
Supplementary Information 

I.  Theoretical Modeling of Absorption and Index of Refraction 

Spectra 

When the conduction and valence bands of a semiconductor are populated by excited carriers, the 

complex dielectric function can change dramatically through many body effects, e.g. band filling.  At a 

quasi-equilibrium state, such many body effects can be fully characterized, at least macroscopically, by 

two thermodynamically independent properties of carriers: density and temperature. A semi-

phenomenological theoretical formalism proposed by Banyai and Koch accurately describes the optical 

properties of semiconductors over a wide range of temperatures and carrier densities in which the 

absorption �(�) is described by a generalized Elliot formalism 
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where �(�) = tanh ��� �ℏ� − �� − ��� is the band filling factor with  = 1/"#$%&, the total chemical 

potential is  � = �% + �&, and the band gap is ��. The temperature of EHP ($%&) may be different from 

the lattice temperature.  The band filling factor provides the correct cross over between absorption and 

gain: �(�) < 0 for ℏ� < �� + � results in negative absorption (gain) while �(�) > 0 for ℏ� > �� + � 

gives positive absorption.  Band gap renormalization is included by considering a density dependent 

effective band gap.  The wave function 	
 in equation (1) was obtained by solving a modified Wannier 

equation where the Columb potential in Wannier equation is replaced by Yukawa potential (characterized 

by screening length of *+,). Thus, in this formalism relevant many body effects (band filling, band gap 

renormalization and plasma screening) have been included. By considering both bound states (excitons) 

and continuum states, the absorption spectrum reads
1
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where 0 is the speed of light in vacuum, .2 is the material static dielectric constant, and ./ = QRS� /27T2E�9 

in which T2 = ℏ�.2/UV� is the Bohr radius and �9 = ℏ�/2UT2� is the Rydberg energy with U+, =U%+, + U&+,.  The carrier density is related to the chemical potential and temperature through: 

T2EWX = 127� � UX U�9�E/� L MN N,/�Y(N −  �X)∞
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for [ = V, ℎ and  Y(N) is the Fermi distribution function. In equation (2),  �� = ��2 + ��� is the 

renormalized bandgap in which: 

��� = �9 × _̀̂
_a−1 + �1 − 1;��       YbQ      ; ≥ 1

− 1;                           YbQ        ; < 1                                                          (4)e 
where ; = 12/7T2* in which the inverse screening length * reads: 

(T2*)� = 47 � 1 �9�,/� L MN N,/� � fUXU gE� Y(N −  �X)�1 − Y(N −  �X)�                           (5)XC%,&
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The delta function in equation 2 is defined as: 

�Γ(N) = �97Γ cosh f�9Nl g                                                                         (6) 

where Γ is a phenomenological broadening parameter. Combining the above relations, the absorption 

spectrum (equation 2) can be reduced to an expression which depends only on EHP density (W%&) and 

temperature ($%&) and intrinsic material parameters. The inversion of equation (3) allows one to calculate 

the chemical potentials �X(W%& , $%&). Substituting the chemical potentials in equation (5), results in a 



screening length and thus ; which can be used in equation (4) to evaluate the renormalized band gap. 

Thus, all parameters in equation (2) are expressed as a function of density and temperature only.  

Once the absorption spectrum is evaluated for each pair of density and temperature, the real part of the 

index of refraction can be computed by applying the Kramers-Kronig relation: 

G(�, W%& , $%&) = 07 n L M�′ ���′, W%& , $%&��′� − ��∞

2                                                        (7) 

Thus, the complex index of refraction reads: 

p(�, W%& , $%&) = ℏ07 n L M�′ ���′, W%& , $%&��′� − ��∞

2 + [ℏ0� �(�, W%& , $%&)                              (8) 

For material parameters we used U% = 0.0665 U2, U& = 0.52 U2, .2 = 12.35, T2 = 1.243 × 10+s 0U, �9 = 4.2 Vt, ��2 = 1.519 Vt, and  Γ = 4 UVt consistent with FWHM of photoluminescence at low 

density. 



 

Figure 1: Comparison of calculated absorption (left column) and refractive index (middle column) and 

change in Rayleigh spectrum of a nanowire with 150 nm diameter (right column) for various densities 

(vwx) and temperatures (ywx) of the electron-hole plasma. The changes in the Rayleigh spectrum are 

calculated with respect to the spectrum with vwx = z{z| }~+� and ywx = �| �. 

