.0911.

3,4,4-Trimethylchroman-2-one (6ia)

6ia was obtained from $5 \mathbf{i}$ as a colorless oil. Yield: 83%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.6 \mathrm{~Hz}), 7.25(\mathrm{ddd}, 1 \mathrm{H}, J=7.6,7.2,1.6 \mathrm{~Hz}), 7.14$ (ddd, $1 \mathrm{H}, J=8.4,7.2,1.6 \mathrm{~Hz}), 7.03(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.6 \mathrm{~Hz}), 2.62(\mathrm{q}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.21$ $(\mathrm{d}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5,150.1,131.9,128.1,124.7,124.6$, $116.7,45.1,36.0,26.4,22.9$ and 10.2; IR (ATR) 2974, 1763, 1447, 1207, 1161, 1065, 1011 and $754 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}$: 191.1067; found 191.1075.

5,5-Dimethyl-4,5-dihydrobenzo[b]oxepin-2(3H)-one (6ib)
6ib was obtained from $5 \mathbf{i}$ as a colorless oil. Yield: 9%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, 1 \mathrm{H}, J=8.0,2.0 \mathrm{~Hz}), 7.29(\mathrm{ddd}, 1 \mathrm{H}, J=7.6,7.2,2.0 \mathrm{~Hz}), 7.21$ (ddd, $1 \mathrm{H}, J=8.0,7.2,1.6 \mathrm{~Hz}), 7.10(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.6 \mathrm{~Hz}), 2.44(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.08(\mathrm{t}, 2 \mathrm{H}, J=7.2$
$\mathrm{Hz}), 1.42(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,151.6,136.1,128.2,126.6,125.8,120.8,41.1$, 36.0, 30.7 and 29.4; IR (ATR) 2965, 1753, 1440, 1204, 1132, 1084 and $756 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}$: 191.1067; found 191.1068.

3-Isopropylbenzofuran-2(3H)-one (6j) ${ }^{37}$
$\mathbf{6 j}$ was obtained from $\mathbf{5 j}$ as a colorless oil. Yield: $\mathbf{9 9 \%}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 2.41(\mathrm{~m}$, $1 \mathrm{H}), 1.01(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.4,154.1$, 128.7, 126.1, 124.5, 123.8, 110.5, 49.7, 31.3, 19.3, and 18.4; IR (ATR) 2965, 1802, 1618, 1477, 1460, $1231,1126,1043,891,750 \mathrm{~cm}^{-1} ;$ HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}: 177.0910$; found 177.0917.

2H-Spiro[benzofuran-3,1'-cyclopentan]-2-one (6ka) ${ }^{38}$
Following the general procedure except for using $\mathbf{3 f}$ in place of $\mathbf{3 e}, \mathbf{6 k a}$ was obtained from $\mathbf{5 k}$ as a colorless oil. Yield: 47%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{ddd}, 1 \mathrm{H}, J=8.0,7.6,1.6 \mathrm{~Hz}), 7.21(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.6 \mathrm{~Hz}), 7.15$ (ddd, $1 \mathrm{H}, J=8.0,7.6,1.2 \mathrm{~Hz}), 7.09(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}), 2.30-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.06-$ $1.90(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.8,152.4,134.2,128.2,124.3,122.6,110.4,52.0,39.6$ and 26.4 , ; IR (ATR) 2957, 1794, 1618, 1476, 1460, 1231, 1119, 1036, 974, 876, and $748 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}$: 189.0910; found 189.0914 .

