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Supporting	
  Information:	
  Derivation	
  of	
  equation	
  (3)	
  

Equation (3) is derived by considering a spherical gas bubble of radius R(t) centred at 

r = 0 in a liquid of infinite volume. Fick’s 1st law states that the rate of mass transfer 

(flux) per unit area, J, of a component of concentration C across a plane is 

proportional to the concentration gradient across that plane. This is expressed in 

spherical polar coordinates (r, θ, φ) as: 
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Where D is the diffusivity of the component in the surroundings.   

Epstein and Plesset21 define the rate of change of gas concentration at the bubble 

surface
 
as: 
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  A.2	
  

Where iC and Csat(R) are the initial concentration of the gas in the liquid and the 

dissolved gas saturation concentration at the bubble wall respectively. It is assumed 

that Ci, the temperature (T) and pressure (p) are constant throughout the liquid and 

that Henry’s law applies at the gas/liquid interface. The mass flow rate through the 

boundary can then be written as:	
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A.3 

where SA is the instantaneous surface area of the bubble. In order to find an equation 

for the rate of change of bubble radius, the right hand side of equation A.3 can be 

equated to the first derivative of the equation for the mass of a bubble, m, under 

constant interfacial tension, σ: 
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   A.4	
  

where B is the universal gas constant, M is the molecular weight of the gas,  ρ is the 

density of the gas in the bubble and the term (∞) denotes conditions in the bulk liquid 

(i.e. neglecting the additional pressure on the gas due to surface tension). Equating 

A.3 with A.4 yields equation (2) in the main text. 

 

The effect of a surfactant coating is to reduce the interfacial tension as well as 

providing a barrier to mass transfer across the bubble wall. These effects become 

increasingly significant with increasing surface concentration of surfactant molecules 

(Γ). For an insoluble molecular monolayer27, the interfacial tension ( )Rσ can be 

written as: 
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where Γ0 is the initial surfactant concentration on the bubble surface at which σ = σ0, 

R = R0, and K and x are constants characterising a given surfactant.  

Similarly, the coefficient of diffusion in the presence of a surfactant coating will also 

be a function of surface concentration, which in turn is a function of bubble radius. 

Using a similar treatment to that of Cable and Frade23,Error! Bookmark not defined. ( )D R  

can be written as the exponential function: 
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Again a, b and D0 characterise a given surfactant. When nanoparticles are adsorbed 

on to the interface of a dissolving microbubble, they affect its dissolution in two 

ways. First, they reduce the effective surface area available for the diffusion of gas 



molecules through the interface. As the radius of the bubble decreases, the particles 

remain on the interface and therefore their fractional coverage of the surface area of 

the bubble increases. Thus the uncovered interfacial surface area can be written as: 
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A.7	
  

where fp0 is the initial fractional coverage of particles on the bubble surface. Again 

equating terms for the rate of change of mass of the bubble but now including the 

terms described in equations A.5-7 yields equation (3) in the main text: 
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It should be noted that for the case of a variable diffusivity, Equation A.2 now 

represents an approximation to the true boundary condition, but the additional terms 

in the series will be small (c.f. equation (6) of Epstein and Plesset).  

 

	
  


