Supporting Information for

The Dynamics and Efficiency of Hole Transport in LNA:DNA Hybrid Diblock Oligomers Arun Thazhathveetil, Josh Vura-Weis, Anton Trifonov, Michael R. Wasielewski,* and Frederick D. Lewis*

Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208

Materials and Methods

Materials. Sa and Sd were prepared, purified, and characterized as previously described.^{1, 2} Oligonucleotide syntheses was carried out using phosphoramidite chemistry on a Expedite synthesizer. For LNA monomers the coupling time and oxidation time were modified as per manufacture protocol. The oligonucleotides were deprotected using 30% ammonium hydroxide at room temperature for 24 h, purified by HPLC and characterized by MALDI-TOF spectroscopy (Table S1). Emission spectra were recorded on SPEX Fluoromax fluorimeter for the A₆ and ^LA₆ conjugates and is shown in Figure S1.Thermal dissociation profiles were recorded on a Perkin Elmer Lambda 2 UV/VIS spectrometer with a Peltier Temperature Programmer and are shown in Figure S2. Incomplete melting and broad transitions are observed in all cases. Circular dichroism (CD) spectra were recorded on a Jasco-J-815 CD spectrometer and are shown in Figure S2.

Methods. Transient Absorption Spectra. Femtosecond (fs) time resolved transient absorption spectra of solutions containing ca. 50 μ M hairpin in 10 mM phosphate buffer (pH 7.2) containing 0.1 M NaCl were obtained as previously described^{3,4} using 350 nm excitation (which provides selective excitation of **Sa**) from a Ti-sapphire-based system having a time resolution of ca. 180 fs, a spectral range of 425-800 nm, and a time window of 0-6 ns.

Sequences	Calculated	Found
^L A ₆	4617.08	4615.10
LA_2G_4	4509.00	4511.04
^L A ₃ G ₃	4536.02	4537.02
LA_4G_2	4563.04	4562.88
$A_2^{L}G_4$	4565.02	4566.11
$A_3^{L}G_3$	4536.02	4534.98
$A_2^{L}G_6$	5857.78	5860.11
$A_2^{\ L}G_8$	7150.54	7154.22
LA_2LG_4	4641.04	4640.56
LA_3LG_3	4635.05	4635.10
$T_2^{L}C_4$	4621.14	4620.19
$L_{T_2}C_4$	4677.16	4678.98
^L (A ₂ G ₄)	4845.22	4845.99

Table S1. m/z values for oligomer sequences determined by MALDI-TOF mass spectrometry.

-

-

Figure S1. Emission spectra of A_6 (black) and LA_6 (red) in phosphate buffer (10 mM phosphate, 0.1 M NaCl, pH 7.2). Excitation wavelength 340 nm.

Figure S2. Absorption spectra (normalized at 330 nm) (a), thermal dissociation profile (b) and circular dichroism spectra (c) for the conjugates in 10 mM phosphate buffer, $pH \sim 7.2$ (100 mM NaCl). See Chart 1 for structures.

References

- (1) Letsinger, R. L.; Wu, T. J. Am. Chem. Soc. 1995, 117, 7323-7328.
- (2) Lewis, F. D.; Wu, Y.; Liu, X. J. Am. Chem. Soc. 2002, 124, 12165-12173
- (3) Lewis, F. D.; Zhu, H.; Daublain, P.; Fiebig, T.; Raytchev, M.; Wang, Q.; Shafirovich,
- V. J. Am. Chem. Soc. 2006, 128, 791-800.
- (4) Lewis, F. D.; Daublain, P.; Cohen, B.; Vura-Weis, J.; Shafirovich, V.; Wasielewski,
- M. R. J. Am. Chem. Soc. 2007, 129, 15130-15131. Lewis, F. D.; Daublain, P.; Cohen,
- B.; Vura-Weis, J.; Wasielewski, M. R. Angew. Chem. Int. Ed. 2008, 47, 3798-3800.