1,3,3a,9b-Tetrahydrocyclopenta[c]chromen-4(2H)-one (6kb)

Following the general procedure except for using $\mathbf{3 f}$ in place of $\mathbf{3} \mathbf{e}, \mathbf{6 k b}$ (diastereomer mixture) was obtained from $5 \mathbf{k}$ as a colorless oil. Yield: 28%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.01(\mathrm{~m}, 8 \mathrm{H}), 3.30-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.92(\mathrm{~m}$, $1 \mathrm{H}), 2.46-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 3 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.61(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.9,170.7,152.6,150.6,128.8,128.1,128.1,128.0,125.1,124.4,124.2$, $124.1,116.8,116.4,46.6,42.9,41.5,40.8,33.7,28.7,27.5,23.4,22.9$ and 22.9; IR (ATR) 2955, 1755, 1487, 1452, 1219, 1144, 1123, 1105 and $752 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}$: 189.0910; found 189.0919.

2H-Spiro[benzofuran-3,1'-cyclohexan]-2-one (6la)

6la was obtained from $5 \mathbf{l}$ as a colorless oil. Yield: 72%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{dd}, 1 \mathrm{H}, J=7.6,0.8 \mathrm{~Hz}), 7.28(\mathrm{ddd}, 1 \mathrm{H}, J=8.0,7.6,1.6 \mathrm{~Hz}), 7.13$ (ddd, $1 \mathrm{H}, J=7.6,7.6,0.8 \mathrm{~Hz}), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 1.99-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.62(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.5,152.3,133.4,128.2,123.8,123.8,110.6,46.0,33.8,24.9$ and 20.7 ; IR (ATR) 2933, 2855, 1796, 1460, 1231, 1150, 1007 and $752 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}$: 203.1067; found 203.1063.

6a,7,8,9,10,10a-Hexahydro-6H-benzo[c]chromen-6-one (6lb)
$\mathbf{6 l b}$ (diastereomer mixture) was obtained from $\mathbf{5 l}$ as a colorless oil. Yield: 28\%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.00(\mathrm{~m}, 8 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.48(\mathrm{~m}$, $1 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.20(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.9,170.4,151.0,150.8,128.1,127.5,127.3,124.5,124.4,124.3,123.8,116.7,116.6,110.6$, $42.5,39.8,38.0,36.0,33.9,28.9,26.3,25.0,24.9,24.7,21.8$ and 20.7; IR (ATR) 2933, 2859, 1751, 1485, 1452, 1217, 1153, 1113 and $760 \mathrm{~cm}^{-1}$; HRMS (DART) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}: 203.1067$; found 203.1073 .

6. NMR spectra of newly obtained compounds

F:¥NMR-1¥3d¥TU-377-13C1BCM E5 FT.als

DFILE COMNT DATIM OBNUO EXMOD OBFRQ OBSET
OBFIN OBFIN
POINT
POINT
FREQU SCANS PD
PW1 PW1 IRNUC
CTEMP
SLVNT SLVNT EXRE
BF
RGAIN

FNMR-1\#3d\#TU-377-1301
TU-377-13C
Sat Feb 04 21:23:53 2012
130
100.40 MHz
100.40 MHz 125.00 KHz 32768 32768
27118.64 Hz
27118.64
256

256
1.2083 sec
1.2083 sec
1.7920 sec
5.50 usec

1H
CDCL3 ${ }^{19.4}$
77.00 ppm
1.20 Hz

H: $¥$ NMR $¥$ NewCompound $¥ H K-449-C 1 B C M _E 4 . a l s$

H: $¥ N M R \neq$ NewCompound $¥ H K-442-H 1$ NON_E6.als

F：¥NMR－1¥5a－alcohol¥TU－3221NON E12 FT

F：¥NMR－1¥5a－alcohol羊TU－322－13C1BCM＿E13＿FT．als
TU－322－130
1.2083 sec
1.2083 sec
1.7920 sec
5.50 usec
1H
${ }^{22.9}$
77.00 ppm
1.20 H

F：¥NMR－1¥5a－alcohol羊TU－3
TU－322
Wed Jan 25 15：16：39 2012
NON
399.65 MHz
124.00 KHz
10500.00 Hz