Figure 1 compares the calculated absorption and refractive index for various densities and temperature 

using above expressions. In the absorption spectra, at low densities the exciton resonance is shown by a 

small peak at the right side of the absorption edge. By increasing the density, eventually the exciton 

resonance diminishes due to the Mott transition.  By increasing the density further, band filling becomes 

important and a region with negative absorption (gain) appears.  An increase in the temperature results in 

an increase in the Mott density and the density of the absorption/gain cross over. The middle column in 

Figure 1 shows the refractive index calculated by applying the Kramers-Kronig relation to the absorption 

spectrum. The right column shows the change in the Rayleigh spectrum of a nanowire with 150 nm 

diameter where the background density and temperature was taken at W%& = 10,� 0U+E and $%& = 25 �. 

As demonstrated in Figure 1, the band filling, band gap renormalization and plasma screening (which can 

be seen easily in absorption spectra) does not map simply to the change of the Rayleigh spectrum.  Thus 



the inverse problem of determining the many body effects from the Rayleigh spectrum requires a fitting 

procedure. 

   

II.  Data Fitting Procedure 

The chi-squared was defined for a two dimensional map as following: 

�� = � � �∆�′�′ ��X, ��� − �X − �XVX� �p f��, W%&(�X), $%&(�X)g  − p���, W2, $2����
�X             (9) 

where 
∆9′9′ ��X, ��� is the experimentally measured transient Rayleigh scattering signal at energy �� and 

time �X after initial excitation. The parameters � (modulation phase) and W2 and $2 (background density 

and temperature) do not depend on time or energy. �X’s and �X’s are the background signal and signal 

amplitude which do not depend on the energy but may vary slightly in time due to other possible effects 

not included in theory such as dependency of optical transition dipole coupling on density and 

temperature. To measure the modulation phase, background density and temperature, and time-dependent 

density and temperature the chi-squared defined by equation (9) was minimized numerically. The quality 

and sensitivity of this procedure is demonstrated in Figures 2 and 3 for times at 6 ps and 100 ps. Such 

comparisons were made by varying the density by 15% around the fit value while the temperature was 

fixed (left panel) and similarly, a 15% variation of the temperature at fixed density at the fit value. This 

comparison at both 6 ps and 100 ps after excitation (bottom graphs in Figure 2 and 3), suggest that the 

fitting procedure is somewhat more sensitive to the EHP density than to the temperature.  



 

Figure 2: Comparison of the fits with different values for density and temperature at 6 ps after excitation. 

The solid red spectrum is calculated for the fit values of density and temperature at 1.67 × 10,� 0U+E 

and 201 � respectively.  The left panel compares the absorption and the index of refraction spectra 

resulted from the fit procedure (red line) with the spectra obtained by ±z|% variation of temperature 

while the density is kept fixed (blue and green lines). Similarly, the right panel compares the fit results 

with ±z|% variation in density while the temperature is kept fixed. At the bottom, the filled boxes are 

the experimental values and the interconnecting black lines are guides for the eye. 

 



 

Figure 3: Comparison of the fits with different values for density and temperature at 100 ps after 

excitation.  The solid red spectrum is calculated for the fit values of density and temperature at 6.02 ×10,� 0U+E and 63 � respectively.  The left panel compares the absorption and the index of refraction 

spectra resulted from the fit procedure (red line) with the spectra obtained by a  ±z|% variation of 

temperature while the density is kept fixed (blue and green lines). Similarly, the right panel compares the 

fit results with a ±z|% variation in density while the temperature is kept fixed. At the bottom, the filled 

boxes are the experimental values and the interconnecting black lines are guides for the eye. 

