Supporting Information

The Journal of Organic Chemistry

June 12, 2012

Differential sensing of Zn(II)/Cu(II) via two independent

mechanisms

Prem N. Basa and Andrew G. Sykes*

Page 1: Figure S1, 1H NMR spectrum of Compound 3 Figure S2, 13C NMR spectrum of Compound 3
Page 2: Figure S3 IR spectrum of Compound 3 Figure S4, MS spectrum of Compound 3
Page 3: Figure S5, Fluorescence Metal Ion study of Compound 2
Page 4: Figure S6, UV-Vis Metal Ion study of Compound 2
Page 5: Figure S7, pH profile of Compound 3 Figure S8, MS spectra of Compound 3 + Cu(II)
Page 6: Figure S9, IR spectrum of Compound 3 + Cu(II)
Page 7: Table S1, Crystallographic Information of 4.H2O
Page 8: Figure S10, UV-vis changes of 8-aminoquinoline with added metal ions

Page 9: Figure S11, pH profile of Compound 3 + Cu(II)

Figure S1: ¹H NMR spectrum of compound **3**

Figure S2: ¹³C NMR spectrum of compound **3**.

Figure S3: ESI-MS spectrum of compound 3.

Figure S4: FT-IR spectrum of compound **3.**

Figure S5: Fluorescence spectra of metal ion selectivity study of 4.0 x 10^{-5} M of unreduced 8quinoline imine, **2**, in presence of series of metal cations. $\lambda_{ext} = 367$ nm.

Figure S6: UV-Vis absorbance spectra metal ion selectivity study of $4.0 \ge 10^{-5}$ M of unreduced 8-quinoline imine, **2**, in presence of series of metal cations.

Figure S7: Fluorescence emission profile of compound **3** (50:50 CH_3CN/H_20) in the presence and absence of Zn(II) at varying buffered pH solutions (1-10). Inset showing the graph rel. fluorescence intensity vs pH, monitored at 434 nm.

Figure S8: An ESI-MS spectrum of 1:1 copper (II) complex solution of compound **3c** in acetonitrile. b) Compound **3** in mixture of acetonitrile and water (10:1)

Figure S9: FT-IR spectrum of [compound **3.**Cu(II)] complex.

	4
Empirical formula	$C_{22} H_{26} O_8$
Formula weight	418.43
Temperature, K	100
Crystal system	Monoclinic
Space group	P 21/c
<i>a</i> , Å	13.3608(8)
b, Å	11.5312(7)
<i>c</i> , Å	14.2727(9)
α, °	90.00
β, °	113.29
γ, °	90.00
Volume, Å ³	2019.7(2)
Ζ	4
Density (calc)g.cm ⁻³	1.376
Absorb.coef.mm ⁻¹	0.105
<i>F</i> (000)	888.0
θ range	2.35-25.31
Index ranges	±15±13±16
Reflections collected	19211
Independent reflections	3549
Observed reflections	2533
Max/Min trans.	0.968/0.956
Restr./ Param.	0/283
Goodness-of-fit	1.021
Final R indices[$I > 2\sigma(I)$]	0.0430
R indices (all data)	0.1121
Peak/hole	0.23/-0.19

Table S1: Crystallographic collection and refinement data of compound $4.H_2O.$

Figure S10: UV-vis absorbance spectra of 1.0 x 10^{-4} M 8-aminoquinoline, and was tested with solutions of select metal perchlorate salts (Co²⁺, Cu²⁺, Fe²⁺, Fe³⁺, Hg²⁺, and Mn²⁺).

Figure S11: UV-vis absorbance spectra of compound **3** (4.0 x 10^{-5} M) and 5.0 equiv of Cu(II), at various pH conditions.