16384
7992.01 Hz
2.0500 sec
4.9500 sec

1 H
CDCL3 ${ }^{22.2 \mathrm{c}}$
0.00 ppm
0.12 Hz

S1

F: $¥$ NMR-1 $¥$ S2 2 TU-3001 NON_E2.als

F:¥NMR-1¥S2¥TU-3001NON
TU-300
Sat Apr 07 15:30:47 2012
1 H
399.65 MHz
399.65 MHz
124.00 KHz
16500.00
7992.01 Hz
${ }_{8}^{7992.01 ~ H z}$
8
2.0500 sec
2.0500 sec
4.9500 sec

1H 6.20 usec
24.4 o

CDCL3
0.00 ppm
0.12 Hz
14

S2

F: $¥$ NMR-1 $¥$ TU-578-31 NON_E5_FT.als

F: \ddagger NMR-1 $¥ 5 d ¥ T U-285-13 C 1 B C M _E 52 _F T . a l s$

DFILE COMNT DATIM OBNUO EXMOD
OBFRQ OBFRQ OBSET
OBFIN
OBFIN
FREQU
SCANS
SCANS
ACQTM
ACQT
PD
PW 1
PW1
IRNUC
IRNUC
SLVNT
EXREF EXREF
BF
RGAIN
F: $¥$ NMR-1 $¥ 5 e ¥ T U-1831$ NON
TU-183
Tue Nov 29 20:08:28 2011
1 N
399.65 MHz
399.65 MH
124.00 KHz 124.00 KHz
10500.00 Hz

16384
7992.01 Hz

8
2.0500
sec
2.0500 sec
4.9500 sec

1H
$\mathrm{CDCL}^{22.5}$
0.00 ppm
0.12 Hz

5e

F: $¥$ NMR-1 $¥ 5 e ¥ T U-183-1301$
F: $:$ NMR-1 $¥ 5$
TU-183-13C
Thu Jan 19 12:10:44 2012
Thu
13 C
BCM
100.40 MHz
125.00 KHz

32768
27118.64 Hz

1256
1.2083 sec
1.7920 sec

1H
$\mathrm{CDCL}^{22.5 \mathrm{c}}$
77.00 ppm
77.00 ppm
1.20 Hz
1.20 H
25

F: \ddagger NMR-1 $¥ 5$ f $¥$ TU-321-13C1BCM_E35_FT.als

DFILE DATIM OBNUO
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN

$(E: Z=80: 20)$

F:¥NMR-1¥5f羊TU-321-13C1
TU-321-13C
Thu Jan 19 16:51:57 2012
130
BCM
100.40 MHz
125.00 KHz
10500.00 Hz

32768
27118.64 Hz

256
1.2083 sec
1.7920 sec
5.50 usec

1H
CDCL3 ${ }^{22.9} \mathrm{c}$
77.00 ppm
${ }_{26}^{1.20 \mathrm{~Hz}}$

			- 2.1170		佥
$\begin{array}{lll}7.0 & 6.0 & 5.0\end{array}$	4.0	3.0	2.0	1.0	0.0

[^0]F: \ddagger NMR- $1 ¥ 5 \mathrm{~g} \neq \mathrm{TU}-332-13 \mathrm{C} 1 \mathrm{BCM}$ _E9_FT.als

C. $\begin{aligned} & \text { Documents and Settines* }\end{aligned}$

C:~Documents and Settines
TU-011
Thu Oct 06 21:20:37 2011
1 H
NON
399.65 MHz
124.00 KHz
10500.00 Hz

16384
7992.01 Hz
${ }_{8}^{7992.01 ~ H z}$
8
2.0500 sec
2.0500 sec
4.9500 sec

1H. 6.20 usec
1 H
CDCL3 ${ }^{24.4}$
0.00 ppm
0.12 Hz

16

10.0	9.0	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0

F:¥NMR-1¥5h¥TU-330-13C1BCM E2 FT als
(U330-13C

C: \ddagger Documents and Settings $\#$ TU-107-Recovery
Sat Nov 05 13:37:03 2011
1 H
399.65 MHz
399.65 MHz 124.00 KHz 16384 H 16384 7992.01 Hz 8
2.0500
sec 2.0500 sec
4.9500 sec 6.20 usec