 

 

III.  Carrier dynamics  

To analyze the measured EHP density, we consider a finite nanowire with length � which extends from – �/2 to �/2.  Including one dimensional ambipolar diffusion and linear and bimolecular recombination, 

the rate equation governing the carrier dynamics reads: 



�W%&(N, �)�� = � + �� ��W%&(N, �)�N� − W%&(N, �)� − �W%&(N, �)�                            (10) 

Where � is the generation term associated with the intensity and size of the pump beam which was 

focused at the center of the nanowire. The intensity of the pump beam has a Gaussian profile with FWHM 

of 21:b; 2 . Since the pump pulse width (~250 fs) is much smaller than the relevant time scale in 

describing the dynamics, the amplitude of the Gaussian is determined by the number of carriers injected 

into a nanowire of finite length. Also, the surface recombination at either ends of the nanowire resulted in 

the boundary conditions: 

8�W%&(N, �)�N  <�C±�/� = − �2�� W%&(N = ± � 2⁄ , �)                         (11)  
where �2 is the surface velocity.  Then Equation (10) at N = 0 (~�W%&��� ¡%) is fitted to the measured 

EHP density.  In the fit the surface velocity �2 = 10�0U/¢ and the length of the nanowire at � = 3.2 

micron (measured from TEM images) were kept fixed while the free parameters include ambipolar 

diffusion ��, linear recombination constant �, bimolecular recombination constant �, initial density and 

pump Gaussian width £. The Gaussian width of the pump (£) was measured at 0.8 microns and is 

consistent with the optical image of the pump laser spot. 

 

IV.  Energy loss rate equation 

The total energy loss rate due to emission of LO and acoustic phonons may be written: 

�M�M� � = 0 ����� ��¤ + ����� �¥¦          (12) 

where the left hand side is the total energy loss rate of the EHP and the terms in the right hand side 

correspond to energy loss rate due to emission of LO and acoustic phonons respectively. On the right 

side, the factor 0 accounts for re-absorption of LO phonons due to high occupation of phonon’s state at 

early times (see the text). The averaging is over a Fermi distribution of EHP associated with the density 

and temperature of W%&(�) and $%&(�). The left hand side can thus be written as: 

�M�M� � = 32  � � §E �⁄ (�X "#$%&⁄ )§, �⁄ (�X "#$%&⁄ )XC%,& � M$%&M�               (13) 



where the Fermi integrals (§�) are treated as constant in time. The Fermi averaged LO phonon emission 

rate by carriers (Frohlich coupling) reads
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: 

����� ��¤ =  � V�UX�"#$%&� ℏ�7�W%& � 1.∞ − 1.2� �W�¤($%&) − W�¤($B)� L M¨ (ℏ��¤)�¨∞
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where W%& and $%& are the density and temperature of EHP, $B is the lattice temperature, .2 and .∞ are 

material static and high frequency dielectric constants, and ℏ��¤ is the energy of LO phonons. The factor � is equal to 1 for electrons and 2 for holes
4, 5

. Also, W®($) = �exp�ℏ�® "#$⁄ � − 1�+, is the phonon 

occupation number.  Similarly, the Fermi average of the emission rate of acoustic phonons, described by 

the acoustic phonon deformation potential (�¥¦), reads: 

����� �¥¦ =  � UX��¥¦� "#$%&47E ℏE¯W%&  L M¨ ¨E fW®($%&) − W®($B)g ∞

2XC%,&
× �G ©1 + expH(− ℏ� 8UX"#$%&⁄ )(¨ − 2UX°± ℏ⁄ )� + �X "#$%&⁄ I1 + expH(− ℏ� 8UX"#$%&⁄ )(¨ + 2UX°± ℏ⁄ )� + �X "#$%&⁄ I    (15) 

 Where °± is the sound velocity, ¯ is the mass density of the material, and ℏ�® ≈ ℏ¨°± is the energy of an 

acoustic phonon with wave vector ¨. 

Combining equations (12)-(15) results in the energy loss rate equation that we have used to numerically 

fit the measured time-dependent EHP temperature. The only free parameters are the factor 0 and acoustic 

phonon deformation potential �¥¦ . The other parameters are kept fixed: ℏ��¤ = 35 UVt, °± = 3.57 ×10�0U/¢, ¯ = 5.81 ;/0U+E,  .∞ = 10.94, .2 = 12.35, U% = 0.0667 U2 and U& = 0.52 U2. Note that 

density W%& and chemical potentials �X, which appear explicitly in the energy loss rate equation (equations 

12-15), are time-dependent. These are incorporated directly into the equation using the measured time-

dependent values from the fits to the transient Rayleigh spectra. Once the factor 0 and the acoustic 

phonon deformation potential �¥¦  are determined, the energy loss rate due to emission of LO and acoustic 

phonons are evaluated using equations (14) and (15). 
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