
Lead(II)-Catalyzed Oxidation of Guanine in Solution Studied with Electrospray Ionization Mass Spectrometry

Laura Banu, Voislav Blagojevic and Diethard K. Bohme*

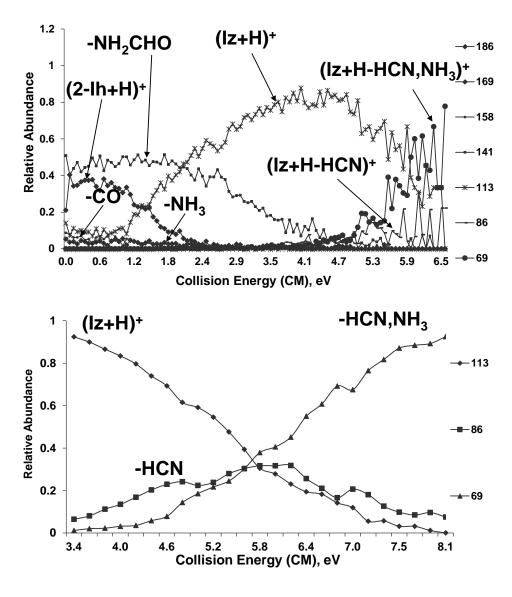

Supporting Information

Figure S1. Dissociation profile for the product ions observed in oxidation of guanine by peroxymonosulfuric acid: $(Sp+H+H_2O)^+$ (top) and $(Sp+H)^+$ (bottom). The early onset of water loss in $(Sp+H+H_2O)^+$ and commonality in the dissociation channels observed (predominant loss of H_2O and G_3N_2O from the $(Sp+H)^+$ ion) indicate that the water adduct is likely the proton-bound cluster formed in the electrospray and not a product of an in-solution reaction.

Figure S2. Mass spectrum for a solution containing guanine (Gua, 100μM) and lead acetate (1 mM). The observed products are: the lead(II)/deprotonated guanine complex [Pb(Gua-H)]⁺, protonated guanine (Gua+H)⁺ and its in-source fragmentation products (Gua+H-NH₃)⁺ and (Gua+H-NCO)⁺ as well as lead monoacetate, lead mono-hydroxide and the lead cation.

Figure S3. Dissociation profile for the product ions observed in oxidation of guanine by hydrogen peroxide: (2-lh+H)⁺ (top) and (lz+H)⁺ (bottom). The loss of NH₂CHO in (2-lh+H)⁺ was further explored by H-D exchange, it was found to contain only two exchangeable hydrogens and was thus assigned as NH₂CHO rather than NH₃+CO, both of which are observed as minor losses, but have different origin.