1 H
CDCL3 ${ }^{24.2}$
0.00 ppm
0.00 ppm
${ }_{13}^{0.12} \mathrm{H}$

S9

F: $¥$ NMR-1 $¥ 5 k$-alcohol羊TU-354-13C1BCM_E16_FT.als

DFILE COMNT DATIM OBNUO
EXMOD EXMOD
OBFRQ OBFRQ
OBSET OBSET
OBFIN
POINT OBFIN FREQU
SCANS SCANS
ACQTM ACQT
PD
PW1 PW1
IRNUC IRNUC CTEMP
SLVNT SLVNT EXREF
BF RGAIN

F: $¥$ NMR-1 $¥ 51 \neq T U-2221$ NON
TU-222
Mon Dec 12 23:17:21 2011
1 H
399.65 MH
399.65 MHz
124.00 KHz
1600.00
7992.01 Hz
${ }_{8}^{7992.01 ~ H z}$
2.0500 sec
4.9500 sec

1H
CDCL3 ${ }^{22.8}$
CDCL3
0.00 ppm
0.12 H

5k

F: $¥$ NMR-1 $¥ 51$ 羊TU-222-13C-
TU-222-13C
17-01-2012 21:59:42
13 C
single pulse_dec
124.51 MHz
3.45 KHz
${ }_{32768}^{6.00 \mathrm{~Hz}}$
39062.50 Hz

64
0.8389 sec
1.5000 sec
5.57 usec

1H
CDCL3 ${ }^{21.4}$
77.00 ppm
77.00 ppm
0.12 Hz
0.12 H
50

F: $¥$ NMR-1 $¥ 5 \mathrm{~m} ¥ \mathrm{TU}-244-13 \mathrm{C}-1$.jdf

DFILE COMNT DATIM OBNUC
EXMOD EXMOD
OBFRQ OBFRQ
OBSET OBSET
OBFIN
POINT OBFIN
POINT FREQU
SCANS SCANS PD
PW1
TRNU IRNUC CTEMP
SLVNT EXREF
BF BF
RGAIN
F.¥NMR-1¥5m¥TU-2441NO

TU-244
Tue Dec 20 20:31:46 2011
NON
399.65 MHz
399.65 MH
124.00 KHz

16384
7992.01 Hz
${ }_{8}^{7992.01 ~ H z}$
2.0500 sec
4.9500 sec

1H
CDCL3 ${ }^{22.5}$
CDCL3
0.00 ppm
0.12 Hz

51

F: $¥$ NMR-1 $¥ 5 m ¥ T U-244-13 C$
F: $¥ N M R-1 \neq 5$
TU-244-13C
TU-244-13C
17-01-2012 22:13:01
$17-01$
130
single pulse_dec
124.51 MHz
3.45 KHz
6.00 Hz
6.00 Hz
32768
39062.50 Hz

64
0.8389 sec
1.5000 sec
5.57 usec

1H
CDCL3 ${ }^{21.5}$
77.00 ppm
77.00 ppm
0.12 Hz
0.12 H
50

F: $¥$ NMR $¥ T M-170-120116$-11 NON E4.als

F:¥NMR¥TM-170-120201-C1BCM E5.als

F:¥NMR¥TM-120207-11NON_E13.als

H: $¥$ NMR \neq NewCompound $¥$ HK $-454-1$ NON E5.als

H: \ddagger NMR \neq NewCompound $¥ H K$-454-C1BCM E10.als

DFILE COMNT
DATIM DATIM
OBNUC OBNUC EXMOD
OBFRQ
OBSET OBSET
OBFIN
POINT
POINT
FREQU
SCANS
ACQTM
ACQT
PD
PW 1
PW1
IRNUC
IRNUC
SLENP
EXREF
EXREF
BF
RGA
H.\#NMR $\#$ NewCompound $\#$ HK

HK-454
Tue Jan 24 23:55:33 2012
NON
399.65 MH
399.65 MHz
124.00 KHz
124.00 KHz

16384
16384
7992.01 Hz
8
2.0500
2.0500 sec
4.9500 sec
4.9500 sec

1H
CDCL3 ${ }^{21.3}$
0.00 ppm
0.12 Hz
0.

4ba
$+$

DFILE
COMNT
DATIM
OBNUO
EXMOD
OBFRQ
OBSET
OBSET
OBFIN
OBFIN
POINT
PREINT
SCANS
ACQTM
PD
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN

HK-454
Wed Jan 25 01:29:58 2012
BCM
100.40 MHz
125.00 KHz
10500.00 Hz

32768
27118.64 Hz

256
1.2083 sec
1.7920 sec

1H
$\operatorname{CDCL}^{22.1 \mathrm{c}}$
77.00 ppm
0.12 H

H: \ddagger NMR $¥$ NewCompound $¥ H K-453$-Shita-C1BCM_E9.als

H: \ddagger NMR $¥$ NewCompound $¥ H K-453-U e-C 1 B C M _E 8 . a l s$

DFILE COMNT DATIM OBNUC
EXMOD
F.\#NMR¥TM-120119-11NON phenyl
Thu Jan 19 15:10:27 2012
1 H
NON
399.65 MH
399.65 MH
124.00 KHz
10500.00
16384
7992.01 Hz
$\stackrel{8}{8} 2.0500 \mathrm{sec}$
2.0500 sec
4.9500 sec
6.20 usec

1H
${ }^{22.0 \mathrm{c}}$
0.00 ppm
0.00 ppm
0.12 Hz

F: $¥$ NMR $¥ T M-120126-11$ NON_E2.als

F:¥NMR¥TM-120206-31BCM_E8.als

DFILE COMNT
DATIM
OBNUO
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PWI
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN

4ga
$+$
F:¥NMR¥TM-120126-11NON
hepthyl
Fri Jan 27 10:45:28 2012
NON
399.65 MHz
124.00 KHz

16384
7992.01 Hz

8
2.0500
sec
4.9500 sec

1H
CDCL 23.4 c
0.00 ppm
0.12 Hz

${ }^{n} \mathrm{C}_{7} \mathrm{H}_{1}$

F:¥NMR¥TM-120206-31BCM heptyl-13C
Tue Feb 07 00:44:59 2012
13C
100.40 MHz
125.00 KHz
10500.00 Hz

32768
27118.64 Hz

1024
1.2083 sec
1.7920 sec
5.50 usec

1H
$\mathrm{CDCL}^{19.5}$
13.99 ppm
0.12 Hz
26

DFILE
COMNT DATIM OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
OBFIN
POINT
FREQU
SCANS
SCANS
ACQT
PD
PW
PD
PW1
IRNUC
CTEMP
SLVNT
SXREF
BF

4ha

F:\#NMR\#TM-120126-31NON
benzhydrol
Thu Jan 26 13:31:14 2012
NON
399.65 MH
124.00 KHz
10500.00 Hz

16384
7992.01 Hz
2.0500 sec
4.9500 sec

1H
CDCL3 ${ }^{21.6 \mathrm{c}}$
0.00 ppm
0.12 Hz

DFILE COMN COMNT OATIM EXMOD EXMOD OBFRQ OBSET
OBFIN
OBFIN
POINT
PREINT
SCANS
ACQTM
PD
PD
PW1
IRNUC
CTEMP
CTEMP
SLVNT
EXREF
EXREF
RGAIN
F.¥NMR¥TM-120206-11BCM
benzhydryl
Mon Feb 06 10:31:35 2012
13C
100.40 MHz
125.00 KHz
125.00 KHz
10500.00 Hz
32768
27118.64 Hz

512
18
1.2083 sec
1.2083 sec
1.7920 sec
5.50 usec

1H
CDCL3
18.18 ppm
0.12 Hz

22

F:¥NMR¥TM-120119-21NON_E27.als
(

DFILE

RGAIN

F:¥NMR¥TM-210119-1.1
dodecene
19-01-2012 20:42:05
13C
single pulse dec
125.77 MHz
7.87 KHz
4.21 Hz 32768
39308.18 Hz

1000
0.8336 sec
1.5000 sec

1 H
CDCL3 ${ }^{19.3}$
47.45 ppm
0.12 Hz
58

F: $¥$ NMR $¥ T M-261-111012-11$ NON_E4.als

399.65 MH 124.00 KHz 10500.00 Hz

16384
7992.01 Hz
2.0500 sec
2.0500 sec
4.9500 sec

1H
$\mathrm{CDCL}^{24.4 \mathrm{c}}$
0.00 ppm
0.12 Hz

4k

F:¥NMR¥TM-120827-21BCME6.al
F: T MMR 1 20827-2-130
Mon AuE 27 10:21:55 2012
130
BCM
100.40 MHz
100.40 MHz
125.00 KHz
125.00 KHz
10500.00 Hz
${ }^{10507.00 \mathrm{~Hz}}$
27118.64 Hz

206
1.2083
1.2083 sec
1.7920 sec
1.7920 sec
5.50 usec

1 H
$\mathrm{ODCL}^{27.9 \mathrm{c}}$
CDCL3
77.00 ppm
77.00 ppm
0.12 Hz
0.12 H
28

F:¥NMR¥TM-255-111006-11
TM-255-111006-1
Fri Oct 07 00:12:42 2011
1 H
399.65 MHz
399.65 MHz 10500.00 Hz

16384
16384
7992.01 Hz
2.0500 sec
2.0500 sec
4.9500 sec

1H
24.6 c
0.00 ppm
0.00 ppm
0.12 Hz

F:¥NMR¥TM-120827-11BCME5.al
F: F MMR M - $120827-1$ - 13 C
Mon Aus 27-10:03:02 2012
130
BCM
100.40 MHz
100.40 MHz
125.00 KHz
125.00 KHz
10500.00 Hz
10500.00 Hz
27118.64 Hz

206
1.2083
1
1.2083 sec
1.7920 sec
1.7920 sec
5.50 usec
$1 \mathrm{H}^{5}$
28.1 c

ODCL3
77.00 ppm
77.00 ppm
0.12 Hz
${ }_{27}^{0.12 \mathrm{H}}$

DFILE COMNT DATIM DATIM
OBNUC OBNUC
EXMOD EXMOD OBFRQ
OBSET

OBFIN
POINT
PREINT
SCANS
ACQTM
ACQT
PD
PW1
PW1
IRNUC
IRNUC
CTEMP
CTEMP
SLVNT
EXREF
BF
RGAIN
F: $¥$ NMR $¥$ TM-120125-11 NON
indene
Wed Jan 25 12:05:42 2012
1 H
399.65 MH
399.65 MH
124.00 KHz

16384
16384 Hz
8
2.0500
sec
2.0500 sec
4.9500 sec

1H
$\mathrm{CDCL}^{22.0 \mathrm{c}}$
0.00 ppm
0.00 ppm
0.12 Hz

4ma

4mb

F: $¥$ NMR $¥$ TM $-120125-1.1$
indene
25-01-2012 16:45:20
$25-0$
single pulse dec
125.77 MHz
7.87 KHz
4.21 Hz ${ }_{32768}{ }^{4.21 \mathrm{~Hz}}$
39308.18 Hz

500
0.8336 sec
1.5000 sec
3.33 usec

1H
${ }^{-19.7}$
18.83 ppm
18.83 ppm
0.12 Hz
${ }_{60}^{0.12}$

DFILE COMNT DATIM OBNUC EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAN

F:¥NMR \because TM-318-120105-21
TM- F - 318 -120105-1
Thu Jan 05 20:05:27 2012
1 H
399.65 MHz
399.65 MH 124.00 KHz

16384
16384
7992.01 Hz
8
2.0500
2.0500 sec
4.9500 sec

1H
$\operatorname{cDCL}^{22.2 \mathrm{o}}$
CDCL3
0.00 ppm
0.12 H

4nc
F:※NMR¥TM-120827-3-11BCM-E1 5.al

TM-1 20827-3-1-130
Mon Aus 27 12:22:28 2012
130
BOM
100.40 MHz 125.00 KHz
10500.00 Hz 122768 ${ }_{27118.64 \mathrm{~Hz}}^{512}$ 512
1.2083 sec 1.2083 sec
1.7920 sec 1.7920 sec
5.50 usec

1 H
ODCL3
77.00 ppm
77.00 p
0.12 Hz
28

7. References

(1) Sofuku, S.; Muramatsu, I.; Hagitani, A. Bull. Chem. Soc. Jpn. 1967, 40, 2942-2945.
(2) Shi, M.; Shen, Y. M. Molecules 2002, 7, 386-393.
(3) Ochiai, M.; Yoshimura, A.; Miyamoto, K.; Hayashi, S.; Nakanishi, W. J. Am. Chem. Soc. 2010, 132, 9236-9239.
(4) Katafuchi, Y.; Fujihara, T.; Iwai, T.; Terao, J.; Tsuji, Y. Adv. Synth. Catal. 2011, 353, 475-482
(5) Shirini, F.; Zolfigol, M. A.; Safari, A. J. Chem. Res. 2006, 154-156.
(6) Scherg, T.; Schneider, S. K.; Frey, G. D.; Schwarz, J.; Herdtweck, E.; Herrmann, W. A. Synlett 2006, 2894-2907.
(7) Liao, C.; Zhu, X.; Sun, X.-G.; Dai, S. Tetrahedron Lett. 2011, 41, 5308-5310.
(8) Nguyen, D. Q.; Bae, H. W.; Jeon, E. H.; Lee, J. S.; Cheong, M.; Kim, H.; Kim, H. S.; Lee, H. J. Power Sources 2008, 183, 303-309.
(9) Ogino, K.; Kashihara, N.; Ueda, T.; Isaka, T.; Yoshida, T.; Tagaki, W. Bull. Chem. Soc. Jpn. 1992, 65, 373-384.
(10) Ram, R. N.; Meher, N. K. Tetrahedron 2002, 58, 2997-3001.
(11) Albert, S.; Horbach, R.; Deising, H. B.; Siewert, B.; Csuk, R. Bioorg. Med. Chem. 2011, 19, 51555166.
(12) Gligorich, K. M.; Schultz, M. J.; Sigman, M. S. J. Am. Chem. Soc. 2006, 128, 2794-2795.
(13) Suzuki, Y.; Takahashi, H. Chem. Pharm. Bull. 1983, 31, 1751-1753.
(14) Gauthier, D.; Lindhardt, A. T.; Olsen, E. P. K.; Overgaard, J.; Skrydstrup, T. J. Am. Chem. Soc. 2010, 132, 7998-8009.
(15) Van, T. N.; Debenedetti, S.; Kimpe, N. D. Tetrahedron Lett. 2003, 44, 4199-4202.
(16) Jones, R. M.; Water, R. W. V. D.; Lindsey, C. C.; Hoarau, C.; Ung, T.; Pettus, T. R. R. J. Org. Chem. 2001, 66, 3435-3441.
(17) Fan, J.; Wang, Z. Chem. Commun. 2008, 42, 5381-5383.
(18) Wang, X.; Guram, A.; Caille, S.; Hu, J.; Preston, J. P.; Ronk, M.; Walker, S. Org. Lett. 2011, 13, 1881-1883.
(19) Vece, V.; Ricci, J.; Poulain-Martini, S.; Nava, P.; Carissan, Y.; Humbel, S.; Duñach, E. Eur. J. Org. Chem. 2010, 32, 6239-6248.
(20) Anastasiou, D.; Jackson, W. R. Aust. J. Chem. 1992, 45, 21-37.
(21) Perez-Serrano, L.; Blanco-Urgoiti, J.; Casarrubios, L.; Dominguez, G.; Perez-Castells, J. J. Org. Chem. 2000, 32, 6239-6248.
(22) Maki, B. E.; Chan, A.; Scheidt, K. A. Synthesis 2008, 1306-1315.
(23) Felpin, F. X.; Fouquet, E. Chem. Eur. J. 2010, 16, 12440-12445.
(24) Liu, C.; He, C.; Shi, W.; Chan, M.; Lei, A. Org. Lett. 2007, 9, 5601-5604.
(25) Bergdahl, M.; Lindstedt, E. L.; Nilsson, M. Tetrahedron 1988, 44, 2055-2062.
(26) Kondo, T.; Okada, T.; Mitsudo, T. Organometallics 1999, 18, 4123-4127.
(27) Xiang, J.; Orita, A.; Otera, J. Angew. Chem. Int. Ed. 2002, 41, 4117-4119.
(28) Jefford, C. W.; Bernardinelli, G.; Wang, Y.; Spellmeyer, D. C.; Buda, A.; Houk, K. N. J. Am. Chem. Soc. 1992, 114, 1157-1165.
(29) Métay, E.; Léonel, E.; Sulpice-Gaillet, C.; Nédélec, J. Synthesis 2005, 1682-1688.
(30) Rewcastle, G. W.; Atwell, G. J.; Baguley, B. C.; Boyd, M.; Thomsen, L. L.; Zhuang, L.; Denny, W. A. J. Med. Chem. 1991, 34, 2864-2870.
(31) Zeitler, K.; Rose, C. A. J. Org. Chem. 2009, 74, 1759-1762.
(32) Yoneda, E.; Sugioka, T.; Hirao, K.; Zhang, S. W.; Takahashi, S. J. Chem. Soc. Perkin Trans. 1 1998, 3, 477-484.
(33) Rioz-Martinez, A.; de Gonzalo, G.; Torres Pazmiño, D. E.; Fraaije, M. W.; Gotor, V. J. Org. Chem. 2010, 75, 2073-2076.
(34) Amyes, T. L.; Kirby, A. J. J. Am. Chem. Soc. 1988, 110, 6505-6514.
(35) Adam, W.; Peters, K.; Sauter, M. Synthesis 1994, 111-119.
(36) Park, J. O.; Youn, S. W. Org. Lett. 2010, 12, 2258-2261.
(37) Thomson, J. E.; Kyle, A. F.; Gallangher, K. A.; Lenden, P.; Concellon, C.; Morrill, L. C.; Miller, A. J.; Joannesse, C.; Slawin, A. M. Z.; Smith, A. D. Synthesis 2008, 2805-2818.
(38) Adam, W.; Ahrweiler, M.; Sauter, M. Chem. Ber. 1994, 127, 941-946.

[^0]: F:¥NMRFTU-3241NON E6.als F: $\because N$ NMR
 TU-324
 Sat Jan 21 18:30:49 2012
 1 H
 NON
 399.65 MHz 124.00 KHz 0500.00 Hz 16384 7992.01 Hz

 8
 2.0500
 sec
 2.0500 sec
 4.9500 sec
 6.20 usec

 1 H
 CDCL3 ${ }^{24.0}$
 0.00 ppm
 0.00 ppm
 0.12 H
 15

 S6

